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Motivation

This note is intended to contain full solutions to all exercises in this venerable text,1 as well as proofs
of results omitted or left to the reader. It has none of the short text’s pith or elegance, tending rather to the
other extreme, citing chapter and verse from the good book and spelling out, step-by-step, things perhaps
better left unsaid. It attempts to leave no “i” undotted, no “t” uncrossed, no detail unexplained. We are
rather methodical in citing results when we use them, even if they’ve likely long been assimilated by the
reader. Having found some solution sets online unclear at points (sometimes due to our own shortcomings,
at other times due to theirs), we in this note strive to suffer from the opposite problem. Often we miss the
forest for the trees. We prefer to see this not as “pedantic,” but as “thorough.” Sometimes we have included
multiple proofs if we have found them, or failed attempts at proof if their failure seems instructive. The
work is our own unless explicitly specified otherwise. It is hoped that the prolix and oftentimes plodding
nature of these solutions will illuminate more than it conceals.

1 [?]
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Notation

Problems copied from the book and propositions are in italics, definitions emphasized (italic when
surrounding text is Roman, and Roman when surrounding text is italic), and headings in bold or italics,
following the book, and our solutions and occasional comments in Roman. Solutions that were later
supplanted by better ones but still might potentially be worth seeing have usually been included, but
as footnotes, decreasing both page count and legibility. Propositions, exercises, theorems, lemmas, and
corollaries from the main body of the text will always be cited as “(n.m)” or (n.m.t)”, where n is the
chapter number, m the section number, and “t” an optional Roman numeral. For example, Proposition
1.10, part ii) is cited as “(1.10.ii)”. Propositions or assertions proved in these solutions but not stated in the
text are numbered with an asterisk, e.g. “Proposition 4.12*” and thereafter “(4.12*)”. Exercises from the
“EXERCISES” sections that follow each chapter, on the other hand, we cite with (square) brackets as e.g.
“[3.1]” and “[1.2.i]”. Displays in this document are referred back to as e.g. “Eq. 1.1” or “Seq. 2.2”. Ends
of proofs for exercises go unmarked, though we will sometimes mark proofs for discrete propositions we
prove in the course of doing problems or expanding upon material.

Our mathematical notation follows that of the book, with a few exceptions as noted below. For strict set
containment, “⊂” is supplanted by “(”, which is preferred for its lack of ambiguity; it is not to be confused
with “ 6⊆”, which means “does not contain.” “3” is a backward “∈”, and means “contains the element”
(rather than “such that”). The ideal generated by a set of elements is noted by listing them between
parentheses: e.g., (x, y) is generated by {x, y} and (xα)α∈A is generated by {xα : α ∈ A}. Contrastingly
(and disagreeing with the book), we notate sequences and ordered lists with angle brackets: 〈x, y〉 is an
ordered pair and 〈xα〉α∈A is a list of elements xα indexed by a set A; in particular 〈xn〉n∈N is a sequence.
Popular algebraic objects like N, Z, Q, R, and C will be denoted in blackboard bold instead of bold,
and 0 is included in N. Fq denotes a (“the”) finite field with q elements. “a � A” means that a is an
ideal of the ring A. For set complement/exclusion, the symbol “\” replaces “−” on the off chance it
might otherwise be confused with subtraction in cases (like topological groups) where both operations
are feasible. The set of units of the ring A will be denoted by A× rather than A∗, which is assigned a
different meaning on p. 107. Bourbaki’s word “quasi-compact” for the condition that every open cover
has a finite subcover (not necessarily requiring the space be Hausdorff) we replace with “compact”; this
usage seems to hold generally outside of algebraic geometry and most of the topologies we encounter
here are not Hausdorff anyway. “ker”, “im”, and “coker” will go uncapitalized. N(A) and R(A) always
denote, respectively, the nilradical and the Jacobson radical of the ring A; we just write N and R where no
ambiguity is possible. The notation idM : M → M for the identity map replaces the book’s “1” as slightly
more unambiguous; 1 or 1A is instead the unity of the ring A. “Multiplicative submonoid” is preferred to
the book’s “multiplicatively closed subset” as indicating that a subset of a ring contains 1 and is closed
under the ring’s multiplication. “Zorn’s Lemma,” capitalized, is the proper name of a result discovered
by Kazimierz Kuratowski some thirteen years earlier than by Max Zorn. For a map f: A → B, we can
replace the arrow with “�” when f is surjective, “�” when it is injective, “↪→” when it is an inclusion,
and “ ∼−→” when it is an isomorphism. A ∼= B means that there exists some isomorphism between A and
B, and X ≈ Y that X and Y are homeomorphic topological spaces. [M] is the isomorphism class of M. For
a map f: A → B, if U ⊆ A and V ⊆ B are such that f(U) ⊆ V, then f |VU is the restricted and corestricted
map U → V. Very occasionally, κ, λ, µ may be cardinals (or homomorphisms), and indices α, β, γ may be
ordinals. ℵ0 is the cardinality of N.
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Chapter 1: Rings and Ideals

Theorem 1.3. Every ring A 6= 0 has at least one maximal ideal.

In order to apply Zorn’s Lemma, it is necessary to prove that if 〈aα〉α∈A is a chain of ideals (meaning,
recall, that for all α, β ∈ A we have aα ⊆ aβ or aβ ⊆ aα) then the union a =

⋃
α∈A aα is an ideal. Indeed,

if a, b ∈ a, then there are α, β ∈ A such that and a ∈ aα and b ∈ aβ. Without loss of generality, suppose
aα ⊆ aβ. Then a, b ∈ aβ, so since aβ is an ideal we have a− b ∈ aβ ⊆ a. If x ∈ A and a ∈ a, then there is
α ∈ A such that a ∈ aα. As aα is an ideal, xa ∈ aα ⊆ a. Therefore a is an ideal.

Exercise 1.12.
i) a ⊆ (a : b).

For each a ∈ a we have ab ⊆ ab ⊆ a, so a ∈ (a : b).

ii) (a : b)b ⊆ a.

By definition, for x ∈ (a : b) we have xb ⊆ a.

iii)
(
(a : b) : c

)
= (a : bc) =

(
(a : c) : b

)
.

x ∈
(
(a : b) : c

)
⇐⇒ xc ⊆ (a : b) ⇐⇒ xcb ⊆ a ⇐⇒ x ∈ (a : bc);

x ∈
(
(a : c) : b

)
⇐⇒ xb ⊆ (a : c) ⇐⇒ xbc ⊆ a ⇐⇒ x ∈ (a : bc).

iv)
(⋂

i ai : b
)
=
⋂

i (ai : b).

x ∈
(⋂

i
ai : b

)
⇐⇒ xb ⊆

⋂
i
ai ⇐⇒ ∀i (xb ⊆ ai) ⇐⇒ x ∈

⋂
i
(ai : b).

v)
(
a : ∑i bi

)
=
⋂

i (a : bi).

x ∈
(
a : ∑

i
bi

)
⇐⇒ a ⊇ x

(
∑

i
bi

)
= ∑

i
xbi ⇐⇒ ∀i (xbi ⊆ a) ⇐⇒ x ∈

⋂
i
(a : bi).

For an A-module M and subsets N ⊆ M and E ⊆ A, define (N : E) := {m ∈ M : Em ⊆ N}; for subsets
N, P ⊆ M and E ⊆ A, define (N : P) := {a ∈ A : aP ⊆ N}.

Note for future use that then ii) holds equally well for subsets a, b ⊆ M, or b ⊆ A and a ⊆ M; iii) holds
for a, b ⊆ M and c ⊆ A; and iv) and v) hold for modules a, ai and modules or ideals b, bi.

Exercise 1.13.
−i) a ⊆ b =⇒ r(a) ⊆ r(b).

If x ∈ r(a), for some n > 0 we have xn ∈ a ⊆ b, so x ∈ r(b).

0) r(an) = r(a) for all n > 0.

an ⊆ a, so by part −i) we have r(an) ⊆ r(a). If x ∈ r(a), then for some m > 0, xm ∈ a. But then xmn ∈ an

and x ∈ r(an).

i) r(a) ⊇ a.

For each a ∈ a we have a1 ∈ a, so a ∈ r(a).
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Chapter 1: Rings and Ideals

ii) r
(
r(a)

)
= r(a).

x ∈ r
(
r(a)

)
⇐⇒ ∃n > 0

(
xn ∈ r(a)

)
⇐⇒ ∃n, m > 0

(
(xn)m = xmn ∈ a

)
⇐⇒ x ∈ r(a).

iii) r(ab) = r(a∩ b) = r(a) ∩ r(b).

For the first equality, note (a∩ b)2 ⊆ ab ⊆ a∩ b, so by parts 0) and −i), r(a∩ b) = r
(
(a∩ b)2) ⊆ r(ab) ⊆

r(a∩ b). For the second, note that if m, n > 0 are such that xm ∈ a and xn ∈ b, then xmax{m, n} ∈ a∩ b, and
conversely.

iv) r(a) = (1) ⇐⇒ a = (1).

If r(a) = (1), then 1 ∈ r(a), so for some n we have 1 = 1n ∈ a, and then a = (1).

v) r(a+ b) = r
(
r(a) + r(b)

)
.

Since a, b ⊆ a+ b, by part −i) we have r(a), r(b) ⊆ r(a+ b), so r(a) + r(b) ⊆ r(a+ b). By parts −i), and
ii), we see r

(
r(a) + r(b)

)
⊆ r
(
r(a+ b)

)
= r(a+ b). Conversely, by part i), we have a ⊆ r(a) and b ⊆ r(b), so

adding, a+ b ⊆ r(a) + r(b). By part −i), r(a+ b) ⊆ r
(
r(a) + r(b)

)
.

vi) If p is prime, r(pn) = p for all n > 0.

By part 0), r(pn) = r(p). By (1.14), r(p) = p.

Proposition 1.17. iv*) Both extension and contraction are order-preserving with respect to containment; i.e. for
ideals a1 ⊆ a2 of A we have ae

1 ⊆ ae
2 and for ideals b1 ⊆ b2 of B we have bc

1 ⊆ bc
2.1

If a1 ⊆ a2, then f(a1) ⊆ f(a2), so ae
1 = Bf(a1) ⊆ Bf(a2) = ae

2. If b1 ⊆ b2, then bc
1 = f−1(b1) ⊆ f−1(b2) =

bc
2.

Exercise 1.18. Let f : A→ B be a ring homomorphism, and let a, aj be ideals of A and b, bj ideals of B.(
∑ aj

)e
= ∑ ae

j .

Because the homomorphism f distributes over finite sums and multiplication of ideals distributes over
addition, (

∑ aj

)e
= Bf

(
∑ aj

)
= B ·∑ f(aj) = ∑ Bf(aj) = ∑ ae

j .

(a1a2)
e = ae

1a
e
2.

Because 1 ∈ B, we have B = BB; as f is a homomorphism and ideal multiplication commutes,

(a1a2)
e = Bf(a1a2) = BBf(a1) f(a2) = Bf(a1)Bf(a2) = ae

1a
e
2.(

∑ bj
)c ⊇ ∑ bc

j .

Given any finitely many nonzero aj ∈ f−1(bj), we have f
(

∑j aj
)
= ∑j f(aj) ∈ ∑j bj.

(b1b2)
c ⊇ bc

1b
c
2.

If f(aj) ∈ bj for j = 1, 2, then f(a1a2) = f(a1) f(a2) ∈ b1b2.(⋂
j aj
)e ⊆ ⋂j a

e
j . (⋂

aj

)e
= Bf

(⋂
aj

)
⊆ B ·

⋂
f(aj) =

⋂
Bf(aj) =

⋂
ae

j .(⋂
bj
)c

=
⋂
bc

j . (⋂
bj

)c
= f−1

(⋂
bj

)
=
⋂

f−1(bj) =
⋂

bc
j .

1 This is trivial, but the book never seems to explicitly state that it is the case, so here is a place to cite when we use it.
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Ex. 1.1 Chapter 1: Rings and Ideals

(a1 : a2)
e ⊆ (ae

1 : ae
2).

By the result on multiplying extended ideals, and since (a1 : a2)a2 ⊆ a1 by (1.13.ii), we have

(a1 : a2)
eae

2 =
(
(a1 : a2)a2

)e (1.17.iv*)
⊆ ae

1.

(b1 : b2)
c ⊆ (bc

1 : bc
2).

By the result on multiplying contracted ideals, and since (b1 : b2)b2 ⊆ b1 by (1.13.ii),

(b1 : b2)
cbc

2 ⊆
(
(b1 : b2)b2

)c (1.17.iv*)
⊆ bc

1.

r(a)e ⊆ r(ae).

Let b = ∑j bj f(xj) for bj ∈ B and x
nj
j ∈ a. Some f(xj)

nj divides each term of b∑j(nj−1)+1, so b ∈ r(ae).

r(b)c = r(bc).

a ∈ f−1(r(b)) ⇐⇒ ∃n > 0
(

f(an) = f(a)n ∈ b
)
⇐⇒ ∃n > 0

(
an ∈ f−1(b)

)
⇐⇒ a ∈ r

(
f−1(b)

)
.

The set of extended ideals is closed under sum and product, and the set of contracted ideals is closed under intersection,
quotient, and radical.

It now suffices to show (bc
1 : bc

2) = (bce
1 : bce

2 )c. Indeed, using the preceding facts and (1.17.ii),

a ∈ (bc
1 : bc

2) ⇐⇒ abc
2 ⊆ bc

1 =⇒ f(a) f(bc
2) ⊆ f(bc

1) ⇐⇒ f(a)bce
2 ⊆ bce

1 ⇐⇒ a ∈ (bce
1 : bce

2 )c;

a ∈ (bce
1 : bce

2 )c ⇐⇒ f(a)bce
2 ⊆ bce

1 =⇒ abc
2 ⊆ f−1( f(a)

)
bc

2 = f−1( f(a)
)
bcec

2 ⊆ bcec
1 = bc

1 =⇒ a ∈ (bc
1 : bc

2).

EXERCISES
1. Let x be a nilpotent element of a ring A. Show that 1 + x is a unit of A. Deduce that the sum of a nilpotent element

and a unit is a unit.

The nilradical is a subset of the Jacobson radical, and by (1.9), for any x ∈ R we have 1 + x = 1− (−x)
a unit.2 Now if x is nilpotent and u a unit, then u−1x is nilpotent as well and u + x = u(1 + u−1x) is
invertible.

2. Let A be a ring and let A[x] be the ring of polynomials in an indeterminate x, with coefficients in A. Let f =
a0 + a1x + · · ·+ anxn ∈ A[x]. Prove that
i) f is a unit in A[x] ⇐⇒ a0 is a unit in A and a1, . . . , an are nilpotent.

⇐=: If a0 is a unit and the aj are nilpotent for j ≥ 1, then since N is an ideal by (1.7), the ajxj are
nilpotent for j ≥ 1 and y = ∑n

j=1 ajxj is nilpotent, and by [1.1], f = a0 + y is invertible.
=⇒ : We induct on deg f . The degree zero case is trivial. Suppose we have proved the result for

degrees < n, and let deg f = n. Suppose that f is a unit, with inverse g = ∑m
i=0 bixi; assume for uniformity

of notation that aj = bi = 0 for integers i, j outside the ranges indicated. Write ck = ∑k
j=0 ajbk−j for

0 ≤ k ≤ m + n, so that 1 = fg = ∑k ckxk. We have 1 = c0 = a0b0, so a0 and b0 are units, and the other ck are
all 0. Note in particular 0 = cm+n = anbm: a power of an annihilates bm. This is the r = 1 case of a general
claim that ar

nbm+1−r = 0 for 1 ≤ r ≤ m + 1. Indeed, fix such an r and inductively assume as
nbm+1−s = 0 for

1 ≤ s ≤ r. We have
0 = cm+n−r = bm−ran + bm−r+1an−1 + · · ·+ bman−r.

2 Alternately, let n > 0 be minimal such that xn = 0, and let y = ∑n−1
j=0 (−x)j; then

(1 + x)y =
n−1

∑
j=0

(−x)j −
n

∑
j=1

(−x)j = 1± xn = 1.
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Chapter 1: Rings and Ideals Ex. 1.2

Multiplying by ar
n, we get

0 = ar+1
n bm−r + ar

nbm−r+1︸ ︷︷ ︸
0

(an−1an) + · · ·+ anbm︸︷︷︸
0

(an−rar−1
n ),

so 0 = ar+1
n bm−r, completing the induction. When we get to r = m we see b0am+1

n = 0, so since b0 is a
unit, an is nilpotent. Hence anxn is nilpotent, and by [1.1], f − anxn is a unit. This has degree < n, so by
induction, a1, . . . , an−1 are nilpotent.

ii) f is nilpotent ⇐⇒ a0, a1, . . . , an are nilpotent.

⇐=: Since N
(

A[x]
)

is an ideal by (1.7), if all aj ∈ N, then all ajxj ∈ N, so f = ∑ ajxj ∈ N.
=⇒: On the other hand, for each prime p� A, we have p[x]� A[x] prime since it is the kernel of the

surjection A[x] � (A/p)[x], whose image is an integral domain by [1.2.iii]: if ajxj ∈ A[x] is a zero-divisor,
there exists a nonzero c ∈ A with c ·∑ ajxj = 0, so each c · aj = 0, and hence aj = 0 as A/p is an integral
domain. Thus

N
(

A[x]
) (1.8)
⊆

⋂ (
p[x]

)
=
(⋂

p
)
[x] = N(A)[x].3

iii) f is a zero-divisor ⇐⇒ there exists a 6= 0 in A such that af = 0.

The “if” direction is trivial; the “only if” we prove by induction. We prove something slightly more
specific: if a nonzero g = b0 + b1x + · · ·+ bmxm ∈ (0 : f ) is of least possible degree m, then bm f = 0.

For the base case, if f = a0 has degree zero, then of course bma0 = bm f = 0. Suppose inductively that
for all zero-divisors f ′ of degree n− 1 we know there is some b ∈ A such that bf ′ = 0. Let deg f = n and
g and m be as before. Since fg = 0, also anbm = 0, so deg(ang) < m. As angf = 0 as well, by minimality
of m, we know ang = 0. Now 0 = fg− anxng = ( f − anxn)g. Since f ′ = f − anxn is of degree < n, by the
inductive assumption bm f ′ = 0, so bm f = bmanxn + bm f ′ = 0, completing the induction.

iv) f is said to be primitive if (a0, a1, . . . , an) = (1). Prove that if f, g ∈ A[x], then fg is primitive ⇐⇒ f and g
are primitive.

We can actually let A[x] := A[x1, . . . , xr] be a polynomial ring in several indeterminates, writing x for
the sequence x1, . . . , xr, in the proof below.

Note that a polynomial is primitive just if no maximal ideal contains all its coefficients. Let m� A be
maximal. Since A/m is a field, A[x]/m[x] ∼= (A/m)[x] is an integral domain. Thus

f, g /∈ m[x] ⇐⇒ f̄, ḡ 6= 0 in (A/m)[x] ⇐⇒ fg 6= 0 in (A/m)[x] ⇐⇒ fg /∈ m[x].

Therefore no maximal ideal contains all the coefficients of fg just if the same holds for f and g.4

This result is called Gauß’s Lemma and was originally proven in his Disquisitiones Arithmeticae for A = Z.
Cf. also [9.2].

3 Alternate proof: suppose f m = 0 and j is minimal with aj 6= 0. Then the lowest term am
j xjm of f is 0, so aj is nilpotent and

f − ajxj is nilpotent. Repeatedly lopping off lowest terms, we see each aj ∈ N(A).
4 We also have the following generalization of the classical proof. Suppose f is not primitive, so that for some maximal m� A we

have f ∈ m[x]. Then fg ∈ m[x], so fg is not primitive. The same holds if g is not primitive.
Now suppose fg is not primitive; we show one of f and g is also not. There is a maximal ideal m containing all of the coefficients

cr = ∑j ajbr−j of fg; we suppose that neither all of the aj nor all of the bk lie in m and obtain a contradiction. There are a least J and a
least K such that aJ , bK /∈ m. Now m contains the coefficient cJ+K = ∑j<J ajbJ+K−j + aJ bK + ∑k<K aJ+K−kbk , and each of the sums is
in m by assumption, so aJ bK ∈ m as well. Since m is prime, we have aJ or bK in m, a contradiction.
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Ex. 1.3 Chapter 1: Rings and Ideals

3. Generalize the results of Exercise 2 to a polynomial ring A[x1, . . . , xr] in several indeterminates.

We start with an assumption about the ring B = A[x1, . . . , xr] and prove the corresponding statement
about the ring B[y] = A[x1, . . . , xr, y] in one more indeterminate. For a multi-index α = 〈j1, . . . , jr〉 we
write aα, k := aj1, ..., jr , k and xα := xj1

1 · · · x
jr
r . If f ∈ B[y], we can write it as f = ∑α, k aα, kxαyk = ∑k hkyk, where

hk = ∑α aα, kxα ∈ B.

i) f is a unit in B[y] ⇐⇒ a0, 0 is a unit in A and all other aα, k are nilpotent.

f ∈ B[y]×
[1.2.i]⇐⇒

B[y]/B
h0 ∈ B× and other hk ∈ N(B)

[1.3.i], [1.3.ii]⇐⇒
B/A

a0, 0 ∈ A× and other aα, k ∈ N(A).

Use of [1.3.ii] is permissible because it is independent, but we could also perform the induction in both
exercises at the same time.

ii) f is nilpotent ⇐⇒ all aα, k are nilpotent.

f ∈ N
(

B[y]
) [1.2.ii]⇐⇒

B[y]/B
all hk ∈ N(B)

[1.3.ii]⇐⇒
B/A

all aα, k ∈ N(A).

iii) f is a zero-divisor ⇐⇒ there exists a 6= 0 in A such that af = 0.

The inductive assumption will be that if g ∈ B is a zero-divisor, and b ∈ B is of minimal multidegree
α (in the reverse lexicographic order) such that bg = 0, then if a is the coefficient of the leading term of b,
we have ag = 0.

The “if” is again trivial. For the “only if,” suppose f is a zero-divisor in B[y]. By [1.2], there exists a
nonzero b ∈ B such that bf = 0. Thus bhk = 0 for each k. By the inductive assumption the highest coefficient
a ∈ A of b is such that ahk = 0 for each k. Then af = 0.

iv) Prove for f, g ∈ A[x1, . . . , xr] that fg is primitive over A ⇐⇒ f and g are primitive over A.

The proof in [1.2.iv] goes through equally well in this case.

4. In the ring A[x], the Jacobson radical is equal to the nilradical.

We know N ⊆ R by (1.8), since maximal ideals are prime, so it remains to show all elements of R are
nilpotent. Let f = ∑ ajxj ∈ R, where aj ∈ A. By (1.9), 1− xf is a unit. By [1.2.i], then, all aj ∈ N, so by
[1.2.ii], f ∈ N.

5. Let A be a ring and let A[[x]] be the ring of formal power series f = ∑∞
n=0 anxn with coefficients in A. Show that

i) f is a unit in A[[x]] ⇐⇒ a0 is a unit in A.

⇐=: Supposing a0 is a unit, we construct an inverse g = ∑m bmxm to f. Let b0 = a−1
0 . We want

fg = ∑j cjxj = 1, so for j ≥ 1 we want cj = ∑
j
n=0 anbj−n = 0. Now suppose we have found satisfactory

coefficients bj for j ≤ k. We need ck+1 = a0bk+1 + ∑k+1
n=1 anbk+1−n = 0; but we can solve this to find the

solution bk+1 = −a−1
0
(

∑k+1
n=1 anbk+1−n

)
. Since we can do this for all k, we have constructed an inverse to f.

=⇒ : If g = ∑m bmxm is an inverse of f, then fg = 0 implies a0b0 = 1 so that a0 is a unit.

ii) If f is nilpotent, then an is nilpotent for all n ≥ 0. Is the converse true?

The two proofs of “=⇒” in [1.2.ii] both hold, mutatis mutandis, here.
The converse is untrue. Let B = C[y1, y2, . . .] be a polynomial ring in countably many indeterminates

over an integral domain C, and let b = (y1, y2
2, y3

3, . . .) be the smallest ideal containing each yn
n for n ≥ 1.

Then writing zn for the image of yn in A = B/b, we have zn
n = 0 and zn−1

n 6= 0. Thus an element of A is
equal to zero just if, written as a polynomial in the zn over C, each term is divisible by some zn

n. Now let
f = ∑∞

n=0 znxn ∈ A[[x]]. By construction, each coefficient is nilpotent. However, for each n, one term of the
coefficient in A of xn(n+1) in f n is zn

n+1, which is nonzero and cannot be cancelled, so f n 6= 0.

iii) f belongs to the Jacobson radical of A[[x]] ⇐⇒ a0 belongs to the Jacobson radical of A.

8



Chapter 1: Rings and Ideals Ex. 1.6

If the constant coefficient of g ∈ A[[x]] is b0 ∈ A, then the constant coefficient of 1− fg is 1− a0b0. Now

f ∈ R
(

A[[x]]
) (1.9)⇐⇒ ∀g ∈ A[[x]]

(
1− fg ∈ A[[x]]×

) [1.5.i]⇐⇒ ∀b0 ∈ A
(
1− a0b0 ∈ A×

) (1.9)⇐⇒ a0 ∈ R(A).

iv) The contraction of a maximal ideal m of A[[x]] is a maximal ideal of A, and m is generated by mc and x.

Since x ∈ A[[x]] has constant term 0 ∈ R(A), by iii) above, x ∈ R
(

A[[x]]
)
, and hence (x) ⊆ m. As

m\(x) = mc, we get m = mc + (x). Now A/mc ∼= A[[x]]/m is a field, so mc � A is maximal.5

v) Every prime ideal of A is the contraction of a prime ideal of A[[x]].

Let p� A be prime, and let q = pA[[x]] + (x) be the ideal of A[[x]] generated by p and x. Evidently
qc = p, and A[[x]]/q ∼= A/p is an integral domain, so q is prime.

6. A ring A is such that every ideal not contained in the nilradical contains a nonzero idempotent (that is, an element
e such that e2 = e 6= 0). Prove that the nilradical and Jacobson radical of A are equal.

N ⊆ R in any ring. Now suppose a /∈ N. Then (a) 6⊆ N, so there is a nonzero idempotent e = ax ∈ (a).
Since (1− e)e = 0, we see 1− e is a zero-divisor, and hence not a unit; by (1.9), ax = e /∈ R, so a /∈ R. Thus
R ⊆ N.

7. Let A be a ring in which every element satisfies xn = x for some n > 1 (depending on x). Show that every prime
ideal in A is maximal.

Let p� A be prime and x ∈ A\p, with xn = x for some n ≥ 2. In the domain A/p we can cancel x̄ 6= 0,
and so x̄x̄n−2 = x̄n−1 = 1, showing an inverse x̄−1 = x̄n−2 exists. Thus A/p is a field and p was maximal.6

8. Let A be a ring 6= 0. Show that the set of prime ideals of A has minimal elements with respect to inclusion.

Partially order the set Spec(A) of prime ideals of A by p ≤ q :⇐⇒ p ⊇ q. We find minimal elements by
Zorn’s Lemma. Let 〈pα〉α∈A be a totally ordered chain in Spec(A), and let p =

⋂
α∈A pα be the intersection.

It is an ideal. Now suppose xy ∈ p and x /∈ p. Then xy ∈ pα for each a; as pα is prime, this means each pα

contains either x or y. Since x /∈ p, there is some β such that x /∈ pβ; since α ≥ β ⇐⇒ pα ⊆ pβ, we have for
all α ≥ β that x /∈ pα, so y ∈ pα. As for γ ≤ β we have y ∈ pβ ⊆ pγ, we know y ∈ pα for all α ∈ A. Thus
y ∈ p. Therefore p ∈ Spec(A), and Spec(A) has minimal elements.

9. Let a be an ideal 6= (1) in a ring A. Show that a = r(a) ⇐⇒ a is an intersection of prime ideals.

By (1.14), r(a) =
⋂ {p ∈ Spec(A) : a ⊆ p}. If a is an intersection of prime ideals, it is the intersection

r(a) of all primes that contain it, and if not, it then cannot be r(a), so it must be a proper subset.

10. Let A be a ring, N its nilradical. Show the following are equivalent:
i) A has exactly one prime ideal;
ii) every element of A is either a unit or nilpotent;
iii) A/N is a field.

i) =⇒ ii): If p is the only prime, N
(1.8)
= p and p is also the only maximal ideal. Then x /∈ A×

(1.5)⇐⇒ x ∈
p = N.

ii) =⇒ iii): If x̄ ∈ A/N is nonzero, any lift x /∈ N, and so has an inverse y. Then x̄−1 = ȳ in A/N.

iii) =⇒ i): If A/N is a field, then N is a maximal ideal. Since every prime p ⊇ N, we have p = N the
only prime.

5 I was tempted to use here that ae = aA[[x]] = a[[x]] for any a� A, but it turns out this is wrong in general. It does hold for
finitely generated a (see [?, Ex. 7.13]), and it is true ([4.7.i]) that aA[x] = a[x] in A[x], but there are counterexamples if a is not finitely
generated. For example, as in part ii) let C be a ring and b = (y1, y2, y3, . . .) in B = C[y1, y2, y3, . . .]. Then ∑ ynxn is in b[[x]] but not
in bB[[x]]. To see this, suppose not; then there is a finite collection of bj ∈ b and there are b′j, n ∈ B such that ∑ ynxn = ∑j

(
bj ∑n b′j, nxn),

so that for all n we have∑j bjb′j, n = yn in B. But then b would be finitely generated by these finitely many bj, which is impossible
because each bj is in a subring of C generated over B by finitely many yn.

6 Here is a more baroque proof. Since xn = x, if for any m > 0 we have xm = 0, then taking p such that np > m, we see
0 = xmxnp−m = xnp

= x, so N = (0). If 0 and 1 (possibly equal) are the only elements of A, we are done. If not, let x /∈ {0, 1}. We
have x(1− xn−1) = 0, and by assumption x and xn−1 are nonzero, so 1− xn−1 is a zero-divisor, hence not a unit, and so xn−1 is not
in the Jacobson radical by (1.9), meaning x is not in the Jacobson radical either. Thus R = (0).
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Ex. 1.11 Chapter 1: Rings and Ideals

11. A ring A is Boolean if x2 = x for all x ∈ A. In a Boolean ring A, show that
i) 2x = 0 for all x ∈ A;

x + 1 = (x + 1)2 = x2 + 12 + 2x = (x + 1) + 2x, so subtracting x + 1 from both sides, 0 = 2x.

ii) every prime ideal p is maximal, and A/p is a field with two elements;

By [1.7], every prime ideal is maximal. x2 − x = x(x − 1) = 0 holds for each x ∈ A, so x̄(x̄ − 1) = 0
holds for each x̄ ∈ A/p; as A/p is an integral domain, this means each element is either 0 or 1, so
A/p ∼= F2.

iii) every finitely generated ideal in A is principal.

We induct on the number of generators. The one-generator case is trivial. Suppose every ideal gener-
ated by n elements is principal, and a = (x1, . . . , xn, y). Let x generate (x1, . . . , xn), and let z = x + y− xy.
Then xz = x2 + xy− x2y = x and yz = y, so a = (x, y) = (z).

12. A local ring contains no idempotent 6= 0, 1.

Let A be a ring. For any idempotent unit e, we have e = e−1e2 = e−1e = 1. Suppose e2 = e 6= 0, 1 in A.
Then e is not a unit, and by (1.5) is contained in some maximal ideal m. Similarly (1− e)2 = 1− 2e + e2 =
1− e is another idempotent 6= 0, 1, hence not a unit. But were A local, e would be in m = R, so 1− e
would be a unit by (1.9).7

13. Let K be a field and let Σ be the set of all irreducible monic polynomials f in one indeterminate with coefficients in
K. Let A be the polynomial ring over K generated by indeterminates xf, one for each f ∈ Σ. Let a be the ideal of A
generated by the polynomials f (xf ) for all f ∈ Σ. Show that a 6= (1).

If a = (1), there exist finitely many af ∈ A such that 1 = ∑ af f(xf ). The set I of xg occurring in this
expression (not only those in the f (xf ), but also those occurring in the af ) is finite. We may enumerate
I as x1, . . . , xi, . . . , xn, corresponding to irreducible polynomials fi, and suppose n is minimal such that
such an equation holds. Write B = K[x1, . . . , xn−1], C = B[xn], and b :=

(
f1(x1), . . . , fn−1(xn−1)

)
� B.

By minimality of n, the ideal b is proper, so be = b[xn] � C is as well, while by the equation above,
be +

(
fn(xn)

)
= C. Since b 6= B, we know B/b 6= 0. Let g be the image of fn(xn) in (B/b)[xn]. Since fn is

irreducible in K[xn], its degree degxn
fn ≥ 1 and also degxn

g ≥ 1. Then

0 =
C

be +
(

fn(xn)
) ∼= C/

(
b[xn]

)
(g)

=
B[xn]/

(
b[xn]

)
(g)

∼=
(B/b)[xn]

(g)
6= 0,

which is a contradiction.8

Let m be a maximal ideal of A containing a and let K1 = A/m. Then K1 is an extension field of K in which each
f ∈ Σ has a root. Repeat the construction with K1 in place of K, obtaining a field K2, and so on. Let L =

⋃∞
n=1 Kn.

Then L is a field in which each f ∈ Σ splits completely into linear factors. Let K be the set of all elements of L which
are algebraic over K. Then K is an algebraic closure of K.

We should probably show that K is closed under subtraction and multiplication. Let a, b ∈ K have
conjugates ai, bj over K. Then ∏i, j(x− ai + bj) is symmetric in the ai and the bj, and so has coefficients in
K, so a− b ∈ K. Similarly ∏i, j(x− aibj) is symmetric, so ab ∈ K.

7 Cf. the implication iii) =⇒ ii) in [1.22] for another proof: by (1.4), each of (e) and (1− e) is contained in a maximal ideal, and we
can show the two are coprime, so no maximal ideal can contain both. Actually, there is even an isomorphism A ∼−→ A/(e)× A/(1− e),
so A obviously has more than one maximal ideal.

8 This proof is taken from [?].
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Chapter 1: Rings and Ideals Ex. 1.14

14. In a ring A, let Σ be the set of all ideals in which every element is a zero-divisor. Show that the set Σ has maximal
elements and that every maximal element of Σ is a prime ideal. Hence the set of zero-divisors in A is a union of
prime ideals.

Order Σ by inclusion; to show it has maximal elements, it suffices by Zorn’s Lemma to show every
chain 〈aα〉α∈A has an upper bound in Σ. Let a =

⋃
α aα. It contains only zero-divisors, since if x ∈ a, then

there is α such that x ∈ aα, and then by definition x is a zero-divisor.
Let p be a maximal element of Σ; we must show it to be prime. Suppose x, y /∈ p. Then there are

non-zero-divisors in (x) + p and (y) + p, and their product is an element of (xy) + p that is again a non-
zero-divisor. Thus xy /∈ p, lest there be something in p other than a zero-divisor. This shows p is prime.

Thus Σ has maximal elements and every element of Σ is contained in one; considering principal ideals,
this shows every zero-divisor is in a maximal element of Σ. The last statement follows.

The prime spectrum of a ring
15. Let A be a ring and let X be the set of all prime ideals of A. For each subset E of A, let V(E) denote the set of all

prime ideals of A which contain E. Prove that
i) if a is the ideal generated by E, then V(E) = V(a) = V(r(a)).

Let p ∈ X. We have E ⊆ a, so if a ⊆ p, then E ⊆ p. On the other hand, if E ⊆ p, then a = AE ⊆ Ap = p.
Thus V(E) = V(a). By (1.14), r(a) =

⋂
V(a), so p ⊇ r(a) ⇐⇒ p ⊇ a and V(a) = V

(
r(a)

)
.

ii) V(0) = X, V(1) = ∅.
For every prime ideal p we have 0 ∈ p and 1 /∈ p.

iii) if 〈Ei〉i∈I is any family of subsets of A, then V
(⋃

i∈I
Ei

)
=
⋂
i∈I

V(Ei).

p ∈ V
(⋃

i
Ei

)
⇐⇒

⋃
i

Ei ⊆ p ⇐⇒ ∀i ∈ I (Ei ⊆ p) ⇐⇒ ∀i ∈ I (p ∈ V(Ei)) ⇐⇒ p ∈
⋂

i
V(Ei).

Note also for future use that
⋃

Ei ⊆ p ⇐⇒ ⋃
AEi ⊆ Ap = p ⇐⇒ ∑ AEi ⊆ p, so in particular for

ideals ai we have V
(⋃

ai
)
= V

(
∑ ai

)
iv) V(a∩ b) = V(ab) = V(a) ∪V(b) for any ideals a, b of A.

Suppose ab ⊆ p and b 6⊆ p. Then there is b ∈ b\p, and ab ∈ p for all a ∈ a, so the primality of p gives
a ∈ p and thus a ⊆ p. Thus if p ∈ V(ab), we have shown a ⊆ p or b ⊆ p, so p ∈ V(a) ∪V(b). On the other
hand, if p contains a or contains b, then it must contain the subset ab. Thus V(ab) = V(a) ∪V(b).

Now ab ⊆ a ∩ b, so if a ∩ b ⊆ p, then ab ⊆ p. On the other hand, if ab ⊆ p, then we have shown either
a ⊆ p or b ⊆ p, so since a∩ b is a subset of both of these we have a∩ b ⊆ p. Thus V(a∩ b) = V(ab).

These results show that the sets V(E) satisfy the axioms for closed sets in a topological space. The resulting topology
is called the Zariski topology. The topological space X is called the prime spectrum of A, and is written Spec(A).

16. Draw pictures of Spec(Z), Spec(R), Spec(C[x]), Spec(R[x]), Spec(Z[x]).

There is only one point, (0), in Spec(R).
In Spec(Z), the elements are (0) and (p) for each positive prime p ∈ N, and the closed sets are X, ∅,

and all finite sets containing (0).
In C[x], all polynomials split into linear factors, so the irreducible polynomials are x − α for α ∈ C.

Since C is a field, this means the only primes are (0) and (x− α) for α ∈ C. The closed sets are again X, ∅,
and all finite sets containing (0). As a point set, it makes sense to think of X as the complex plane plus
one additional dense point.

In R[x], all polynomials split into linear factors and polynomials of the form (x− α)(x + α) for α ∈ C

with Im (α) > 0. Thus the primes of R[x] correspond to points of R, points of the upper half plane, and
the dense point (0) again.

In Z[x], there are irreducible polynomials f of all degrees ≥ 1, giving rise to prime ideals ( f ), there
are ideals (p) for all positive primes p ∈ N, and there are ideals (p, f ) = (p) + ( f ), which are maximal.
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Ex. 1.17 Chapter 1: Rings and Ideals

There is also (0). The closed sets are X, ∅, and all finite sets C containing (0) and such that if (p, f ) ∈ C
then (p), ( f ) ∈ C.9

17. For each f ∈ A, let Xf denote the complement of V( f ) in X = Spec(A). The sets Xf are open. These are called the
basic open sets of Spec(A). Show that they form a basis of open sets for the Zariski topology.

To see the collection {Xf } is a basis for the topology of Xwe can show it i) contains, for each p ∈ Xf ∩Xg,
an Xh with p ∈ Xh ⊆ Xf ∩ Xg, ii) includes ∅, and iii) covers X. These follow, respectively, from i), ii), and iii)
below.

i) Xf ∩ Xg = Xfg;

Taking complements, this is the same as saying V( f )∪V(g) = V( fg), or that a prime contains fg if and
only if it contains one of f and g. But this is in the definition of a prime ideal.

ii) Xf = ∅ ⇐⇒ f is nilpotent;

Xf = ∅ ⇐⇒ V( f ) = X ⇐⇒ ∀p ∈ X ( f ∈ p)
(1.8)⇐⇒ f ∈ N.

iii) Xf = X ⇐⇒ f is a unit;

Xf = X ⇐⇒ V( f ) = ∅ ⇐⇒ ∀p ∈ X ( f /∈ p)
(1.5)⇐⇒ f ∈ A×.

iv) Xf = Xg ⇐⇒ r
(
( f )
)
= r
(
(g)
)
;

We can prove something slightly better: Xf ⊆ Xg ⇐⇒ V(g) ⊆ V( f ) ⇐⇒ r
(
( f )
)
⊆ r
(
(g)
)
. The first

step is obvious because complementation is containment-reversing. Recall from [1.15.i] that V( f ) = V
(
( f )
)
.

For the second step, we generalize again, from ( f ), (g)� A to arbitrary ideals a, b.10 Note the antitone
Galois correspondence11

a ⊆
⋂

Y ⇐⇒ ∀p ∈ Y (a ⊆ p) ⇐⇒ Y ⊆ V(a)

between ideals a� A and subsets Y ⊆ Spec(A). Applying it to Y = V(b) yields

V(b) ⊆ V(a) ⇐⇒ a ⊆
⋂

V(b)
(1.14)
= r(b)

(1.13)⇐⇒ r(a) ⊆ r(b).

v) X is compact (that is, every open covering of X has a finite sub-covering).

This follows from the more general vi), taking f = 1.

vi) More generally, each Xf is compact.

Recall that the closed sets of X are all of the form V(a) for a� A. Let a collection
{

X\V(aα)
}

α
of open

sets be given. This collection covers Xf if and only if the following equivalent conditions hold:⋂
α

V(aα) ⊆ V( f )
[1.15]⇐⇒ V

(
∑
α

aα

)
⊆ V

(
( f )
) proof⇐⇒

of iv)
r
(
( f )
)
⊆ r
(

∑
α

aα

)
(1.13)⇐⇒ ∃m ≥ 1

[
f m ∈∑

α

aα

]
;

and then our task is to find a finite set of aα for which the last still holds. But each element of ∑ aα is a
finite sum of elements from the individual aα, so f m ∈ ∑ aα just if for some finite subset {aj}n

j=1 we have
f m∈ ∑n

j=1 aj.

vii) An open subset of X is compact if and only if it is a finite union of sets Xf .

9 Mumford’s famous picture of this space can be seen at [?].
10 The proof branches here; if you like, you can apply what follows in this footnote instead of the final two sentences in the body

text. Recall also from (1.14) that for all ideals a� A we have r(a) =
⋂

V(a), from [1.15.i] that V(a) = V
(
r(a)

)
, and from [1.15.iii] that

V(−) is containment-reversing. Finally note taking intersections of collections is a containment-reversing operation. Then

r(a) ⊆ r(b) =⇒ V(b) = V
(
r(b)

)
⊆ V

(
r(a)

)
= V(a);

V(b) ⊆ V(a) =⇒ r(a) =
⋂

V(a) ⊆
⋂

V(b) = r(b).

11 [?]
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Chapter 1: Rings and Ideals Ex. 1.18

Each Xf is compact, and a union of a finite collection of compact sets is compact12, so a finite union of
basic open sets Xf is compact.

On the other hand, suppose a set is open and compact. Since it is open, we can write it as a union of
some basic open sets X fα

; since it is compact, we can take a finite subcover, showing it is a union of finitely
many basic open sets.

18. For psychological reasons it is sometimes convenient to denote a prime ideal of A by a letter such as x or y when
thinking of it as a point of X = Spec(A). When thinking of x as a prime ideal of A, we denote it by px (logically, of
course, it is the same thing). Show that
i) The set {x} is closed (we say that x is a “closed point”) in Spec(A) ⇐⇒ px is maximal;

Let Y ⊆ X, and let V(a) ⊆ X be a closed set. Recall our Galois correspondence: Y ⊆ V(a) ⇐⇒ a ⊆⋂
y∈Y py.

Y =
⋂{

V(a) : Y ⊆ V(a)
}
=
⋂{

V(a) : a ⊆
⋂

y∈Y
py

}
[1.15]
= V

(
∑
{
a : a ⊆

⋂
y∈Y

py

})
= V

( ⋂
y∈Y

py

)
, (1.1)

so {x} is closed just if {x} = V(px), or in other words iff no other prime contains px.

ii) {x} = V(px);

{x} Eq.
=
??

V
(⋂
{px}

)
= V(px).

iii) y ∈ {x} ⇐⇒ px ⊆ py;

y ∈ {x} ii)
= V(px) ⇐⇒ px ⊆ py.

iv) X is a T0-space (this means that if x, y are distinct points of X, then either there is a neighborhood of x which does
not contain y, or else there is a neighborhood of y which does not contain x).

If every neighborhood of x contains y and vice versa, then y ∈ {x} and x ∈ {y}, so by part iii);
px ⊆ py ⊆ px and x = y.

19. A topological space X is said to be irreducible if X 6= ∅ and if every pair of non-empty open sets in X intersect, or
equivalently if every non-empty open set is dense in X. Show that Spec(A) is irreducible if and only if the nilradical
of A is a prime ideal.

∅ is not an intersection of two nonempty open sets just if X is not a union of two proper closed sets
V(a), V(b). By the proof of [1.17.iv],

X = V(0) 6= V(a) ⇐⇒ r(a) 6⊆ r(0)
(1.8)
= N

(1.13)⇐⇒ a 6⊆ N,

and by [1.15.iv], V(a) ∪ V(b) = V(ab), so X is irreducible just if for all ideals a, b 6⊆ N we also have
ab 6⊆ N; by contraposition, this is that ab ⊆ N =⇒ a ⊆ N or b ⊆ N.

But this condition is just a rephrasing of primality: if N is prime, then as in [1.15.iv], ab ⊆ N =⇒ a ⊆ N
or b ⊆ N; conversely, if the condition holds, then ab ∈ N =⇒ (a)(b) ⊆ N =⇒ (a) or (b) ⊆ N =⇒ a or
b ∈ N, so N is prime.

20. Let X be a topological space.
i) If Y is an irreducible (Exercise 19) subspace of X, then the closure Y of Y in X is irreducible.

Let open U, V ⊆ Y be non-empty. Then U ∩ Y and V ∩ Y are non-empty by the definition of closure.
Since Y is irreducible, U ∩V ∩Y 6= ∅, and a fortiori U ∩V 6= ∅.

ii) Every irreducible subspace of X is contained in a maximal irreducible subspace.

12 To see this, let a cover V of the finite union K =
⋃n

j=1 of compact sets Kj be given. For each Kj take a finite subcollection Uj ⊆ V
covering Kj; then

⋃
j Uj ⊆ V is a finite collection covering K.
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Ex. 1.21 Chapter 1: Rings and Ideals

We apply Zorn’s Lemma. Order the irreducible subspaces Σ of X by inclusion, and let 〈Yα〉 be a linearly
ordered chain. Set Z =

⋃
α Yα; we will be done if we can show Z ∈ Σ. Let U, V ⊆ Z be open and non-

empty. By definition, U meets some Yα and V meets some Yβ. Without loss of generality, suppose α ≤ β.
Then as Yα ⊆ Yβ, we have both U ∩ Yβ and V ∩ Yβ non-empty and open in Yβ, so by irreducibility of Yβ we
have U ∩V ∩Yβ 6= ∅ and U ∩V 6= ∅, showing Z is irreducible.

iii) The maximal irreducible subspaces of X are closed and cover X. They are called the irreducible components of
X. What are the irreducible components of a Hausdorff space?

To see that a maximal irreducible subspace is closed, note that its closure is irreducible by part i) and
contains it, and so equals it by maximality. To see the maximal irreducible subspaces cover X, note that
each singleton is irreducible and contained in some maximal irreducible subspace.

Every subspace of a Hausdorff space is Hausdorff. If a Hausdorff space has two distinct points, they
have two disjoint neighborhoods by definition, so the space is not irreducible. Thus the irreducible com-
ponents of a Hausdorff space are the singletons.

iv) If A is a ring and X = Spec(A), then the irreducible components of X are the closed sets V(p), where p is a
minimal prime ideal of A (Exercise 8).

Any closed subset of X is of the form V(a) for some ideal a� A, and is homeomorphic to Spec(A/a)
by [1.21.iv]. By [1.19], V(a) = V

(
r(a)

)
is irreducible if and only if N(A/a) is prime, or equivalently if r(a)

is prime in A; so the irreducible closed subspaces of X are V(p) for p ∈ X. Such a V(p) is maximal just if
there is no q ∈ X with V(p) ( V(q), or equivalently, by the proof of [1.17.iv], there is no prime q ( p.

21. Let φ : A → B be a ring homomorphism. Let X = Spec(A) and Y = Spec(B). If q ∈ Y, then φ−1(q) is a prime
ideal of A, i.e., a point of X. Hence φ induces a mapping φ∗ : Y → X. Show that
i) If f ∈ A then φ∗−1(Xf ) = Yφ( f ), and hence that φ∗ is continuous.

q ∈ Yφ( f ) ⇐⇒ φ( f ) /∈ q ⇐⇒ f /∈ φ−1(q) ⇐⇒ φ∗(q) = φ−1(q) ∈ Xf ⇐⇒ q ∈ (φ∗)−1(Xf ).

ii) If a is an ideal of A, then φ∗−1(V(a)
)
= V(ae).

First, note that (1.17.i) implies extension and contraction of ideals form an isotone Galois correspon-
dence:13

a ⊆ bc ⇐⇒ ae ⊆ b.

Indeed, if a ⊆ bc, then extending, ae ⊆ bce ⊆ b, and if ae ⊆ b, then contracting, a ⊆ aec ⊆ bc. Now for
q ∈ Spec(B),

q ∈ (φ∗)−1(V(a)
)
⇐⇒ φ∗(q) ∈ V(a) ⇐⇒ a ⊆ qc ⇐⇒ ae ⊆ q ⇐⇒ q ∈ V(ae).

iii) If b is an ideal of B, then φ∗(V(b)) = V(bc).

By Eq. ?? from [1.18.i], φ∗(V(b)) is the set of prime ideals containing
⋂

φ∗
(
V(b)

)
, which ideal equals

⋂
{qc : b ⊆ q ∈ Y} (1.18)

=
( ⋂

b⊆q∈Y
q
)c

=
(1.14)

r(b)c (1.18)
= r(bc).

But V
(
r(bc)

)
= V(bc).

iv) If φ is surjective, then φ∗ is a homeomorphism of Y onto the closed subset V
(

ker(φ)
)

of X. (In particular,
Spec(A) and Spec(A/N) (where N is the nilradical of A) are naturally homeomorphic.)

If φ : A→ A/a is surjective, (1.1) gives an containment-preserving and -reflecting bijection between the
set of ideals b� A containing a and the ideals b/a� A/a. Since this relation preserves and reflects primes
(p. 9), for any ideal b/a of A/a,

φ∗(V
(
b/a)

)
=
{
p ∈ Spec(A) : b/a ⊆ p/a ∈ Spec(A/a)

}
= V(b),

13 [?]
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so φ∗|V(a) is a bijection taking closed sets to closed sets, continuous by part i), and hence a homeomor-
phism. For the parenthetical remark, note that Spec(A) = V

(
N(A)

)
by (1.8).

v) If φ is injective, then φ∗(Y) is dense in X. More precisely, φ∗(Y) is dense in X ⇐⇒ ker(φ) ⊆ N.

The second statement does imply the first, because if φ is injective, then indeed ker(φ) = 0 ⊆ N. Now
φ∗(Y) is dense just if

X = φ∗(Y) = φ∗
(
V(0)

) [1.12.iii]
= V(0c) = V

(
ker(φ)

)
.

But ker(φ) is contained in every prime of A if and only if it is contained in their intersection, which by
(1.8) is N(A).

vi) Let ψ : B→ C be another ring homomorphism. Then (ψ ◦ φ)∗ = φ∗ ◦ ψ∗.

By definition, a ∈ (ψ ◦ φ)∗(px) ⇐⇒ ψ
(
φ(a)

)
∈ px ⇐⇒ φ(a) ∈ ψ∗(px) ⇐⇒ a ∈ φ∗

(
ψ∗(px)

)
.

vii) Let A be an integral domain with just one nonzero prime ideal p, and let K be the field of fractions of A. Let
B = (A/p)× K. Define φ : A → B by φ(x) = (x̄, x), where x̄ is the image of x in A/p. Show that φ∗ is bijective
but not a homeomorphism.

A has two prime ideals, p and (0), and B, a product of two fields, has prime ideals q1 = {0̄} × K
and q2 = (A/p) × {0}; the zero ideal of B is not prime. Now φ∗(q1) = {x ∈ A : x̄ = 0} = p, and
φ∗(q2) = {x ∈ A : x = 0} = (0), so φ∗ is bijective. However, by [1.18.iii] p ∈ {(0)} in Spec(A), while in
Spec(B) we have q2 /∈ {q1} = {q1} (both primes being maximal), so φ∗ cannot be a homeomorphism.

22. Let A = ∏n
i=1 Ai be a direct product of rings Ai. Show that Spec(A) is the disjoint union of open (and closed)

subspaces Xi, where Xi is canonically homeomorphic with Spec(Ai).

Let pri : A → Ai be the canonical projection, and bi = ∏j 6=i Aj its kernel; then by [1.21.iv], pr∗i is a
homeomorphism Spec(Ai)

≈−→ V(bi). Since
⋂n

i=1 bi = 0, it follows by [1.15.iv] that
⋃

V(bi) = V
(⋂

bi
)
=

V(0) = Spec(A), so the V(bi) cover Spec(A).14 Since bi + bj = A for i 6= j and by [1.15], V(bi) ∩V(bj) =
V(bi + bj) = V(1) = ∅, it follows the V(bj) are disjoint. Since the complement

⋃
j 6=i V(bj) of each V(bi) is

a finite union of closed sets, the V(bi) are also open.

Conversely, let A be any ring. Show that the following statements are equivalent:
i) X = Spec(A) is disconnected.
ii) A ∼= A1 × A2 where neither of the rings A1, A2 is the zero ring.
iii) A contains an idempotent 6= 0, 1
In particular, the spectrum of a local ring is always connected (Exercise 12).

We showed ii) =⇒ i) above; in this case X = X1 q X2 is a disjoint union two non-empty open sets.

i) =⇒ iii): Suppose X = Spec(A) is disconnected; then by definition it is a disjoint union of two non-
empty closed sets V(a), V(b). By [1.15.iii] we have ∅ = V(a)∩V(b) = V(a+b), so no prime contains a+b,
which must then equal (1). Let a ∈ a and b ∈ b be such that a + b = 1. By [1.15.iv], X = V(a) ∪ V(b) =
V(ab), so by (1.8), ab ⊆ N and there is some n ≥ 1 with (ab)n = 0. We have (1) = (an) + (bn) by (1.16),
so we can find e ∈ (an) such that 1− e ∈ (bn). We then have e− e2 = e(1− e) ∈ (ab)n = 0, so e = e2. If
e = 1 we would have 1 ∈ a and if e = 0 we would have 1 ∈ b, contrary to assumption, so e is a nontrivial
idempotent.

iii) =⇒ ii): Suppose e 6= 0, 1 is an idempotent. Then as in the proof of [1.12], 1 − e is also an
idempotent 6= 0, 1, and neither is a unit. This means (e) and (1− e) are proper, nonzero ideals, and they
are coprime since e + [1− e] = 1. Since (e)(1− e) = (e− e2) = (0), then, (1.10.i) shows (e) ∩ (1− e) = (0).
Let φ : A→ A/(e)× A/(1− e) be the natural homomorphism. (1.10.ii,iii) show φ is an isomorphism.15

14 In unnecessary detail, for each j there is an element ej ∈ A with a 1 in the j coordinate and 0 at each other coordinate. Let
a� A be an ideal, and a = 〈a1, . . . , an〉 ∈ a. Then aej = ajej ∈ a, and a = ∑ ajej = ∑ aej, so a = ∑ aej. We have bj = ∑i 6=j(ei). To
see Spec(A) =

⋃
Xj, note that if a� A contains neither ei nor ej for some i 6= j, then since eiej = 0 ∈ a, we know a is not prime.

Therefore all the prime ideals of A contain some bj, and thus are of the form p = pr∗j (pj) = pjej + bj for some pj ∈ Spec(Aj), and
hence are in some Xj.

15 We can also show ii) =⇒ iii): 〈1, 0〉 ∈ A1 × A2 is an idempotent 6= 0, 1.
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23. Let A be a Boolean ring (Exercise 11), and let X = Spec(A).
i) For each f ∈ A, the set Xf (Exercise 17) is both open and closed in X.

Xf is open because it is the complement of V( f ). It is open because V( f ) = X1− f . Indeed, X =
Xf ∪ X1− f , since any ideal containing both f and 1− f contains 1; and Xf ∩ X1− f = Xf (1− f ) = X0 = ∅ by
[1.17.i] and [1.17.ii].

ii) Let f1, . . . , fn ∈ A. Show that X f1 ∪ · · · ∪ X fn = Xf for some f ∈ A.⋃
Xfi

=
⋃ (

X\V( fi)
)
= X\⋂V( fi) = X\V

(
∑ ( fi)

)
by [1.15]. By [1.11.iii], ∑ ( fi) = ( f ) for some f ∈ A,

so
⋃

Xfi
= X\V( f ) = X f .

iii) The sets Xf are the only open subsets of X which are both open and closed.

Let U be both open and closed. Since it is closed and X is compact, U is compact. By [1.17.vii], U is a
union of finitely many X f j

. By part ii), it is an Xf for some f ∈ A.

iv) X is a compact Hausdorff space.

The compactness of X is [1.17.v]. To show X is Hausdorff, let x, y ∈ X; we will show that if they do not
have disjoint neighborhoods Xf and X1− f , then x = y. Now Xf 3 x and X1− f 3 y just if f /∈ px and 1− f /∈ py.
By part i), this is the same as saying f /∈ px and f ∈ py. If no such f exists, we have py ⊆ px, and since
[1.11.ii] showed py is maximal, px = py.

24. Let L be a lattice, in which the sup and inf of two elements a, b are denoted by a ∨ b and a ∧ b respectively. L is a
Boolean lattice (or Boolean algebra) if
i) L has a least element and a greatest element (denoted by 0, 1 respectively);
ii) each of ∨, ∧ is distributive over the other;
iii) Each a ∈ L has a unique “complement” a′ ∈ L such that a ∨ a′ = 1 and a ∧ a′ = 0.
For example, the set of all subsets of a set, ordered by inclusion, is a Boolean lattice.

Let L be a Boolean lattice. Define addition and multiplication in L by the rules

a + b = (a ∧ b′) ∨ (a′ ∧ b), ab = a ∧ b.

Verify that in this way L becomes a Boolean ring, say A(L).

To verify the ring axioms, we first require some lemmas about Boolean algebra.

• Commutativity: The supremum x ∨ y, by definition, is the unique z ≥ x, y such that for all other
w ≥ x, y we have w ≥ z, and this definition is symmetric in x and y; thus x ∨ y = y ∨ x. Dually,
x∧ y = y∧ x is the unique z ≤ x, y such that for all other w ≤ x, y we have w ≤ z, and this definition
is symmetric in x and y.

• Associativity: (x ∨ y) ∨ z is the unique least element t ≥ x ∨ y, z. Then we have t ≥ x, y, z, so
(x ∨ y) ∨ z ≥ x ∨ y ∨ z, the joint supremum of x, y, z. On the other hand, x ∨ y ∨ z ≥ x, y, z as well,
so x ∨ y ∨ z ≥ x ∨ y, z, and by definition x ∨ y ∨ z ≥ (x ∨ y) ∨ z. Since we have both inequalities and
〈L, ≤〉 is a partial order, (x ∨ y) ∨ z = x ∨ y ∨ z. Symmetrically, x ∨ y ∨ z = x ∨ (y ∨ z). The proof
(x ∧ y) ∧ z = x ∧ y ∧ z = x ∧ (y ∧ z) is dual, exchanging ∧ for ∨ and ≥ for ≤.

• Idempotence: x ∨ x = x = x ∧ x, for x is the least element greater than both x and x, and also the
greatest element less than both of them.

• Absorption: x ∨ (x ∧ y) = x = x ∧ (x ∨ y), because x is the least element ≥ x, x ∧ y and the greatest
≤ x, x ∨ y.

• Identity: for all x ∈ L we have 0 ≤ x ≤ 1, so 0∧ x = 0 and 0∨ x = x = x ∧ 1 and x ∨ 1 = 1.

16
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• De Morgan’s laws: (x ∨ y)′ = x′ ∧ y′ and (x ∧ y)′ = x′ ∨ y′. For the first, note that

(x′ ∧ y′) ∧ (x ∨ y) = (x′ ∧ y′ ∧ x) ∨ (x′ ∧ y′ ∧ y) = (0∧ y′) ∨ (x′ ∧ 0) = 0∨ 0 = 0,

(x′ ∧ y′) ∨ (x ∨ y) = (x′ ∨ x ∨ y) ∧ (y′ ∨ x ∨ y) = (1∨ y) ∧ (x ∨ 1) = 1∧ 1 = 1;

since (x ∨ y)′ is postulated to be unique with these properties, we have (x ∨ y)′ = x′ ∧ y′. The other
law (x ∧ y)′ = x′ ∨ y′ is dual; the proof is the same, exchanging ∧ for ∨ and vice versa everywhere.

From now on write · for ∧. We prove a few more miscellaneous facts.

• a + b = (ab′) ∨ (a′b) = (a ∨ a′)(a ∨ b)(b′ ∨ a′)(b′ ∨ b) = 1(a ∨ b)(a′ ∨ b′)1 = (a ∨ b)(a′ ∨ b′).

• (a + b)′ =
[
(a ∨ b)(a′ ∨ b′)

]′
= (a ∨ b)′ ∨ (a′ ∨ b′)′ = a′b′ ∨ ab.

• 1′ = 0: for 1∧ 0 = 1 and 1∧ 0 = 0.

• 1 + a = (a ∨ 1)(a′ ∨ 0) = 1a′ = 1∧ a′ = a′.

Now we can prove the ring axioms for A(L).

• Commutativity of +: a + b = (a ∨ b)(a′ ∨ b′) = (b ∨ a)(b′ ∨ a′) = b + a.

• Associativity of ·: · is ∧.

• Commutativity of ·: · is ∧.

• Associativity of +: (a + b) + c is(
[a + b] ∨ c

)(
[a + b]′ ∨ c′

)
= (ab′ ∨ a′b ∨ c)(a′b′ ∨ ab ∨ c′)

= ab′a′b′ ∨ ab′ab ∨ ab′c′ ∨
a′ba′b′ ∨ a′bab ∨ a′bc′ ∨
ca′b′ ∨ cab ∨ cc′ (1.2)

= 0∨ 0∨ ab′c′ ∨ 0∨ 0∨ a′bc′ ∨ ca′b′ ∨ cab ∨ 0.

= ab′c′ ∨ a′bc′ ∨ a′b′c ∨ abc.

Write x+ = x and x− = x′. Then (a + b) + c is the supremum of the four possible terms a±b±c±

with an odd number of +’s. This is invariant under permutations of a, b, c, so by commutativity,
a + (b + c) = (b + c) + a = (a + b) + c.

• 1a = a: for 1a = 1∧ a = a.

• a + 0 = a: for a + 0 = (a ∨ 0)(a′ ∨ 1) = a1 = a.

• a = −a: for a + a = (a ∨ a)(a′ ∨ a′) = aa′ = 0.

• Distributivity of · over +: a(b + c) = a
(
[bc′] ∨ [b′c]

)
= abc′ ∨ ab′c, while

ab + ac = (ab ∨ ac)
(
[ab]′ ∨ [ac]′

)
= ab[ab]′ ∨ ac[ab]′ ∨ ab[ac]′ ∨ ac[ac]′

= 0∨ ac[a′ ∨ b′] ∨ ab[a′ ∨ c′] ∨ 0

= aca′ ∨ acb′ ∨ aba′ ∨ abc′

= 0∨ abc′ ∨ 0∨ ab′c = abc′ ∨ ab′c.

• Boolean ring: a2 = a ∧ a = a by idempotence of ∧.

Conversely, starting from a Boolean ring A, define an ordering on A as follows: a ≤ b means that a = ab. Show
that, with respect to this ordering, A is a Boolean lattice. In this way we obtain a one-to-one-correspondence between
(isomorphism classes of) Boolean rings and (isomorphism classes of) Boolean lattices.

Write L = L(A) for ordered set. We verify the partial order axioms, the lattice axioms, and the Boolean
algebra axioms.
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• ≤ is reflexive: a = aa, so a ≤ a.

• ≤ is antisymmetric: Suppose a ≤ b ≤ a. Then a = ab and b = ab, so a = b.

• ≤ is transitive: Let a ≤ b ≤ c. Then a = ab and b = bc, so a = ab = a(bc) = (ab)c = ac and a ≤ c.

• Binary suprema exist in 〈L, ≤〉: Let a ∨ b = a + b + ab. We have a(a ∨ b) = a(a + b + ab) = a2 + ab +
a2b = a by [1.11.i], so a ≤ a ∨ b, and symmetrically b ≤ a ∨ b. Now suppose a, b ≤ c. Then a = ac
and b = bc, so (a ∨ b)c = (a + b + ab)c = ac + bc + a(bc) = a + b + ab = a ∨ b, and a ∨ b ≤ c. This
shows a ∨ b is the least upper bound of a, b in the partial order 〈L, ≤〉.

• Binary infima exist in 〈L, ≤〉: Let a ∧ b = ab. Then (a ∧ b)a = aba = ab = a ∧ b, so a ∧ b ≤ a, and
symmetrically a∧ b ≤ b. Now suppose c ≤ a, b. Then c = ca = cb, so c(a∧ b) = c(ab) = (ca)b = cb =
c, and so c ≤ a ∧ b. This shows a ∧ b is the greatest lower bound of a, b in the partial order 〈L, ≤〉.

• A least element exists in 〈L, ≤〉: For any a ∈ A we have 0 = 0a, so 0 ≤ a.

• A greatest element exists in 〈L, ≤〉: For any a ∈ A we have a = a1, so a ≤ 1.

• ∧ distributes over ∨: (a ∨ b) ∧ c = (a + b + ab)c = ac + bc + abc = ac + bc + (ac)(bc) = ac ∨ bc =
(a ∧ c) ∨ (b ∧ c).

• ∨ distributes over ∧: (a ∧ b) ∨ c = ab ∨ c = ab + c + abc, while also

(a ∨ c) ∧ (b ∨ c) = (a + c + ac)(b + c + bc)
= ab + ac + abc + cb + cc + cbc + acb + acc + acbc
= ab + 2ac + 3abc + 2bc + c
= ab + c + abc.

• Each a ∈ A has a unique complement: Suppose a′ is such that a ∨ a′ = 1 and a ∧ a′ = 0. Then
aa′ = 0, while 1 = a + a′ + aa′ = a + a′. Then a′ = 1 − a = 1 + a. Thus the complement, if it
exists, is unique. And a′ = 1 + a is indeed a complement: a ∧ a′ = a(1 + a) = a + a2 = 0, while
a ∨ a′ = a + a′ + aa′ = a + (1 + a) + 0 = 1.

We finally should verify that these correspondences are inverse. Let A be a Boolean ring, and A′ =
A
(

L(A)
)
. Then ·A′ = ∧L(A) = ·A, and addition in A′ is

a+A′ b = ab′ ∨ a′b = ab′+A a′b+A ab′a′b = ab′+A a′b = a(1+A b)+A (1+A a)b = a+A ab+A b+A ab = a+A b,

so A
(

L(A)
)
= A. On the other hand let L be a Boolean algebra and L′ = L

(
A(L)

)
. Then ∧L′ = ·A(L) =

∧L. Finally the join in L′ is given by

x ∨L′ y = x + y + xy
Eq.
=
??

xyxy ∨L x′y′xy ∨L x′y(xy)′ ∨L xy′(xy)′

=xy ∨L 0∨L x′y(x′ ∨L y′) ∨L xy′(x′ ∨L y′)

=xy ∨L x′yx′ ∨L x′yy′ ∨L xy′x′ ∨L xy′y′

=xy ∨L x′y ∨L xy′

=xy ∨L xy′ ∨L yx ∨L yx′

=x(y ∨L y′) ∨L y(x ∨L x′)
=x ∨L y

25. From the last two exercises deduce Stone’s theorem, that every Boolean lattice is isomorphic to the lattice of open-
and-closed subsets of some compact Hausdorff topological space.

Let a Boolean algebra L be given, and let A be the associated Boolean ring. By [1.23.iv], X = Spec(A)
is a compact Hausdorff space. Let B be the algebra of simultaneously open and closed sets in X. By the
definition of open and closed, it is closed under binary union and intersection, so it is a sublattice of the
power set 〈P(X), ⊆〉 under inclusion. By the definition of a topology, ∅, X ∈ B. By set algebra, ∪ and ∩
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each distribute over the other. The complement V of an open and closed set U is open and closed, and is
the unique V ⊆ P(X) with U ∪V = X and U ∩V = ∅. Thus B is a Boolean algebra.

By [1.23.i] and [1.23.iii], B is the set of Xf for f ∈ A, so the correspondence φ : L → B taking f 7→ Xf is
surjective. Since no nonzero element of A is nilpotent, by [1.17.ii], φ is also injective.

To show φ is an order isomorphism (hence a Boolean algebra isomorphism), it remains to show that
f ≤ g ⇐⇒ Xf ⊆ Xg. Now f ≤ g ⇐⇒ f = fg =⇒ f ∈ (g), and conversely if f = ag ∈ (g), then
fg = (ag)g = ag = f. Thus f ≤ g ⇐⇒ f ∈ (g). Now

f ∈ (g) ⇐⇒ ∃n ≥ 1
(

f = f n ∈ (g)
)
⇐⇒ f ∈ r

(
(g)
) (1.13)⇐⇒ r

(
( f )
)
⊆ r
(
(g)
)
,

and from the proof of [1.17.iv], r
(
( f )
)
⊆ r
(
(g)
)
⇐⇒ Xf ⊆ Xg. Therefore f ≤ g ⇐⇒ Xf ⊆ Xg, so φ is an

order isomorphism.

26. Let A be a ring. The subspace of Spec(A) consisting of the maximal ideals of A, with the induced topology, is
called the maximal spectrum of A and is denoted by Max(A). For arbitrary commutative rings it does not have
the nice functorial properties of Spec(A) (see Exercise 21), because the inverse image of a maximal ideal under a
ring homomorphism need not be maximal.

Let X be a compact Hausdorff space and let C(X) denote the ring of all real-valued continuous functions on
X (add and multiply functions by adding and multiplying their values). For each x ∈ X, let mx be the set of all
f ∈ C(X) such that f(x) = 0. The ideal mx is maximal, because it is the kernel of the (surjective) homomorphism
C(X) → R which takes f to f(x). If X̃ denotes Max

(
C(X)

)
, we have therefore defined a mapping µ : X → X̃,

namely x 7→ mx.
We shall show that µ is a homeomorphism of X onto X̃.

i) Let m be any maximal ideal of C(X), and let V = V(m) be the set of common zeros of the functions in m: that is,

V = {x ∈ X : f(x) = 0 for all f ∈ m}.
Suppose that V is empty. Then for each x ∈ X there exists fx ∈ m such that fx(x) 6= 0. Since fx is continuous,
there is an open neighborhood Ux of x in X on which fx does not vanish. By compactness a finite number of the
neighborhoods, say Ux1 , . . . , Uxn , cover X. Let

f = f 2
x1
+ · · ·+ f 2

xn .

Then f does not vanish at any point of X, hence is a unit in C(X). But this contradicts f ∈ m, hence V is not
empty.
Let x be a point of V. Then m ⊆ mx, hence m = mx because m is maximal. Hence µ is surjective.

ii) By Urysohn’s lemma (this is the only non-trivial fact required in the argument) the continuous functions separate
the points of X. Hence x 6= y =⇒ mx 6= my, and therefore µ is injective.

iii) Let f ∈ C(X); let
U f = {x ∈ X : f(x) 6= 0}

and let
Ũ f = {m ∈ X̃ : f /∈ m}.

Show that µ(U f ) = Ũ f. The open sets U f (resp. Ũ f) form a basis of the topology of X (resp. X̃) and therefore µ is
a homeomorphism.
Thus X can be reconstructed from the ring of functions C(X).

For each f ∈ C(X), we have

x ∈ U f ⇐⇒ f(x) 6= 0 ⇐⇒ f /∈ mx ⇐⇒ mx ∈ Ũ f,

so µ restricts to a bijection U f ↔ Ũ f. It remains to show these sets form bases.
The U f will form a basis for X if whenever x ∈ W ⊆ X with W open, there is an f ∈ C(X) such that

x ∈ U f ⊆W. But as X is compact Hausdorff, it is normal, and so the Urysohn lemma applies to show
closed sets can be separated by continuous functions. Thus there is f ∈ C(X) such that f(X\W) = {0}
and f(x) = 1, and then evidently x ∈ U f ⊆W.

Each Ũ f is open the subspace topology inherited from Spec
(
C(X)

)
, being the intersection of X̃ with the

open set Spec
(
C(X)

)
f of [1.17]. As these sets form a basis for Spec

(
C(X)

)
(see [1.17]), the Ũ f form a basis

for X̃.

Affine algebraic varieties
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27. Let k be an algebraically closed field and let

fα(t1, . . . , tn) = 0

be a set of polynomial equations in n variables with coefficients in k. The set X of all points x = 〈x1, . . . , xn〉 ∈ kn

which satisfy these equations is an affine algebraic variety.
Consider the set of all polynomials g ∈ k[t1, . . . , tn] with the property that g(x) = 0 for all x ∈ X. This set is

an ideal I(X) in the polynomial ring, and is called the ideal of the variety X. The quotient ring

P(X) = k[t1, . . . , tn]/I(X)

is the ring of polynomial functions on X, because two polynomials g, h define the same polynomial function on X if
and only if g− h vanishes at every point of X, that is, if and only if g− h ∈ I(X).

Let ξi be the image of ti in P(X). The ξi (1 ≤ i ≤ n) are the coordinate functions on X: if x ∈ X, then ξi(x)
is the ith coordinate of x. P(X) is generated as a k-algebra by the coordinate functions, and is called the coordinate
ring (or affine algebra) of X.

As in Exercise 26, for each x ∈ Xlet mx be the ideal of all f ∈ P(X) such that f(x) = 0; it is a maximal ideal
of P(X). Hence, if X̃ = Max

(
P(X)

)
, we have defined a mapping µ : X → X̃, namely x 7→ mx. It is easy to show

that µ is injective: if x 6= y, we must have xi 6= yi for some i (1 ≤ i ≤ n), and hence ξi − xi is in mx but not
in my, so that mx 6= my. What is less obvious (but still true) is that µ is surjective. This is one form of Hilbert’s
Nullstellensatz (see Chapter 7).

Abbreviate k[t] := k[t1, . . . , tn]. As in [1.26], mx is maximal because it is the kernel of the surjective
homomorphism f 7→ f(x) : P(X) → k. To be more explicit about what mx looks like, note that if x =
〈x1, . . . , xn〉, then the polynomial function ξi − xi ∈ P(X) vanishes at x, so that ξi − xi ∈ mx. On the other
hand, since (t1 − x1, . . . , tn − xn) is the kernel of the surjective homomorphism k[t] � k taking 1 7→ 1 and
ti 7→ xi, it is a maximal ideal of k[t], so by the correspondence (1.1) we have (ξ1 − x1, . . . , ξn − xn) ⊆ mx
maximal, which shows the the containment must in fact be an equality.

We then want to show the images of these mx are the only maximal ideals of P(X). By (1.1), it will
suffice to do this for X = kn and P(X) = k[t] and then prove that x ∈ X ⇐⇒ I(X) ⊆ mx, which will be
item ?? in a list of remarks that follows.

First we show all maximal ideals of P(X) come from points. One way is to use an equivalent result
traditionally called the weak Nullstellensatz; see [5.17] for a statement and proof. Another is to use Zariski’s
Lemma ((5.24), [5.18], (7.9)) that any field L finitely generated as an algebra over a field K is a finite algebraic
extension of K, which implies both. This is done in [5.19]. Here is a more elementary proof16 avoiding the
technology of Chapter 5, but it too runs through Zariski’s Lemma.

Lemma 1.27.1*. If an integral domain A is algebraic over a field k, then A is a field.

Proof. Let 0 6= a ∈ A. Since A is a domain and a is algebraic over k, the kernel of the projection k[x] � k[a]
is a nonzero prime ideal. But k[x] is a PID, so this kernel is maximal, k[a] is a field, and a is a unit.

Proposition 1.27.2*. If k ⊆ L are fields in some integral domain B finitely generated as a k-algebra, L is algebraic
over k.

Proof. Imagine there were a transcendental element a ∈ L, and include a in a finite set T of generators for
B as a k-algebra. Select a maximal k-algebraically independent set S ⊆ T containing a, so that the field
of fractions L′ of B is a finite extension of k(S).17 Picking an k(S)-basis of L′ gives us a representation φ
of multiplication on L′ by square matrices over k(S). Writing the entries of the matrices φ(t) for t ∈ T
as fractions in k[S], let g be the product of all the denominators, so that φ(B) has entries in k[S, g−1]. If
p ∈ k[a] is any irreducible element, then p−1 ∈ L since L is a field, so φ(p−1) is a diagonal matrix with
entries p−1. Then this entry lies in k[S, g−1], so there is some positive power gm such that gm p−1 ∈ k[S],
meaning p|gm. Since p is irreducible and k[a] and k[S], being isomorphic to polynomial rings, are UFDs,
it follows p is a scalar multiple of one of those finitely many irreducible factors qi ∈ k[S] of g which also

16 [?, Prop. 1.5]
17 This proof can be modified to use concepts from later on: pick a finite basis for L′ over k(S); each basis element satisfies a monic

polynomial with coefficients in k(S). Let g ∈ k[S] be a common multiple of the denominators of these coefficients. Then L′ is integral
over k[S]g by (5.3), so k[S]g is a field by (5.7) or [5.5.i]. But this is a contradiction, for the polynomial ring k[S] cannot be a Goldman
domain by (5.18.1*).
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lie in k[a]. By unique factorization, it follows each element of k[a] is divisible by a qi; but this obviously
doesn’t hold of 1 + ∏ qi, so we have a contradiction.

Taking B = L in (1.27.2*) yields Zariski’s Lemma. One could at this point use the proof of [5.19], but
we will follow an alternate route, proving another lemma we will encounter again later.

Lemma 1.27.3*. If k is a field, B a finitely generated k-algebra, and A → B a k-algebra homomorphism, then
contractions in A of maximals ideal of Bare maximal.

Proof. Since B is a finitely generated k-algebra, it is a fortiori finitely generated over A, so B/m is a field
finitely generated over the integral domain A/mc. By (1.27.2*), B/m is algebraic over k. Since A/mc is
contained in B/m, it is also algebraic over k too. But then A/mc is a field by (1.27.1*), so mc is maximal.

Proposition 1.27.4*. If k is an algebraically closed field, all maximal ideals of the polynomial ring k[t] are of the
form mx.

Proof. Let m� k[t] be maximal. Then each contraction m∩ k[ti] is maximal in the PID k[ti] by (1.27.3*), and
hence generated by an irreducible polynomial.18 As k is algebraically closed, this polynomial is linear, so
we may rescale it to be ti − xi for some xi ∈ k. But then ti − xi ∈ m, so mx ⊆ m and m = mx.

We take this opportunity to collect some remarks, culminating in the desired item ??. If S ⊆ k[t] is a
set of polynomials, generating the ideal a = (S), we define the zero set Z(S) of S to be

Z(S) = Z(a) :=
{
〈a1, . . . , an〉 ∈ kn : ∀f ∈ a

[
f(a1, . . . , an) = 0

]}
;

with this definition,19 it is clear that an affine algebraic variety X is just a set Z(S) for some dimension n
and some S ⊆ k[t]; and the maximal ideals of P(kn) = k[t] referred to above are mx = I

(
{x}

)
.

We have the following inclusion relations20 involving Z and I, for x ∈ kn, X, X1, X2 ⊆ kn, and
S, S1, S2 ⊆ k[t].

0. X ⊆ Z(S) ⇐⇒ S ⊆ I(X): for both mean f(x) = 0 for all f ∈ S and all x ∈ X .

1. X1 ⊆ X2 =⇒ I(X2) ⊆ I(X1): for if f ∈ k[t] vanishes on X2, it also does on the subset X1.

2. S1 ⊆ S2 =⇒ Z(S2) ⊆ Z(S1): for if S2 annihilates x ∈ kn, so does the subset S1.

3. X ⊆ ZI(X): “X is annihilated by everything annihilating X”; apply item ?? to I(X) ⊆ I(X).

4. S ⊆ IZ(S): “S vanishes on everything S vanishes on”; apply item ?? to Z(S) ⊆ Z(S).

5. I(X) = IZI(X): for X
??.
⊆ ZI(X), so IZI(X)

??.
⊆ I(X); but I(X)

??.
⊆ IZI(X).

6. Z(S) = ZIZ(S): for S
??.
⊆ IZ(S), so ZIZ(S)

??.
⊆ Z(S); but Z(S)

??.
⊆ ZIZ(S).

7. Z(mx) = {x}: if I
(
{x}

)
= mx annihilates y ∈ kn, then ∀i (yi − xi = 0), so y = x;

and {x}
??.
⊆ Z(mx).

8. X = Z(S) =⇒
[
I(X) ⊆ mx ⇐⇒ x ∈ X

]
: if I(X) ⊆ mx, then

{x} ??.
= Z(mx)

??.
⊆ ZI(X) = ZIZ(S) ??.

= Z(S) = X;

and if x ∈ X, then I(X)
??.
⊆ mx.

9. r
(

I(X)
)
= I(X): Since N(k) = 0, if f(x)m = 0 for m ≥ 1, then f(x) = 0.

Note as a consequence of item ?? that a variety is non-empty just if its ideal is contained in some mx.
In particular, if there were some maximal ideal m that were not one of the mx, we would have Z(m) = ∅.

18 Note that the only reason we need the lemmas is to show this polynomial is not zero.
19 This is closely related indeed to the sets V(E) of [1.15], to the extent that the same letter V is often used, and the topology on

kn gotten by taking the Z(S) as closed sets is also called the Zariski topology. The correspondence is gotten by taking A = k[t]; then
under the bijection kn ↔ Max(A) (to be proved), we have Z(S)↔ V(S) ∩Max(A).

20 The first three show among other things show Z and I form an antitone Galois connection between the powersets P
(
k[t]
)

and
P(kn), as partially ordered by inclusion — see e.g. [?] — and the next four are formal consequences of this Galois connection.
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28. Let f1, . . . , fm be elements of k[t1, . . . , tn]. They determine a polynomial mapping φ : kn → km: if x ∈ kn, the
coordinates of φ(x) are f1(x), . . . , fm(x).

Let X, Y be affine algebraic varieties in kn, km respectively. A mapping φ : X → Y is said to be regular if φ is
the restriction to X of a polynomial mapping from kn to km.

If η is a polynomial function on Y, then η ◦ φ is a polynomial function on X. Hence φ induces a k-algebra
homomorphism P(Y) → P(X), namely η 7→ η ◦ φ. Show that in this way we obtain a one-to-one correspondence
between the regular mappings X → Y and the k-algebra homomorphisms P(Y)→ P(X).

The map φ# induced by φ is a ring homomorphism: for all x ∈ X, η, ζ ∈ P(Y), and ∗ ∈ {+, −, ·}, we
have [

(η ∗ ζ) ◦ φ
]
(x) = (η ∗ ζ)

(
φ(x)) = η

(
φ(x)

)
∗ ζ
(
φ(x)

)
=
[
(η ◦ φ) ∗ (ζ ◦ φ)

]
(x).

Preservation of k is trivial: for a ∈ k we have a ◦ φ = a because a takes no arguments.
To see that the correspondence φ 7→ φ# is injective, suppose φ# = ψ# for φ, ψ regular mappings X → Y

induced, respectively, by coordinates φj, ψj : kn → k for 1 ≤ j ≤ m. Letting υi (1 ≤ i ≤ m) be the coordinate
functions on Y, we then have

φi = υi ◦ φ = φ#(υi) = ψ#(υi) = υi ◦ ψ = ψi

on X, so φi = ψi on X; thus φi − ψi ∈ I(X) for each i, and φ = ψ as regular maps from X.
To see the correspondence is surjective, let λ be a k-algebra homomorphism P(Y) → P(X). Precom-

posing with a quotient projection π : k[u] := k[u1, . . . , um] → P(Y) from the polynomial ring, we have a
homomorphism κ : k[u] → P(X). By the universal property of polynomial rings, this function is uniquely
determined by its values on indeterminates, say φi = κ(ui) ∈ P(X), which each define a regular function
X → k. Let φ : X → km be the regular function with coordinates φi. Then if η ∈ k[u], we have

κ(η) = η
(
κ(u1), . . . , κ(um)

)
= η(φ1, . . . , φm) = η ◦ φ.

To show λ = φ# is as hoped, it remains to show that im φ ⊆ Y. This is the case just if for all η ∈ I(Y) ⊆ k[u]
and x ∈ X we have η

(
φ(x)

)
= 0, or in other words if η ◦ φ = 0; but this is true because η ◦ φ = κ(η) =

λ
(
π(η)

)
= λ(0) = 0.

For later use, note that given X φ−→ Y ψ−→ Z we have (ψ ◦ φ)# = (φ# ◦ ψ#). Indeed, if ζ ∈ P(Z), then

(ψ ◦ φ)#(ζ) = ζ ◦ ψ ◦ φ = φ#(ζ ◦ ψ) = φ#(ψ#(ζ)
)
. (1.2)

This shows the coordinate ring is a contravariant functor from the category of affine algebraic varieties and
regular maps to the category of finitely generated k-algebras and k-algebra homomorphisms. This functor
is actually an equivalence of categories.

Note in particular that in this framework, point inclusions {0} → {x} ↪→ X correspond bijectively to
k-algebra homomorphisms P(X)→ k.
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Chapter 2: Modules

Exercise 2.2. i) Ann(M + N) = Ann(M) ∩Ann(N).

a ∈ Ann(M + N) ⇐⇒ 0 = a(M + N) = aM + aN ⇐⇒ aM = aN = 0 ⇐⇒ a ∈ Ann(M) ∩Ann(N).

ii) (N : P) = Ann
(
(N + P)/N

)
.

xP ⊆ N ⇐⇒ x(N + P) = xN + xP ⊆ N ⇐⇒ x
(
(N + P)/N

)
= 0 in (N + P)/N.

Proposition 2.9. i) Let
M′ u−→ M v−→ M′′ → 0 (2.1)

be a sequence of A-modules and homomorphisms. Then Seq. ?? is exact ⇐⇒ for all A-modules N, the sequence

0→ Hom(M′′, N) v̄−→ Hom(M, N) ū−→ Hom(M′, N) (2.2)

is exact.

The book proves that if Seq. ?? is exact for all N, then Seq. ?? is exact. So suppose Seq. ?? is exact, let
N be any A-module, and consider Seq. ??. Let φ ∈ Hom(M′′, N). If 0 = φ ◦ v = v̄(φ), then φ = 0 since v
is surjective; thus v̄ is injective. We have ū

(
v̄(φ)

)
= v̄(φ) ◦ u = φ ◦ v ◦ u = φ ◦ 0 = 0, so ū ◦ v̄ = 0. Now let

ψ ∈ Hom(M, N) and suppose ψ ∈ ker ū. Then ψ ◦ u = 0, so ker v = im u ⊆ ker ψ, and ψ factors through
the quotient module M′′ = im v ∼= M/u(M′) (see p. 19): there is ψ̄ ∈ Hom(M′′, N) with ψ = ψ̄ ◦ v = v̄(ψ).
Thus ψ ∈ im v̄.

ii) Let
0→ N′ u−→ N v−→ N′′ (2.3)

be a sequence of A-modules and homomorphisms. Then Seq. ?? is exact ⇐⇒ for all A-modules M, the sequence

0→ Hom(M, N′) ū−→ Hom(M, N) v̄−→ Hom(M, N′′) (2.4)

is exact.

Suppose Seq. ?? is exact, let M be an A-module, and consider Seq. ??. Let φ ∈ Hom(M, N′). If φ ∈ ker ū,
then u ◦ φ = 0; since u is injective, φ = 0. Also v̄

(
ū(φ)

)
= v ◦ u ◦ φ = 0 ◦ φ = 0, so v̄ ◦ ū = 0. Finally, let

ψ ∈ ker v̄ ⊆ Hom(M, N). Then v ◦ ψ = 0, so im ψ ⊆ ker v = im u. Since u is injective, φ̄ = u−1 ◦ φ is a
well-defined map such that ū(φ̄) = u ◦ φ̄ = φ.

For the other direction, suppose that for all A-modules M, Seq. ?? is exact, and consider Seq. ??. First,
let M = Z. Suppose n′ ∈ N′ is such that u(n′) = 0. Let φ : Z → N′ be given by φ(1) = n′. Then
(u ◦ φ)(1) = u(n′) = 0, so φ ∈ ker ū; since ū is injective, φ = 0, so n′ = 0. This shows u is injective. Also,
letting M = N′, and considering the map idN′ , we get 0 = v̄

(
ū(idN′)

)
= v ◦ u ◦ idN′ = v ◦ u. Finally, let

n ∈ ker v ⊆ N, and let ψ : Z → N be given by ψ(1) = n. Then im
(
v̄(ψ)

)
= im(v ◦ ψ) = v(nZ) = 0. By

exactness of Seq. ??, there is ψ̄ : Z→ N′ such that ū(ψ̄) = u ◦ ψ̄ = ψ; in particular, n = ψ(1) = u
(
ψ̄(1)

)
, so

n ∈ im u, and ker v ⊆ im u.
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Proposition 2.10. The Snake Lemma.

Starting with the two middle rows exact and maps α, β, γ making the two middle squares commute,
we derive the rest of the commutative diagram. For convenience, we have renamed objects and maps
and will tend to omit parentheses. Except where otherwise noted, all deductions are by commutativity or
exactness.

ker α� _
iα
��

κ′ // ker β� _
iβ

��

λ′ // ker γ� _
iγ
��

ED
δ

BC
GF

@A
//

A

α
��

κ // B

β
��

λ // C

γ
��

// 0

0 // D

qα
����

φ // E

qβ
����

ψ // F

qγ
����

coker α
φ // coker β

ψ // coker γ

• Note that if a ∈ ker α, then αa = 0, so βκa = φαa = 0, and
κa ∈ ker β; thus we can define a restriction κ′ : ker α →
ker β.

• In the same way, we can define a restriction λ′ : ker β →
ker γ.

• Since φ(im α) = im(βκ), φ induces a map φ : coker α →
coker β taking d = d + im α 7→ φd + im β = φd.

• ψ : coker β→ coker γ is defined similarly.

The new squares all commute by definition.

• We check that the connecting map δ := qαφ−1βλ−1iγ is well defined. Let c ∈ ker γ and b ∈ λ−1{c}.
Since ψβb = γλb = γc = 0, there is a unique d ∈ D such that φd = βb, so δ can assign the value
d = d + im α to c. We made a choice of b in this definition. Suppose b′ ∈ λ−1{c} as well, and d′ is
the unique element of φ−1{βb′}. Since λ(b− b′) = c− c = 0, there is a ∈ A with κa = b− b′. As

φd = βb = β(b′ + κa) = βb′ + φαa = φ(d′ + αa),

from the injectivity of φ we see d = d′ + αa, so that d = d′ and δc is well defined.

Now we show exactness of ker α → ker β → ker γ → coker α → coker β → coker γ. First come the easier
parts:

• iγλ′κ′ = λκiα = 0iα = 0. As iγ is a monomorphism, λ′κ′ = 0.

• ψφqα = qγψφ = qγ0 = 0. As qα is an epimorphism, ψφ = 0.

• δλ′ = qαφ−1β(λ−1iγλ′) = qαφ−1(βiβ) = qαφ−10 = 0.

• φδ= (φqα)φ−1βλ−1iγ = (qβφ)φ−1βλ−1iγ = (qββ)λ−1iγ = 0λ−1iγ = 0.

The other containments aren’t much worse:

• ker λ′ ⊆ im κ′: Suppose b ∈ ker β ∩ ker λ. Then there is a ∈ A such that κa = b. Now φαa = βκa =
βb = 0, and since φ is injective, a ∈ ker α; thus b ∈ im κ′.

• ker ψ ⊆ im φ: Suppose ψe = 0; then there is c ∈ C such that ψe = γc. As λ is surjective, there is b ∈ B
such that λb = c, and then ψβb = γλb = γc = ψe, so e− βb ∈ ker ψ = im φ. Letting a ∈ A be such
that φa = e− βb, we see φa = e− βb = e, so e ∈ im φ.

• :ker δ ⊆ im λ′: Suppose 0 = δc and pick b ∈ λ−1{c}. Then d = 0 for the unique d ∈ φ−1{βb}, so
d ∈ im α. If αa = d, then βκa = φαa = φd = βb, so b− κa ∈ ker β. We have λ(b− κa) = c− 0, so
c ∈ im λ′.

• ker φ ⊆ im δ: Suppose φ(d) = φd = 0, so that there exists b ∈ β−1{φd}. Setting λb = c, we see
γc = γλb = ψβb = (ψφ)d = 0, so c ∈ ker γ. Now δc = qαφ−1βλ−1c = qαφ−1βb = qαφ−1φd = d, so
d ∈ im δ.

Further, if the first sequence given is short exact (i.e., κ is injective), then κ′, as a restriction of κ, is injective;
and if the second sequence given is short exact (i.e., ψ is surjective), then ψ is surjective, for if f ∈ coker γ,
there is some e ∈ E such that ψe = f, and then ψe = f.
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Proposition 2.12. Let M1, . . . , Mr be A-modules. Then there exists a pair 〈T, g〉 consisting of an A-module T and
an A-multilinear mapping g: M1 × · · · ×Mr → T with the following property:

Given any A-module P and any A-multilinear mapping f: M1 × · · · × Mr → P, there exists a unique
A-homomorphism f ′ : T → P such that f ′ ◦ g = f.

Moreover, if 〈T, g〉 and 〈T′, g′〉 are two such pairs with this property, then there exists a unique isomorphism
j : T → T′ such that j ◦ g = g′.

“The details may safely be left to the reader.” First we prove existence. Let C be the free A-module
on M = ∏r

j=1 Mj, and let D be the submodule generated by the following elements, for all xj, x′j ∈ Mj
(j = 1, . . . , r), and a ∈ A:

〈x1, . . . , xj + x′j, . . . , xr〉 − 〈x1, . . . , xj, . . . , xr〉 − 〈x1, . . . , x′j, . . . , xr〉,
〈x1, . . . , axj, . . . , xr〉 − a〈x1, . . . , xj, . . . , xr〉.

Let T = C/D, and write the image of (x1, . . . , xr) ∈ C as x1 ⊗ · · · ⊗ xr ∈ T; these elements evidently
generate T, and we have, for all xj, x′j ∈ Mj (j = 1, . . . , r), and a ∈ A,

x1 ⊗ · · · ⊗ (xj + x′j) ⊗ · · · ⊗ xr = (x1 ⊗ · · · ⊗ xj ⊗ · · · ⊗ xr) + (x1 ⊗ · · · ⊗ x′j ⊗ · · · ⊗ xr, )

x1 ⊗ · · · ⊗ axj ⊗ · · · ⊗ xr = a(x1 ⊗ · · · ⊗ xj ⊗ · · · ⊗ xr),

so the map g: M→ T given by 〈x1, . . . , xr〉 7→ x1 ⊗ · · · ⊗ xr is A-multilinear.
Let P be an A-module; any map f: M→ P extends uniquely to a linear map f̄: C → P since C is freely

generated over A by the elements of M. f is A-multilinear just if f̄ vanishes on the elements we specified to
generate D and thus induces on the quotient a unique A-linear map f ′ : T → P taking x1 ⊗ · · · ⊗ xr 7→
f(x1, . . . , xr); in this case, f = f ′ ◦ g.

Now suppose 〈T′, g′〉 has the same universal property as 〈T, g〉. Then the A-multilinear map g: M→ T
factors through g′ as g = j ◦ g′ for a unique A-linear map j : T′ → T. Similarly, g′ : M→ T′ factors through
g as g′ = j′ ◦ g for a unique j′ : T → T′, and we have

g = j ◦ g′ = j ◦ j′ ◦ g.

Because g: M → T is itself multilinear, by the definition of a tensor product, there is a unique linear
map i : T → T such that g = i ◦ g; but clearly the identity map idT has this property, so j ◦ j′ = idT .
Symmetrically,

g′ = j′ ◦ g = j′ ◦ j ◦ g′,

so j′ ◦ j = idT′ and j and j′ = j−1 are isomorphisms.

Proposition 2.14. Let M, N, P be A-modules. Then there exist the following unique isomorphisms:
i) M⊗N → N⊗M, x⊗ y 7→ y⊗ x;

The map 〈x, y〉 7→ 〈y, x〉 7→ y⊗ x from M × N → N × M → N⊗M is bilinear, so it corresponds
to a unique linear map M⊗N → N⊗M taking x⊗ y 7→ y⊗ x. The same argument provides a map
N⊗M → M⊗N taking y⊗ x 7→ x⊗ y. These maps are clearly inverse on the decomposable elements
x⊗ y ∈ M⊗N and y⊗ x ∈ N⊗M, and since these elements generate the modules, the maps are inverse.

ii) (M⊗N)⊗ P→ M⊗ (N⊗ P)→ M⊗N⊗ P, (x⊗ y)⊗ z 7→ x⊗ (y⊗ z) 7→ x⊗ y⊗ z;

The book demonstrates the isomorphism (M⊗N)⊗ P→ M⊗N⊗ P. A symmetric argument provides
an isomorphism M⊗ (N⊗ P)→ M⊗N⊗ P.

iii) (M⊕N)⊗ P→ (M⊗ P)⊕ (N⊗ P), 〈x, y〉 ⊗ z 7→ 〈x⊗ z, y⊗ z〉;
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Let f: (M⊕N) × P → (M⊗ P)⊕ (N⊗ P) be given by f
(
〈x, y〉, z

)
:= 〈x⊗ z, y⊗ z〉. We claim it is

A-bilinear. Let x, x′ ∈ M, y, y′ ∈ N, z, z′ ∈ P, and a ∈ A: then indeed

f
(
a〈x, y〉, z

)
= f
(
〈ax, ay〉, z

)
= 〈ax⊗ z, ay⊗ z〉 =

〈
a(x⊗ z), a(y⊗ z)

〉
= a〈x⊗ z, y⊗ z〉 = af

(
〈x, y〉, z

)
,

f
(
〈x, y〉, az

)
= 〈x⊗ az, y⊗ az〉 =

〈
a(x⊗ z), a(y⊗ z)

〉
= a〈x⊗ z, y⊗ z〉 = af

(
〈x, y〉, z

)
,

f
(
〈x, y〉+ 〈x′, y′〉, z

)
= f
(
〈x + x′, y + y′〉, z

)
=
〈
(x + x′)⊗ z, (y + y′)⊗ z

〉
= 〈x⊗ z, y⊗ z〉+ 〈x′⊗ z, y′⊗ z〉 = f

(
〈x, y〉, z

)
+ f
(
〈x′, y′〉, z

)
,

f
(
〈x, y〉, z + z′

)
=
〈

x⊗ (z + z′), y⊗ (z + z′)
〉
= 〈x⊗ z + x⊗ z′, y⊗ z + y⊗ z′〉

= 〈x⊗ z, y⊗ z〉+ 〈x⊗ z′, y⊗ z′〉 = f
(
〈x, y〉, z

)
+ f
(
〈x, y〉, z′

)
.

Thus f factors through the canonical map g: (M⊕N)× P→ (M⊕N)⊗ P as f = f ′⊗ g, where

f ′: (M⊕N)⊗ P→ (M⊗ P)⊕ (N⊗ P),
〈x, y〉 ⊗ z 7→ 〈x⊗ z, y⊗ z〉

is A-linear.
On the other hand, we also have bilinear maps

j1: M× P→ (M⊕N)⊗ P,
〈x, z〉 7→ 〈x, 0〉 ⊗ z

and
j2 : N × P→ (M⊕N)⊗ P,
〈y, z〉 7→ 〈0, y〉 ⊗ z,

which give rise to linear maps

̄1: M⊗ P→ (M⊕N)⊗ P,
x⊗ z 7→ 〈x, 0〉 ⊗ z

and
̄2 : N⊗ P→ (M⊕N)⊗ P,

y⊗ z 7→ 〈0, y〉 ⊗ z.

By the universal property of the direct sum, we get a unique A-linear map

j: (M⊗ P)⊕ (N⊗ P)→ (M⊕N)⊗ P,
〈x⊗ z, 0〉 7→ 〈x, 0〉 ⊗ z,
〈0, y⊗ z〉 7→ 〈0, y〉 ⊗ z.

Now the image of 〈x, y〉 ⊗ z ∈ (M⊕N)⊗ P under j ◦ f is

j(x⊗ z, y⊗ z) = 〈x, 0〉 ⊗ z + 〈0, y〉 ⊗ z = 〈x, y〉 ⊗ z,

and since these elements generate (M⊕N)⊗ P, we see j ◦ f is the identity. Similarly, the images of the
elements 〈x⊗ z, 0〉 and 〈0, y⊗ z〉 of (M⊗ P)⊕ (N⊗ P) under f ◦ j are respectively

f
(
〈x, 0〉 ⊗ z

)
= 〈x⊗ z, 0〉 and f

(
〈0, y〉 ⊗ z

)
= 〈0, y⊗ z〉,

and these elements generate (M⊗ P)⊕ (N⊗ P), so f ◦ j is the identity, and f and j are inverse isomor-
phisms.

iii*) For any A-modules Mi (i ∈ I) and N,

N⊗
⊕
i∈I

Mi
∼=
⊕
i∈I

(N⊗Mi).1

Proof. For each finite subset J ⊆ I, write MJ :=
⊕

j∈J Mj. Then MJ + MJ′ = MJ∪J′ , for all finite J, J′ ⊆
I. Taking all maps to be the natural insertions, [2.17] shows M ∼= lim−→ MJ . Similarly, for J ⊆ J′, the
natural injection

⊕
j∈J(N⊗Mj) →

⊕
j∈J′(N⊗Mj), can be viewed as an inclusion, and [2.17] again says

lim−→J

(⊕
j∈J(N⊗Mj)

)
∼=
⊕

i∈I(N⊗Mi). Thus

N⊗
⊕
i∈I

Mi
[2.17]∼= N⊗ lim−→

J
MJ

[2.20]∼= lim−→
J
(N⊗MJ)

(2.14.iii)∼= lim−→
J

(⊕
j∈J

(N⊗Mj)
) [2.17]∼=

⊕
i∈I

(N⊗Mi).

1 This generalizes (2.14.iii) and uses independent later exercises regarding direct limits.
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iv) A⊗M→ M, a⊗ x 7→ ax.

By the definition of an A-module M there is a bi-additive map µ : A× M → M, A-linear in the first
variable. The required identity µ

(
a, µ(b, m)

)
= µ(ab, m) shows that µ is A-linear in the second variable if

we consider M to have the A-module structure induced by µ. Thus, with g: A×M→ A⊗M the canonical
map, we get a unique factorization µ = µ′ ◦ g, where µ′ : A⊗M → M is A-linear and µ′(a⊗ x) = ax. On
the other hand there is also an obviously A-linear map ι : M→ A⊗M given by x 7→ 1⊗ x. We check that
these maps are inverse:

ι
(
µ′(a⊗ x)

)
= ι (ax) = 1⊗ ax = a⊗ x and µ′

(
ι (x)

)
= µ′(1⊗ x) = x.

Exercise 2.15. Let A, B be rings, let M be an A-module, P a B-module, and N an (A, B)-bimodule (that is, N is
simultaneously an A-module and a B-module and the two structures are compatible in the sense that a(xb) = (ax)b
for all a ∈ A, b ∈ B, x ∈ N). Then M⊗A N is naturally a B-module, N⊗B P an A-module, and we have

(M⊗A N)⊗B P ∼= M⊗A (N⊗B P).

As in the proof of (2.14.iii), for each z ∈ P we have a map fz : M × N → M⊗A (N⊗B P) given by
〈x, y〉 7→ x⊗ (y⊗ z), which we claim is A-bilinear in the first two variables. Bi-additivity is clear, and for
a ∈ A we have

fz(ax, y) = ax⊗ (y⊗ z) = a
(
x⊗ (y⊗ z)

)
= afz(x, y),

fz(x, ay) = x⊗ (ay⊗ z) = x⊗ a(y⊗ z) = a
(
x⊗ (y⊗ z)

)
= afz(x, y).

Thus each fz induces an A-linear map f̄z : M⊗A N → M⊗A (N⊗B P) taking x⊗ y 7→ x⊗ (y⊗ z). Allow-
ing z to vary, we have a bi-additive map g: (M⊗A N)× P→ M⊗A (N⊗B P) taking 〈x⊗ y, z〉 7→ f̄z(x⊗ y).
This g is obviously A-linear in the first variable, and is B-bilinear since for b ∈ B we have

g
(
(x⊗ y)b, z

)
= g(x⊗ yb, z) = x⊗ (yb⊗ z) = x⊗ (y⊗ z)b =

(
x⊗ (y⊗ z)

)
b = g(x⊗ y, z)b,

g(x⊗ y, zb) = x⊗ (y⊗ zb) = x⊗ (y⊗ z)b =
(

x⊗ (y⊗ z)
)
b = g(x⊗ y, z)b.

Thus, by the universal property, g gives rise to an (A, B)-linear map ḡ: (M⊗A N)⊗B P→ M⊗A (N⊗B P)
taking (x⊗ y)⊗ z 7→ x⊗ (y⊗ z). A symmetric argument gives the inverse map x⊗ (y⊗ z) 7→ (x⊗ y)⊗ z.

Exercise 2.20. If f: A → B is a ring homomorphism and M is a flat A-module, then MB = B⊗A M is a flat
B-module.

Let j: N1 � N2 be any injective B-module homomorphism. By (2.19), to show MB is a flat B-module
it suffices to show j⊗ idMB: N1⊗B MB → N2⊗B MB is injective. By restricting scalars along f, we can
consider all modules as A-modules, and find canonical A-module isomorphisms

Ni ⊗B MB = Ni ⊗B (B⊗A M)
(2.15)∼= (Ni ⊗B B)⊗A M

(2.14.i)∼=
(2.14.iv)

Ni ⊗A M.

Since j is still injective considered as an A-module homomorphism and M is flat, j⊗ idM : N1⊗ A M →
N2⊗ A M is injective. Composing on both sides with the canonical isomorphisms yields

x⊗ y 7→ (x⊗ 1)⊗ y 7→ x⊗ (1⊗ y) 7→ j(x)⊗ (1⊗ y) 7→
(

j(x)⊗ 1
)
⊗ y 7→ j(x)⊗ y

which then must also be injective; but this is j⊗ idMB .

Proposition 2.21*. The direct sum M of a family of A-modules Mi (i ∈ I) is characterized up to isomorphism by
the following universal property: there exists a family of homomorphisms ji : Mi → M such that for any A-module
N and family of homomorphisms fi : Mi → N, there exists a unique homomorphism f : M→ N such that fi = f ◦ ji
for all i ∈ I.

For each x = 〈xi〉 ∈ M, write pi(x) = xi ∈ Mi; then the projections pi : M → Mi are surjective
homomorphisms. For each xi ∈ Mi, write ji(xi) for the unique element y ∈ M such that pi(y) = xi and
pt(y) = 0 for all t 6= i. These insertions ji : Mi → M are injective homomorphisms. Note that pi ◦ ji = idMi ,
while pi ◦ jt = 0 for t 6= i.
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Since for any x ∈ M we have only finitely many pi(x) 6= 0, it follows x = ∑i∈I ji
(

pi(x)
)
, or idM =

∑ (ji ◦ pi). Thus for any homomorphism f : M→ N we have

f = f ◦ idM = f ◦
(

∑ (ji ◦ pi)
)
= ∑ ( f ◦ ji ◦ pi).2

Thus f is uniquely determined by the maps f ◦ ji ◦ pi, and since each pi : M → Mi is surjective, by the
maps f ◦ ji. On the other hand, given an arbitrary family of maps fi : Mi → N, we can define f : M → N
by f = ∑t ( ft ◦ pt), and precomposing with ji, we get f ◦ ji = ∑t ( ft ◦ pt ◦ ji) = fi ◦ pi ◦ ji = fi. Thus M
satisfies the universal property.

Now suppose another module M′ and family of homomorphisms j′i : Mi � M′ also have this property.
Then associated to the maps ji : Mi → M, there is a unique u : M′ → M such that each ji = u ◦ j′i , and
associated to the maps j′i : Mi → M′, there is a unique u′ : M → M′ such that each j′i = u′ ◦ ji. It follows
each (u ◦ u′) ◦ ji = u ◦ j′i = ji. By assumption, associated to the ji : Mi → M there is a unique map
j : M → M such that ji = j ◦ ji; since both idM and u ◦ u′ meet this criterion, it follows that the two are
equal. Symmetrically, u′ ◦ u = idM′ , so M ∼= M′.

Proposition 2.22*. Let fi : Mi → Ni (i ∈ I) be a family A-module homomorphisms, and M and N the respective
direct sums of the Mi and the Ni. Write ji for the insertions Mi � M, ki for the insertions Ni � N, pi for the
projections M � Mi, and qi for the projections N � Ni. Then there is a unique direct sum map f =

⊕
i∈I fi: M→

N such that
fi = qi ◦ f ◦ ji and qi ◦ f ◦ jt = 0 for i 6= t.

Moreover,
i) f is injective if and only if each fi is injective;
ii) f is surjective if and only if each fi is surjective.

The map 〈xi〉 7→
〈

fi(xi)
〉

satisfies the conditions on f .3 Since any other g satisfying the equations takes
ji(xi) to ki

(
fi(xi)

)
, it follows by additivity that g : 〈xi〉 7→

〈
fi(xi)

〉
for all 〈xi〉 ∈ M, so g = f.4

i): Suppose all fi are injective. If f
(
〈xi〉

)
=
〈

fi(xi)
〉
= 0, then each fi(xi) = 0, so each xi = 0, and

〈xi〉 = 0.5

If some fi takes a nonzero xi to 0, then f takes its image j(xi) to 0, and so is also not injective.6

ii): Let y = 〈yi〉 ∈ N be given. By assumption, there is for each i an xi ∈ Mi with fi(xi) = yi; if yi = 0,
we may take xi = 0. Then x = 〈xi〉 ∈ M and f(x) = y, so f is surjective.7

If yi ∈ Ni is not in im fi, then ki(yi) cannot be in the image of f : 〈xi〉 7→
〈

fi(xi)
〉
, so f is not surjective.8

EXERCISES
1. Show that (Z/mZ)⊗Z(Z/nZ) = 0 if m, n are coprime.

Since m, n are coprime, by Bézout’s lemma there are a, b ∈ Z such that am + bn = 1.9 Let x⊗ y ∈
(Z/mZ)⊗Z(Z/nZ). Then x⊗ y = (am + bn)(x⊗ y) = a(mx⊗ y) + b(x⊗ ny) = 0.

2 So f : 〈xi〉 7→ ∑ fi(xi).
3 More formally, by (2.21), there is a unique f : M → N with f ◦ ji = ki ◦ fi : Mi → N. Now each qi ◦ f ◦ ji = qi ◦ ki ◦ fi = fi , and

qi ◦ f ◦ jt = (qi ◦ kt) ◦ ft = 0 for t 6= i.
4 Suppose that g also satisfies the first equation. Then each ki ◦ fi = ki ◦ qi ◦ g ◦ ji = g ◦ ji , so by uniqueness in (2.21), f = g.
5 Alternately, f = ∑i, t ki ◦ qi ◦ f ◦ jt ◦ pt = ∑ ki ◦ qi ◦ f ◦ ji ◦ pi = ∑ ki ◦ fi ◦ pi . Since (im qi) ∩ (∑t 6=i im qt) = 0, we know

ker f =
⋂

ker(ki ◦ fi ◦ pi). Since each ki ◦ fi is injective, this is
⋂

ker pi = 0.
6 If f = ∑ kt ◦ ft ◦ pt is injective, so is f ◦ ji = ∑t kt ◦ ft ◦ pt ◦ ji = ki ◦ fi . Since ki is injective, so is fi .
7 Proceeding formally, since each fi = qi ◦ f ◦ ji is surjective, so is each qi ◦ f. Since idN = ∑ ki ◦ qi , we have f = idN ◦ f =

∑ ki ◦ qi ◦ f, so im f = ∑ im(ki ◦ qi ◦ f ) = ∑ ki(Ni) = N.
8 Since fi ◦ pi = qi ◦ f ◦ ji ◦ pi = qi ◦ f ◦∑ (jt ◦ pt) = qi ◦ f, if some yi ∈ Ni is not in im fi , it is not in the image of fi ◦ pi = qi ◦ f ,

and so ki(yi) ∈ Ni is not in the image of ki ◦ qi ◦ f = f .
9 [?]; Another way of putting this is that m and n being coprime in the arithmetic sense of having no common irreducible factors

implies that (m) and (n) are coprime in the algebraic sense (p. 7) that (m) + (n) = (1).
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2. Let A be a ring, a an ideal, M an A-module. Show that (A/a)⊗A M is isomorphic to M/aM.

Applying the right exact functor −⊗A M to the short exact sequence 0→ a→ A→ A/a→ 0, we see
the sequence

a⊗M
j→ A⊗M→ (A/a)⊗M→ 0

is exact, so
(A/a)⊗M ∼= (A⊗M)/im j.

But the absorption isomorphism A⊗M→ M of (2.14.iv) sends im j→ aM, so (A⊗M)/im j ∼= M/aM.

3. Let A be a local ring, M and N finitely generated A-modules. Prove that if M⊗N = 0, then M = 0 or N = 0.

Let m be the maximal ideal and k = A/m the residue field. The scalar extensions Mk := k⊗A M and
Nk are k-vector spaces. That M⊗N = 0 implies

Mk⊗Nk = (k⊗M)⊗ (k⊗N)
(2.14.iii)∼=
(2.14.iv)

k⊗ (M⊗N) = (M⊗N)k = 0.

But dimension of vector spaces is multiplicative under tensor, so Mk or Nk = 0. Without loss of generality,
assume Mk = 0. By [2.2], Mk

∼= M/mM, so mM = M. By Nakayama’s Lemma (2.6), since M is finitely
generated and m is the Jacobson radical, we have M = 0.

4. Let Mi (i ∈ I) be any family of A-modules, and let M be their direct sum. Prove that M is flat ⇐⇒ each Mi is flat.

Let an A-linear map j: N′ → N be given. Using the isomorphisms of (2.14.iii*) identifies j⊗ idM with
a map h :

⊕
i∈I (N′⊗Mi)→

⊕
i∈I (N′⊗Mi), and the compositions

N′⊗Mi �
⊕
i∈I

(N′⊗Mi)
∼−→ N′⊗M

j⊗ idM−−−−→ N⊗M ∼−→
⊕
i∈I

(N⊗Mi) � N⊗Mi

are j⊗ idMi , the associated maps N′⊗Mi → N⊗Mt for t 6= i being zero. Thus h is the direct sum of the
j⊗ idMi , and by (2.22.i*), j⊗ idM is injective just if they are.

If the Mi are flat and j is injective, then by (2.19) each of the j⊗ idMi are as well, and so j⊗ idM is.
Hence M is flat. If Mi is not flat, there exists a j such that j⊗ idMi is not injective, and so j⊗ idM is not.
Hence M is not flat.

5. Let A[x] be the ring of polynomials in one indeterminate over a ring A. Prove that A[x] is a flat A-algebra.

A is a flat A-module, for by (2.14.iv) the functor −⊗A A is naturally isomorphic to the identity functor.
Let Mi = Axi ⊆ A[x] for i ∈ N. Each Mi

∼= A as an A-module, and so is flat. Then as a module,
A[x] =

⊕
i∈N Mi is flat by [2.4].

6. For any A-module M, let M[x] denote the set of all polynomials in x with coefficients in M, that is to say expressions
of the form

m0 + m1x + · · ·+ mrxr (mi ∈ M).

Defining the product of an element of A[x] and an element of M[x] in the obvious way, show that M[x] is an
A[x]-module.

As an A-module, we have M[x] ∼=
⊕

n∈N Mxn. We define the action of A[x] on M[x] by (∑ aixi)(∑ mjxj) =

∑ ckxk, where ck = ∑i+j=k aimj. We check the distributivity and associativity. Let f(x) = ∑i aixi and
g(x) = ∑j bjxj ∈ A[x] and m(x) = ∑k mkxk and n(x) = ∑k nkxk ∈ M[x]. Associativity is given by

[
f(x)g(x)

]
m(x) =

[
∑

l

(
∑

i+j=k
aibj

)
xk

](
∑

l
ml xl

)
= ∑

p

(
∑

k+l=p

(
∑

i+j=k
aibj

)
mk

)
xp = ∑

p

(
∑

i+j+k=p
aibjmk

)
xp;

f(x)
[
g(x)m(x)

]
=
(

∑
i

aixi
)[

∑
l

(
∑

j+k=l
bjmk

)
xl

]
= ∑

p

(
∑

i+l=p
ai

(
∑

j+k=l
bjmk

))
xp = ∑

p

(
∑

i+j+k=p
aibjmk

)
xp.
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Distributivity is given by[
f(x) + g(x)

]
m(x) =

(
∑

i
(ai + bi)xi

)(
∑
k

mkxk
)
= ∑

l

(
∑

i+k=l
(aimk + bimk)

)
xl

=
(

∑
i

aixi
)(

∑
k

mkxk
)
+
(

∑
i

bixi
)(

∑
k

mkxk
)
= f(x)m(x) + g(x)m(x);

f(x)
[
m(x) + n(x)

]
=
(

∑
i

aixi
)(

∑
k
(mk + nk)xk

)
= ∑

l

(
∑

i+k=l
(aimk + aink)

)
xl

=
(

∑
i

aixi
)(

∑
k

mkxk
)
+
(

∑
i

aixi
)(

∑
k

nkxk
)
= f(x)m(x) + f(x)n(x).

Show M[x] ∼= A[x]⊗A M.

Define φ : M[x] → A[x]⊗A M by m(x) = ∑ mjxj 7→ ∑ (xj⊗mj). It is obviously additive, and is A[x]-
linear, for if f(x) = ∑ aixi ∈ A[x], then

φ
(

f(x)m(x)
)
= ∑

k
∑

i+j=k
φ(aimjxk) = ∑

k
∑

i+j=k
(xk⊗ aimj) = ∑

i
∑

j
(xixj⊗ aimj)

= ∑
j

((
∑

i
aixi
)

xj⊗mj

)
=
(

∑
i

aixi
)(

∑
j

xj⊗mj

)
= f(x)φ

(
m(x)

)
.

Define ψ̄ : A[x]×M → M[x] by ψ̄
(

∑ aixi, m
)
= ∑ (aim)xi. It is clearly bi-additive and A-bilinear, and so

induces a linear map ψ : A[x]⊗A M→ M[x] sending
(

∑ aixi)⊗m 7→ ∑ (aim)xi. Now φ and ψ are inverse,
for

ψ
(
φ(mixi)

)
= ψ(xi ⊗mi) = mixi

and
φ
(
ψ(aixi ⊗m)

)
= φ

(
(aim)xi) = xi ⊗ aim = aixi ⊗m.

7. Let p be a prime ideal in A. Show that p[x] is a prime ideal in A[x]. If m is a maximal ideal in A, is m[x] a maximal
ideal in A[x]?

p[x] is the kernel of the “reduction of coefficients” homomorphism A[x] � (A/p)[x], and (A/p)[x] is
an integral domain (see the proof of [1.2.ii]).

On the other hand, the ideal (2) � Z is maximal, but the ideal 2Z[x] � Z[x] is not maximal, as the
quotient (Z/2Z)[x] is not a field. 2Z[x] is properly contained in the maximal ideal (2, x).

8. i) If M and N are flat A-modules, then so is M⊗AN.

Let j: P′ � P be an injective A-linear map. Since N is flat, the map idN ⊗ j: N⊗ P′ → N⊗ P is
injective. Since M is flat, the map idM ⊗ (idN ⊗ j) : M⊗ (N⊗ P′) → M⊗ (N⊗ P) is injective. But by the
associativity (2.14.ii) of ⊗A, this is up to a canonical isomorphism the map idM⊗N ⊗ j induced from j by
tensoring with M⊗N, so M⊗N is flat.

ii) If B is a flat A-algebra and N is a flat B-module, then N is flat as an A-module.

Let j: M′ � M be an injective A-module homomorphism, and let f : A → B be the map making B an
A-algebra. Since B is a flat A-module, the map idB ⊗A j: B⊗A M′ → B⊗A M is injective, and since N is
flat as a B-module, the map

idN ⊗B (idB ⊗A j) : N⊗B (B⊗A M′)→ N⊗B (B⊗A M)

is injective as well. Composing the associativity isomorphisms of (2.15), we see

(idN ⊗B idB)⊗A j: (N⊗B B)⊗A M′ → (N⊗B B)⊗A M

is injective, so by the isomorphism N ∼= N⊗B B of (2.14.iv), so is idN ⊗A j: N⊗A M′ → N⊗A M.
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9. Let 0→ M′ → M → M′′ → 0 be an exact sequence of A-modules. If M′ and M′′ are finitely generated, then so is
M.

Without loss of generality view M′ → M as an inclusion and M→ M′′ as a quotient mapping. Let the
finite sets {xi}i and {ȳj}j respectively generate M′ and M′′. Lift the ȳj to elements yj of M. The submodule
of M generated by the finite set {xi}i ∪ {yj}j contains M′ and has image M′′, so by the bijection (p. 18)
between submodules of M′′ and submodules of M containing M′, it is M.

10. Let A be a ring, a an ideal contained in the Jacobson radical of A; let M be an A-module and N a finitely generated
A-module, and let u: M → N be a homomorphism. If the induced homomorphism M/aM → N/aN is surjective,
then u is surjective.

As the induced homomorphism sends M � M/aM � N/aN, we must have u(M) + aN = N. Since N
is finitely generated and a ⊆ R, by the corollary (2.7) of Nakayama’s Lemma, u(M) = N.

11. Let A be a ring 6= 0. Show that Am ∼= An =⇒ m = n.

Let φ : Am → An be an isomorphism and m� A a maximal ideal. If k = A/m is the quotient field, then
idk ⊗ φ : k⊗A Am → k⊗A An is an isomorphism by (2.18), taking N = k, M′ = 0, M = Am, and M′′ = An.
But by (2.8), we have k⊗A An ∼= kn an n-dimensional k-vector space. Since dimension of vector spaces is
an isomorphism invariant, m = n.

If φ : Am → An is surjective, then m ≥ n.

As above, tensoring with k = A/m shows that the k-linear map idk ⊗ φ : km → kn is surjective. But if
m < n, the m elements φ(ei) cannot span kn, so m ≥ n.

If φ : Am → An is injective, is it always the case that m ≤ n?

It is indeed the case. Some poached solutions follow.10

i)11 This solution is simplest and uses results already proven in the book by Ch. 2. Let φ : Am →
An be an A-linear map with m > n; we prove it is not injective. Compose with the inclusion i : An =
An × {0}m−n ↪→ An × Am−n = Am on the first n coordinates to get an A-module endomorphism ψ =
i ◦ φ : Am → Am. If π : Am → A is the projection on the last coordinate, we have π ◦ ψ = 0. Now by (2.4),
ψ satisfies an equation

ψn + a1ψn−1 + · · ·+ an idAm = 0

for some aj ∈ A. Assume n is minimal such this happens. Taking π of both sides, we see an = 0. Now
as ψ is A-linear, we have ψ ◦ (ψn−1 + a2ψn−2 + · · ·+ a1 idAm) = 0. Since n was minimal, the map ψn−1 +
a2ψn−2 + · · ·+ a1 idAm 6= 0, so its image M is not 0, yet ψ(M) = 0, so ψ (and hence φ) is not injective.

ii)12 The other proof feasibly accessible using knowledge available so far uses some linear algebra,
generalized to the context of free modules over a commutative ring A. Given a square matrix N of rank
n with entries aij ∈ A, the determinant det A is the element of A given by ∑σ(sgn σ)∏n

i=1 ai, σ(i) where
σ ranges over all n! permutations of {1, . . . , n} and sgn σ is the parity of the permutation, which is ±1
depending as σ is even or odd. From this formula it follows that if two rows of N are identical, the
determinant is 0. Note that there are n2 square matrices Nij of rank n− 1 given by deleting the entries in
the ith row and jth column. The (i, j)-cofactor of N is given by cij = (−1)i+j det Nij ∈ A. The determinant
of N can be calculated recursively by the cofactor expansion det N = ∑n

i=1 aijcij for fixed j or ∑n
j=1 aijcij for

fixed i. The adjugate Adj(N) = (bij) of N is the n× n matrix with entries bij = cji the cofactors of N. The
(i, j) entry of N ·Adj(N) is ∑n

k=1 aikckj = ∑k aikbjk. For i = j, the cofactor expansion of the determinant

10 Several solutions are up at http://mathoverflow.net/questions/136/atiyah-macdonald-exercise-2-11/2622. I was un-
able to find a solution myself, at least before giving up and searching online.

11 Balazs Strenner
12 Robin Chapman
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shows this number is det N. For i 6= j this expression for the entry is, up to a sign, the cofactor expansion,
along the ith row, of the determinant of the matrix

a11 · · · a1n
...

. . .
...

aj1 · · · ajn
...

. . .
...

aj1 · · · ajn
...

. . .
...

an1 · · · ann


,

whose ithand jth rows are equal; and so the entry is 0. Thus N ·Adj(N) = det(N) · In is the scalar multiple
of det N and the n× n identity matrix.

Note that it suffices to prove an A-module homomorphism φ : Am → An cannot be injective for m =
n + 1, since if n ≤ m − 1 we could compose with the inclusion An ↪→ Am−1 to transform an injection
Am � An to an injection Am � Am−1. If ei (i = 1, . . . , n + 1) is the standard basis for An+1 and f j
(j = 1, . . . , n) is the standard basis for An, then φ(ei) = ∑n

j=1 aji f j for some aji ∈ A, and φ is represented
by the matrix

M =

 a11 · · · a1, n+1
...

. . .
...

an, 1 · · · an, n+1

,

so φ is injective just if there is no nonzero vector v = (b1, . . . , bn+1)
> ∈ An+1 such that Mv = 0. Now

let Mi be the n× n matrix obtained from M by deleting the ith column and let v have components bi =

(−1)i det Mi. Then the jth component of Mv is ∑n+1
i=1 (−1)iaji det Mi. But this is (−1)j times the cofactor

expansion along the jth row of the determinant of the (n + 1)× (n + 1) matrix

a11 · · · a1, n+1
...

. . .
...

aj1 · · · aj, n+1
aj1 · · · aj, n+1
...

. . .
...

an1 · · · an, n+1


,

which is zero because the jth row is repeated, so Mv = 0.
Now if some det Mi is nonzero, we have achieved our goal of finding a nonzero v ∈ ker φ. Otherwise,

det Mn+1 = 0. If Mn+1 has a nonzero vector v′ = (b1, . . . , bn)> in its kernel, then v = (b1, . . . , bn, 0)> is
a nonzero vector in the kernel of M. It then falls to us to show that if a square matrix N of rank n has
determinant 0, it has nontrivial kernel. Let r < n be the rank of the largest square submatrix (obtained
from N by deleting rows and columns) with nonzero determinant; by shuffling rows, we may assume that
r× r occurs in the upper left of N. Let R be the (r + 1)× (r + 1) matrix on the upper left of N containing it;
since det R 6= 0 by the maximality of r, taking the cofactor expansion along the first column of R shows that
the first column v′′ of Adj(R) has some nonzero entry. Now Rv′′ = 0, since R ·Adj(R) = det(R) · Ir+1 = 0.
If we let v′ be v′′ with n− r zeros added at the end, then as the determinant of N is zero, the rest of the
rows of N are linear combinations of rows of R, so Nv′ = 0.

iii)13 Abstracting from the last proof at a rather high level is the following. It requires the notion of
exterior product:

∧n
A M =

(⊗n
A M

)
/N, where

⊗n
A M is the n-fold tensor product M⊗A · · · ⊗A M and

N is the submodule generated by all elements (· · · ⊗ x⊗ y⊗ · · · ) + (· · · ⊗ y⊗ x⊗ · · · ). The image of
x⊗ · · · ⊗ y is denoted by x ∧ · · · ∧ y, and we have (by fiat) the equalities x1 ∧ · · · ∧ xn = (sgn σ)xσ(1) ∧
· · · ∧ xσ(n), where σ is a permutation of {1, . . . , n} and sgn σ its parity. We then have a theorem:14

13 Pete L. Clark, via Tsit Yuen Lam’s Lectures on Rings and Modules, pp. 15–16, via Nicolas Bourbaki’s Algebra
14 Nicolas Bourbaki, Algebra, Chapter III, §7.9, Prop. 12, page 519
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a subset {u1, . . . , um} of M = An is linearly independent ⇐⇒ ∀a ∈ A [a · (u1 ∧ · · · ∧ um) = 0 =⇒ a = 0],

where u1 ∧ · · · ∧ um ∈
∧n

A M. This proves the result because for m > n we have
∧m

A(An) = 0.
The remaining proofs use material developed later in the book.
iv)15 Let φ : Am � An be an injective A-module homomorphism represented by the matrix M. Let

B = Z[ . . . , aij, . . .] be the subring of A generated by all the entries of the matrix M; since Z is Noetherian,
by (7.5) (the Hilbert Basis Theorem) and (7.1) (quotient preserves a.c.c.), B is a Noetherian ring; and φ
restricts to an injective linear map ψ : Bm � Bn. Note that Bn, by (6.4), is Noetherian. If we assume m > n
we can derive a contradiction. Write Bm = M⊕N with M ∼= Bn and N ∼= Bm−n. Then we have isomorphic
images M1 and N1 of M, N in M, and isomorphic images M2, N2 in M1, and isomorphic images M3, N3
in M2, etc. This yields an infinite ascending chain

N1 ( N1⊕N2 ( N1⊕N2⊕N3 ( · · · ,

contradicting the ascending chain condition.
v)16 Continue with the Noetherian ring B of iv). By [1.8], B has a minimal prime ideal p. By p. 38 the

localization C = Bp has only one prime ideal q = pC. By (3.3) (localization is exact), the induced map
ψp : Cm → Cn is injective as well. By (7.3) (localization preserves a.c.c.), C is Noetherian, and since it has
just one prime ideal, it has (Krull) dimension (p. 90) zero. By (8.5), C is Artinian as well, so by (6.8) it has
a finite composition series as a C-module. By (6.7), the length of this composition series is independent
of the series chosen, so C has a well defined finite length l(C) ≥ 1. Now let us consider the lengths of
Cm and Cn. (6.9) says the length of a module is an additive function, so using the natural exact sequences
0 → C → Cn+1 → Cn → 0, we have l(Cn) = n · l(C) by induction. We also have, by assumption, an exact
sequence

0→ Cm ψp−→ Cn → coker(ψp)→ 0,

so n · l(C) = m · l(C) + l
(

coker(ψp)
)
, and thus m ≤ n.

vi)17 Finally, there is another matrix-theoretic proof, involving localization. φ : An+1 → An is injective
just if each of its localizations is injective, by (3.9). By [1.8], A has a minimal prime ideal p, and by [1.10],
q = pAp is the nilradical in the localization B = Ap, and all other elements of B are units. We claim
any finite set of elements in q is jointly annihilated by some nonzero element of q. For the base case, if
0 6= x ∈ q and r > 0 is minimal such that xr = 0, then xr−1 ∈ q is a nonzero element annihilating x. Let
0 6= y ∈ Ann(S) for a finite set S ⊆ q, and let z ∈ q\{0}. There is r > 0 such that zr = 0, and so there is a
minimal s ∈ [1, r] such that yzs = 0. Then 0 6= yzs−1 ∈ Ann(S ∪ {y}). This lemma essentially allows us to
use Gaussian elimination.

Let M = [aji] be the matrix of the B-module homomorphism ψ = φp : Bn+1 → Bn. The columns
represent the images ψ(ei), which we are linearly independent just if ψ is injective. Now if there is some
linear dependency among the columns, then adding a multiple of one column to another preserves the
existence of the dependency. Since the operation of adding a multiple of one column to another is invertible
(subtract a multiple of the column), this column operation also reflects dependence, so the columns of the
altered matrix are independent just if the columns of the original are. Clearly the same holds for the
operations of multiplying the entries of a column by a unit and swapping rows or columns.

If any column contains no unit, then by the claim above, there is a nonzero a annihilating that column,
and the vector (0 · · · , a · · · 0)> is killed by M, contradicting injectivity of ψ. Thus if ψ is injective all
columns contain some unit. If the first column contains a unit, we may shuffle rows so that a11 is a unit,
and multiplying the first column by a−1

11 we may assume a11 = 1. Subtracting multiples of this first column
from the others we may clear the rest of the first row. If the second column contains a unit, by swapping
rows we may assume it is a22. Multiplying by a unit, we can assume a22 = 1, and subtracting multiples of
the second column from the other columns, we may clear the rest of the second row.

Carrying on in this fashion, we either come upon a column containing no unit or transform the matrix

15 from Tsit Yuen Lam’s Lectures on Rings and Modules, p. 14, and referred by Pete L. Clark
16 Georges Elencwajg
17 Karl Dahlke, http://mathreference.com/mod-pit,basec.html#embed
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to the form 
1 0 · · · 0 0
0 1 · · · 0 0
...

...
. . .

...
...

0 0 · · · 1 0

 ,

contradicting injectivity.
Note there exist abelian groups G isomorphic to Gn for n = 1, 2, . . . , ℵ0. Let G = ∏j∈N Hj be the

direct product of infinitely many copies Hj of some abelian group H. Since N is infinite, there are for each
n ∈ N bijections φn : {1, . . . , n} ×N ↔ N, and there is a bijection φω : N×N ↔ N. These yield, for
n ∈ N ∪ {ℵ0}, group isomorphisms ψn : Gn ∼−→ G by letting ψ(x)φn(i, j) = (xi)j, where xi ∈ G = ∏N H, so
(xi)j ∈ H. This shows that if we weaken the definition of a ring to that of a “rng” (“ring without identity”;
〈A, ·〉 is only required to be a semigroup, not a monoid), the proposition doesn’t hold. For it is possible
to have a nonzero rng whose product is uniformly zero: any additive abelian group G gives rise to a rng
with trivial multiplication. It is then legitimate to define a G-module structure on another abelian group
M by g ·m = 0.

12. Let M be a finitely generated A-module and φ : M → An a surjective homomorphism. Show that ker(φ) is finitely
generated.

Lemma.* Let A be a ring and Mand N be A-modules. If there exist homomorphisms s: N → M and r: M → N
such that r ◦ s = idN , then M ∼= N⊕ (coker s) ∼= N⊕ (ker r).

Define the map κ : M→ N⊕ (coker s) by x 7→
〈
r(x), x̄

〉
. For injectivity, suppose x ∈ ker κ. Then x̄ = 0,

so there is y ∈ N such that x = s(y), and 0 = r(x) = rs(y) = y, so x = 0. For surjectivity, let y ∈ N
and x̄ ∈ coker s be arbitrary, and let x ∈ M be some lift of x̄. If z = x + s

(
y− r(x)

)
, then z̄ = x̄, while

r(z) = r(x) + rs(y)− rsr(x) = r(x) + y− r(x) = y.
An isomorphism M → N⊕ ker r is given by λ = 〈r, idM−sr〉. Indeed, r(idM−sr) = r − rsr = 0; and

x ∈ ker λ implies r(x) = 0 and x = x− sr(x) = 0; and for any y ∈ N and z ∈ ker r, if we let w = s(y) + z,
then λ(w) =

〈
rs(y) + r(z), s(y) + z− srs(y)− sr(z)

〉
= 〈y, s(y) + z− s(y)〉 = 〈y, z〉.

Now we will show ker φ is a quotient (actually a summand) of M; hence the images of a finite set
of generators for M will generate ker φ. Let e1, . . . , en be a basis for An and pick any elements χ(ei) ∈
φ−1(ei); this extends to a homomorphism χ : An → M such that φχ = idAn . Define ψ = idM−χφ: it takes
M→ ker φ since φχφ = φ. For x ∈ ker φ we have ψ(x) = x, so ψ is surjective. In fact, writing ι : ker φ ↪→ M
for the inclusion, φ ◦ ι = idker φ, so ker φ is a summand, with coker ι = M/ ker φ ∼= im φ = An as the other
summand.

13. Let f: A → B be a ring homomorphism, and let N be a B-module. Regarding N as an A-module by restriction of
scalars, form the B-module NB = B⊗AN. Show that the homomorphism g : N → NB which maps y to 1⊗ y is
injective and that g(N) is a direct summand of NB.

The quotient map NB = B⊗AN � B⊗BN is also a B-module homomorphism, since b(b′⊗ y) =
bb′⊗ y 7→ bb′⊗ y = b(b′⊗ y), and composing with g gives a B-module homomorphism h : NB → N taking
b⊗ y 7→ by. Now hg = idB, so by the lemma in [2.12], g injects N as a summand of NB.

Direct limits
14. A partially ordered set I is said to be a directed set if for each pair i, j in I there exists k ∈ I such that i ≤ k and

j ≤ k.
Let A be a ring, let I be a directed set and let (Mi)i∈I be a family of A-modules indexed by I. For each pair i, j in

I such that i ≤ j, let µij : Mi → Mj be an A-homomorphism, and suppose that the following axioms are satisfied:
(1) µii is the identity mapping of Mi, for all i ∈ I;
(2) µik = µjk ◦ µij whenever i ≤ j ≤ k.

Then the modules Mi and homomorphisms µij are said to form a direct system M = (Mi, µij) over the directed set
I.

We shall construct an A-module M called the direct limit of the direct system M. Let C be the direct sum of
the Mi, and identify each module Mi with its canonical image in C. Let D be the submodule of C generated by all
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elements of the form xi − µij(xi) where i ≤ j and xi ∈ Mi. Let M = C/D, let µ : C → M be the projection, and let
µi be the restriction of µ to Mi.

The module M, or more correctly the pair consisting of M and the family of homomorphisms µi : Mi → M,
is called the direct limit of the direct system M, and is written lim−→Mi. From the construction it is clear that
µi = µj ◦ µij whenever i ≤ j.

In case it wasn’t clear, let i ≤ j and xi ∈ Mi: then xi − µij(xi) ∈ D = ker(µ), so µi(xi) = µ(xi) =

µ
(
µij(xi)

)
= µj(µij(xi)).

15. In the situation of Exercise 14, show that every element of M can be written in the form µi(xi) for some i ∈ I and
some xi ∈ Mi.

If (I, ≤) is directed and S ⊆ I is finite, then by induction there is a j ∈ I such that for each i ∈ S we
have i ≤ j. Surely this is the case if j = i ∈ {i} = S, and if it is the case for a given S and we add a new
element in+1 to S, then there is an element k ≥ in+1, j, and so k ≥ every element of S ∪ {in+1}.

Let x ∈ M; then it is the image under the quotient map C → C/D = M of some sum ∑i∈S xi ∈ C =⊕
i∈I Mi, where S ⊆ I is finite by definition. Pick a j ∈ I such that for all i ∈ S we have j ≥ i. The elements

µij(xi)− xi ∈ D, so x̃j = ∑i∈S µij(xi) ≡ ∑i∈S xi (mod D) and µj(x̃j) = µ(x̃j) = x.

Show also that if µi(xi) = 0 then there exists j ≥ i such that µij(xi) = 0 in Mj.
We first assemble some auxiliary information about the module D. First, given any generator (id−µij)(xi)

of D, multiplying by a ∈ A we get (id−µij)(axi), since the µi, j are A-module homomorphisms. Similarly,
given generators (id−µij)(xi) and (id−µij)(yi), their sum is a generator (id−µij)(xi + yi). Thus, in con-
sidering expressions ∑n

k=1 ak
(

xik − µik jk (xik )
)

it suffices to assume each ak = 1 and each pair (ik, jk) only
occurs once.

Now suppose that xi ∈ Mi is such that µi(xi) = µ(xi) = 0. Then xi ∈ Mi ∩ D, so xi can be written as a
finite sum

xi = ∑
(j,k)∈T

[
yj − µjk(yk)

]
= ∑

j∈S
zj (2.5)

for some finite set S ⊆ I, some set T ⊆ S2 of pairs (j, k) with j ≤ k, and some elements yj, zj ∈ Mj.
Here the middle sum expresses xi ∈ D in terms of generators for D, and the right sum breaks the middle
sum into components in Mj. Since Eq. ?? takes place in the direct sum, we must have cancellation in all
components but the ith, so zi = xi, and for j 6= i we have zj = 0. Let ` ∈ I be an element such that ` ≥ k
for each k ∈ S. Then using the equations µj` = µk` ◦ µjk,

µi`(xi) = ∑
j∈S

µj`(zj) = ∑
(j, k)∈T

[
µj`(yj)− µk`

(
µjk(yj)

)]
= 0.

16. Show that the direct limit is characterized (up to isomorphism) by the following property. Let N be an A-module and
for each i ∈ I let αi : Mi → N be an A-module homomorphism such that αi = αj ◦ µij whenever i ≤ j. Then there
exists a unique homomorphism α : M→ N such that αi = α ◦ µi for all i ∈ I.

I think we should add the requirement on (M, µi, µij) that we have µi = µj ◦ µij for all i ≤ j ∈ I.
First we show that M = lim−→Mi satisfies this property. We showed µi = µj ◦ µij in [2.14]. Given arbitrary

A-module homomorphisms αi : Mi → N, we have by the universal property of direct sums a unique
induced homomorphism α̃ : C =

⊕
i∈I Mi → N. For any xi ∈ Mi and j ≥ i, consider the generator

xi − µij(xi) of D. By the definition of α̃ and the compatibility condition on the αi we have

α̃
(

xi − µij(xi)
)
= αi(xi)− αj

(
µij(xi)

)
= αi(xi)− αi(xi) = 0,

so D ⊆ ker(α̃) and α̃ induces an A-module homomorphism α : M = C/D → N. Moreover, by definition
α
(
µi(xi)

)
= α̃(xi) = αi(xi).

Mi

µij

��

µi=βi

AAA

  AAA

µ′i=αi

##
M
γ �� α // M′

β
oo

Mj

µj=β j}}}

>>}}}

µ′j=αj

;;

Now suppose that (M, µi : Mi → M) and (M′, µ′i : Mi → M′) both satisfy
the universal mapping property. Since (M′, µ′i) is a direct limit of (Mi, µij) we
have by definition that µ′i = µ′j ◦ µij. But then setting αi = µ′i in the universal
property of (M, µi) as a direct limit, we get a unique homomorphism α : M →
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M′ such that µ′i = αi = α ◦ µi. Symmetrically, we get a unique homomorphism
β : M′ → M such that µi = β ◦ µ′i. Now µi = β ◦ µ′i = β ◦ α ◦ µi : Mi → M for
each i. Since µi = µj ◦ µij, there exists a unique homomorphism γ : M → M
such that µi = γ ◦ µi; as both idM and β ◦ α meet the requirements for γ, by
uniqueness, β ◦ α = idM. Symmetrically, α ◦ β = idM′ , so α : M ↔ M′ : β are
inverse isomorphisms.

17. Let (Mi)i∈I be a family of submodules of an A-module, such that for each pair of indices i, j in I there exists k ∈ I
such that Mi + Mj ⊆ Mk. Define i ≤ j to mean Mi ⊆ Mj and let µij : Mi → Mj be the embedding of Mi in Mj.
Show that

lim−→Mi = ∑ Mi =
⋃

Mi.

In particular, any A-module is the direct limit of its finitely generated submodules.
For each i we have Mi ⊆ ∑ Mi, so

⋃
Mi ⊆ ∑ Mi. On the other hand, if y = ∑i∈I xi ∈ ∑ Mi is any

finite sum, let S = {i ∈ I : xi 6= 0}, and let j ∈ I be ≥ each element of S; then ∑i∈S Mi ⊆ Mj, so
y ∈ Mj ⊆

⋃
i∈I Mi. Thus ∑ Mi =

⋃
Mi.

We show lim−→Mi
∼=
⋃

Mi by showing
⋃

Mi has the expected universal property ([2.16]). Let µi : Mi ↪→⋃
Mi be the inclusion, and suppose we have αi : Mi → N such that αi = αj ◦ µij for i ≤ j. This is just

the same as saying that if Mi ⊆ Mj we have αj|Mi = αi, so that the αi are consistent on all intersections
and thus their union defines a unique function α =

⋃
αi :

⋃
Mi → N restricting to αi on each Mi; that is

αi = α ◦ µi. Now α is A-linear because its restriction to each Mi is, so
⋃

Mi satisfies the universal mapping
property required of lim−→Mi.

It follows that an A-module M is the direct limit of its finitely generated submodules, for any x ∈ M
is in the finitely generated submodule Ax (so M is the union of its finitely generated submodules) and
if N1, N2 ⊆ M are finitely generated A-submodules, then both are contained in the finitely generated
module N1 + N2 ⊆ M (so the finitely generated submodules and inclusions form a direct system).

18. Let M = (Mi, µij), N = (Ni, νij) be direct systems of A-modules over the same directed set. Let M, N be the direct
limits and µi : Mi → M, νi : Ni → N the associated homomorphisms.

M

φ

��

Mi

αi 55

µij
//

φi

��

µi

66nnnnnnnnnnnnnnn
Mj

αj

��0
00000000000000

φj

��

µj

>>}}}}}}}}

Ni
νij //

νi
((PPPPPPPPPPPPPPPP Nj

νj

  AAAAAA

N

A homomorphism Φ : M → N is by definition a family of A-module homomor-
phisms φi : Mi → Ni such that φj ◦ µij = νij ◦ φi whenever i ≤ j. Show that Φ defines a
unique homomorphism φ = lim−→ φi : M→ N such that φ ◦ µi = νi ◦ φi for all i ∈ I.

Define αi : Mi → N by αi = νi ◦ φi. Then if i ≤ j we have

αj ◦ µij = νj ◦ φj ◦ µij = νj ◦ νij ◦ φi = νi ◦ φi = αi,

so by the universal property of [2.16] there is a unique map φ : M → N such that
φ ◦ µi = αi = νi ◦ φi for all i ∈ I.

19. A sequence of direct systems and homomorphisms

M→ N→ P

is exact if the corresponding sequence of modules and module homomorphisms is exact for each i ∈ I. Show that the
sequence M→ N → P of direct limits is then exact.

Let the components of Φ : M → N and Ψ : N → P be φi : Mi → Ni and
ψi : Ni → Pi, inducing φ : M → N and ψ : N → P, and let the maps in the di-
rect systems M, N, P be respectively µij, νij, πij. To show ψ ◦ φ = 0, recall ([2.15])
that any element x ∈ M is of the form µi(xi) for some xi ∈ Mi and some i ∈ I. By
the assumed exactness, (ψi ◦ φi)(xi) = 0. Then using the defining properties of xj
and of φ and ψ ([2.18]),

(ψ ◦ φ)(x) = (ψ ◦ φ ◦ µi)(xi) = (ψ ◦ νi ◦ φi)(xi) = (πi ◦ ψi ◦ φi)(xi) = πi(0) = 0.

xi
� φi //

_

µi

��

� ψi //
_

νi

��

0_

πi
��

x � φ // � ψ // φ
(
ψ(x)

)
Mi

φi //

µi
��

Ni
ψi //

νi
��

Pi

πi
��

M
φ // N � ψ // P
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yi
� ψi //

_
νij��

_
πij
��

xj
� φj //

_
µj
��

νij(yi)
� ψj //

_
νj
��

0_
πj
��

x � φ // y � ψ // 0

Ni
ψi //

νij
��

Pi
πij
��

Mj
φj //

µj
��

Nj
ψj //

νj
��

Pj
πj
��

M
φ // N

ψ // P

On the other hand, suppose y ∈ ker(ψ). By [2.15], there are i ∈ I and yi ∈
Ni such that y = νi(yi), and by the defining property ([2.18]) of ψ we have 0 =
ψ(y) = ψ

(
νi(yi)

)
= πi

(
ψi(yi)

)
. By [2.15] there is j ≥ i such that 0 = πij

(
ψi(yi)

)
=

ψj
(
νij(yi)

)
, where we use the definition of Ψ being a homomorphism. Since we

assumed the sequence of direct systems is exact, it follows that there is xj ∈ Mj
such that φj(xj) = νij(yi). But then if x = µj(xj) we have

φ(x) = φ
(
µj(xj)

)
= νj

(
φj(xj)

)
= νj

(
νij(yi)

)
= νi(yi) = y,

using the definitions of x and φ, the assumed property of xj, the result of [2.14] for
the direct system N, and the assumed property of yi. Thus ker(ψ) ⊆ im φ and the
sequence M→ N → P is exact.

Tensor products commute with direct limits
20. Keeping the same notation as in Exercise 14, let N be any A-module. Then (Mi ⊗N, µij⊗ 1) is a direct system; let

P = lim−→(Mi ⊗N) be its direct limit. For each i ∈ I we have a homomorphism µi ⊗ 1 : Mi ⊗N → M⊗N, hence
by Exercise 16 a homomorphism ψ : P→ M⊗N. Show that ψ is an isomorphism so that

lim−→(Mi ⊗N) ∼=
(

lim−→Mi
)
⊗N.

First we show the direct limit of (Mi × N, µij × idN) is M × N. Indeed, let αi : Mi × N → Q be a
collection of A-linear maps such that for all i ≤ j we have αi = αj ◦ (µij × idN). For M× N to satisfy the
universal property characterizing lim−→(Mi × N) ([2.16]), we want to define a unique α : M× N → Q such
that αi = α ◦ (µi × idN). This forces us to attempt the definition α(µi(xi), y) := αi(xi, y). Now α is defined
on all of M× N since by [2.15] each element x ∈ M is µi(xi) for some i ∈ I and xi ∈ Mi. To show it is well
defined, suppose x = µi(xi) = µj(xj). Then there is some k ≥ i, j, and x = µk(µik(xi)) = µk(µjk(xj)) since
µi = µk ◦ µik. Now as αi = αj ◦ (µij × idN) we have

α(µi(xi), y) = αi(xi, y) = αk(µik(xi), y) = αk(µjk(xj), y) = αj(xj, y) = α(µj(xj), y),

so α is well defined. The existence of a unique such α shows that
(

lim−→Mi
)
× N ∼= lim−→

(
Mi × N

)
.

Let πi : Mi ⊗N → P be the canonical map making P the direct limit, and for each i ∈ I let gi : Mi×N →
Mi ⊗N be the canonical bilinear mapping. These gi form a homomorphism between the direct systems
(Mi × N) and (Mi ⊗N), so by [2.18] they induce a unique homomorphism

g : M× N ∼= lim−→
(

Mi × N
)
→ lim−→

(
Mi ⊗N

)
= P

such that g ◦ (µi × idN) = πi ◦ gi. We have g(x, y) = gi(xi, y), and each gi is A-bilinear, so since any
element of M × N has a representative in some Mi × N, g is A-bilinear as well. Thus g induces an A-
module homomorphism φ : M⊗N → P such that

φ ◦ (µi ⊗ idN) = πi (2.6)

for each i. Note on the other hand that
ψ ◦ πi = µi ⊗ idN (2.7)

by the definition of ψ.
Now by [2.15], each element p ∈ P can be written as πi(pi) for some pi ∈ Mi ⊗N. Since this module is

generated by elements xi ⊗ y, for xi ∈ Mi and y ∈ N, by linearity of ψ and φ we may assume pi = xi ⊗ y.
We then have, by [2.16], that

φ(ψ(p)) = φ(ψ(πi(pi)))
Eq. ??
= (φ ◦ (µi ⊗ idN))(pi)

Eq. ??
= πi(pi) = p.

Similarly, let x⊗ y be a generator of M⊗N. Then by [2.15] there are i ∈ I and xi ∈ Mi such that x⊗ y =
µi(xi)⊗ y, and

ψ(φ(x⊗ y)) = ψ(φ[(µi ⊗ idN)(xi ⊗ y)])
Eq. ??
= ψ(πi(xi ⊗ y))

Eq. ??
= (µi ⊗ idN)(xi ⊗ y) = x⊗ y.

Thus ψ and φ are inverse isomorphisms.
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21. Let (Ai)i∈I be a family of rings indexed by a directed set I, and for each pair i ≤ j in I let αij : Ai → Aj be a ring
homomorphism, satisfying conditions (1) and (2) of Exercise 14. Regarding each Ai as a Z-module we can then form
the direct limit A = lim−→ Ai. Show that A inherits a ring structure from the Ai so that the mappings Ai → A are
ring homomorphisms. The ring A is the direct limit of the system (Ai, αij).

If A = 0 prove that Ai = 0 for some i ∈ I.
Let a, b ∈ A. By [2.15] there are i, j ∈ I and ai ∈ Ai, bj ∈ Bj such that αi(ai) = a and αj(bj) = b.

Now there is k ∈ I such that k ≥ i, j, and αk(αik(ai)) = αi(ai) = a and αk(αjk(bj)) = αj(bj) = b. Define
ab = αk(αik(ai) · αjk(bj)). We have made three choices in this definition, i, j, and k. Fixing i, j, suppose
we picked k′ instead of k. There is some l ∈ I with l ≥ k, k′, and we have αk(αik(ai) · αjk(bj)) = (αl ◦
αkl)(αik(ai) · αjk(bj)) = αl(αil(ai) · αjl(bj)), and symmetrically for k′, so the definition is independent of the
choice of k. Now suppose instead we choose a representative b = αj′(bj′) with bj′ ∈ Aj′ . Let k ≥ i, j, j′.
Consider c = αjk(bj) − αj′k(bj′). We chose these elements so that αk(c) = 0, so by [2.15] there is l ≥ k
such that αkl(c) = αjl(bj)− αj′ l(bj′) = 0, or αjl(bj) = αj′ l(bj′). Taking k = l in the definition of ab, we see
that the definition is independent of j. Symmetrically, it is independent of i. Thus we have a well defined
multiplication on A.

Now by definition, if ai, bi ∈ Ai we have αi(ai)αi(bi) = αi(αii(ai)αii(bi)) = αi(aibi), so the αi preserve
multiplication. To show they are ring homomorphisms, we just need to show αi(1) = 1 in A. But for any
b ∈ A, we can write it as αj(bj) for some bj ∈ Aj, and pick k ≥ i, j, and then

αi(1)b = αk(αik(1)αjk(bj)) = αk(αjk(bj)) = αj(bj) = b

since αik(1) = 1, each αik being a ring homomorphism. Thus each αi is a ring homomorphism.
To verify the ring axioms for A, we just need to note that for any three elements a, b, c ∈ A the elements

ab, ba, a(bc), (ab)c, ab + ac, a(b + c) are calculated via representatives in some ring Ak, then sent into
A via αk; since they hold in each Ak, they hold in A.

We can in fact prove A = 0 ⇐⇒ ∃i ∈ I (Ai = 0). Assume A = 0; then 1 = 0 in A. Now since
αi : Ai → A is a ring homomorphism, αi(1) = 1. By [2.15], there is j ≥ i such that αij(1) = 0. But the αij
are defined to be ring homomorphisms, in particular sending 1 to 1. Thus 1 = 0 in Aj, so Aj = 0.

On the other hand, if some Ai = 0, then for all j ≥ i we have 1 = αij(1) = αij(0) = 0, so Aj = 0 for
j ≥ i. Now any element a ∈ A can be written as αk(ak) for some k and ak ∈ Ak, by [2.15]. Find j ≥ i, k;
then a = αk(ak) = αj(αkj(ak)) = αj(0) = 0, so A = 0.

22. Let (Ai, αij) be a direct system of rings and let Ni be the nilradical of Ai. Show that lim−→Ni is the nilradical of
lim−→ Ai.

If each Ai is an integral domain, then lim−→ Ai is an integral domain.
Let A = lim−→ Ai and suppose a is in its nilradical. Then there is n > 0 such that an = 0. Let i ∈ I and

ai ∈ Ai be such that αi(ai) = a. Then 0 = an = αi(ai)
n = αi(an

i ), so by [2.15] there is j ≥ i such that
αij(an

i ) = αij(ai)
n = 0. Write a′ = αij(ai) ∈ Aj. Then a′ ∈ Nj and αj(a′) = αj(αij(ai)) = αi(ai) = a, so

a ∈ lim−→Ni. On the other hand, if an
j = 0, then surely αj(aj)

n = 0, so lim−→Nj is contained in the nilradical of
A.

Similarly, suppose A is not an integral domain. Then there exist nonzero a, b ∈ A such that ab = 0.
Since a, b 6= 0, by [2.15], no representative of a or b can be zero. Let αi(ai) = a and αj(bj) = b, and
find k ≥ i, j. Then ab = µk(αik(ai)αjk(bj)) = 0, so by [2.15] there is l ≥ k such that αlk(αik(ai)αjk(bj)) =
αil(ai)αjl(bj) = 0. But a = αl(αil(ai)) and b = αl(αjl(bj)) are nonzero, so αil(ai) and αjl(bj) are nonzero,
hence zero-divisors in Al .

23. Let (Bλ)λ∈Λ be a family of A-algebras. For each finite subset of Λ let BJ denote the tensor product (over A) of the
Bλ for λ ∈ J. If J′ is another finite subset of Λ and J ⊆ J′, there is a canonical A-algebra homomorphism BJ → BJ′ .
Let B denote the direct limit of the rings BJ as J runs through all finite subsets of Λ. The ring B has a natural
A-algebra structure for which the homomorphisms BJ → B are A-algebra homomorphisms. The A-algebra B is the
tensor product of the family (Bλ)λ∈Λ.

We should first note that the map given on p. 31 making the tensor product of A-algebras an A-algebra
is a misprint. If we have ring homomorphisms f: A → B and g : A → C, and define h′ : A → B⊗AC by
h′(a) = f(a)⊗ g(a), then h′(1) = 1⊗ 1 but

h′(a) = f(a)⊗ g(a) = a2(1⊗ 1) 6= a(1⊗ 1) = ah′(1)
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in general. The proper definition is instead h : a 7→ f(a)⊗ 1 = 1⊗ g(a) = a(1⊗ 1).
If J = {λ1, . . . , λm} and J′ = J ∪ {λm+1, . . . , λn}, the canonical homomorphism BJ → BJ′ is given

by bλ1
⊗ · · · ⊗ bλm 7→ bλ1

⊗ · · · ⊗ bλm ⊗ 1⊗ · · · ⊗ 1. It is obviously an A-algebra homomorphism. Let
β J : BJ → B denote the canonical map associated to the direct limit. The A-algebra structure on B can
be given as follows: let b ∈ B and a ∈ A. There are a finite J ⊆ Λ and an element bJ ∈ BJ such that
b = β J(bJ); define ab = β J(abJ). Since the maps BJ → BJ′ are A-algebra homomorphisms, this definition
is independent of the choice of J. We saw in [2.21] that β J is a ring homomorphism, and by the definition
of scalar multiplication in B it is also an A-algebra homomorphism.

Flatness and Tor

In these Exercises it will be assumed that the reader is familiar with the definition and basic properties of the Tor
functor.

24. If M is an A-module, the following are equivalent:
i) M is flat;
ii) TorA

n (M, N) = 0 for all n > 0 and all A-modules N;
iii) TorA

1 (M, N) = 0 for all A-modules N.

i) =⇒ ii): Recall that TorA
n (M, −) are the derived functors of −⊗A M. This means that if we let

P : · · · → P2 → P1 → P0 → N → 0

be a projective resolution of N, and tensor with M to get

P⊗A M : · · · → P2⊗A M→ P1⊗A M→ P0⊗A M→ 0

(lopping off the M⊗N term so that we get H0 = M⊗N), then the homology groups Hn(P⊗A M) =

ker(Pn⊗M→ Pn−1⊗M)/ im(Pn+1⊗M→ Pn⊗M) are by definition the groups TorA
n (M, N). Since M is

flat, the sequence P⊗A M is exact except at P0⊗A M, so the homology groups TorA
n (M, N) = 0 for n > 0.

ii) =⇒ iii): 1 > 0.
iii) =⇒ i): Let 0 → N′ → N → N′′ → 0 be a short exact sequence of A-module homomorphisms.

Since the TorA
n (M, −) are derived functors, they fit into a Tor exact sequence including TorA

1 (M, N′′) →
M⊗AN′ → M⊗AN. As by assumption TorA

1 (M, −) = 0, we get a short exact sequence 0 → M⊗AN′ →
M⊗AN; as the injection N′ � N was arbitrary, M is flat by (2.19).

25. Let 0→ N′ → N → N′′ → 0 be an exact sequence, with N′′ flat. Then N′ is flat ⇐⇒ N is flat.
The book suggests we use the Tor exact sequence. It seems that this requires us to use the additional

fact (not a priori obvious) that TorA
n (M, N) ∼= TorA

n (N, M) for all n ≥ 0 and A-modules M, N. Making
this assumption, let M be an arbitrary A-module; we have an exact sequence

0 0

· · · // TorA
2 (M, N′′) // TorA

1 (M, N′) // TorA
1 (M, N) // TorA

1 (M, N′′) // M⊗AN′ // · · · .

The criterion [2.24.iii] and the isomorphism TorA
1 (N′, M) ∼= TorA

1 (N, M) mean N is flat just if N′ is.
We now prove that TorA

n (M, N) ∼= TorA
n (N, M).18

First, a lemma: if F is a free A-module, then TorA
1 (F, −) = 0 and TorA

1 (−, F) = 0. Since F is flat by [2.4],
by [2.24] we have TorA

1 (F, −) = 0. As for TorA
1 (−, F),19 consider the free resolution P2 = 0 → P1 = 0 →

P0 = F → F → 0 of F; tensoring with any A-module M we get a sequence 0→ P1⊗M = 0→ F⊗M→ 0,
whose homology TorA

1 (M, F) at P1⊗M = 0 is 0.

18 http://uni.edu/ajur/v3n3/Banerjee%20pp%207-14.pdf
19 http://math.uchicago.edu/~may/MISC/TorExt.pdf
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Now let M and N be arbitrary A-modules. We can
write them as quotients of free A-modules F, G, so that
we have exact sequences D : 0 → M′ → F → M → 0 and
E : 0 → N′ → G → N → 0. By [2.4] F and G are flat,
so the sequences 0 → M′⊗G → F⊗G → M⊗G → 0
and 0 → F⊗N′ → F⊗G → F⊗N → 0 are exact.
The Tor exact sequence for M⊗ E is 0 = TorA

1 (M, G) →
TorA

1 (M, N) → M⊗N′ → M⊗G → M⊗N → 0. Ten-
soring E with D, adding in the Tor exact sequence, and
using (2.18), we have the commutative diagram on the
right with exact rows and columns. The Snake Lemma,
applied to the middle two rows, gives an exact sequence
0→ TorA

1 (M, N)→ M′⊗N → F⊗N. On the other hand,
the Tor exact sequence for N⊗D and commutativity of
the tensor product (2.14.i) give an exact sequence

TorA
1 (M, G)

��

0

0 //

��

TorA
1 (M, N)

��
ED
BC

GF
@A

//

M′⊗N′ //

��

F⊗N′ //

��

M⊗N′ //

��

0

0 // M′⊗G //

��

F⊗G //

��

M⊗G //

��

0

M′⊗N //

��

F⊗N //

��

M⊗N //

��

0

0 0 0

0 = TorA
1 (N, F)→ TorA

1 (N, M) � M′⊗N → F⊗N.

Since TorA
1 (M, N) and TorA

1 (N, M) both embed as the kernel of M′⊗N → F⊗N, we see TorA
1 (M, N) ∼=

TorA
1 (N, M).

26. Let N be an A-module. Then N is flat ⇐⇒ Tor1(A/a, N) = 0 for all finitely generated ideals a in A.
The implication =⇒ follows from [2.24].
For ⇐=, assume Tor1(A/a, N) = 0 for all finitely generated ideals a in A. Then given E : 0 → a →

A → A/a → 0, the Tor sequence of E⊗N shows that a⊗N → A⊗N is injective. Now let b be an
arbitrary ideal of A; we want to show b⊗N → A⊗N injective. Inclusions ai ↪→ aj of finitely generated
A-submodules (ideals) in b induce maps of exact sequences

0 // ai ⊗N � � //
� _

��

A⊗N // // A/ai ⊗N //

����

0

0 // aj⊗N � � // A⊗N // // A/aj⊗N // 0,

which piece together to give homomorphisms between the exact systems (ai ⊗N), (A⊗N), and (A/ai ⊗N)
for finitely generated ideals ai ⊆ b of A. By [2.17], the direct limit lim−→ ai = b. Obviously lim−→ A = A, and
similarly, lim−→ A/ai

∼= A/b.20 By [2.20] we have lim−→(ai ⊗N) ∼= b⊗N and lim−→(A⊗N) = A⊗N ∼= N, and
lim−→(A/ai ⊗N) ∼= A/b⊗N ∼= N/bN by [2.2]. Then [2.19] states that direct limit is an exact functor, so the
direct limit 0→ b⊗N → A⊗N → N/bN → 0 is also exact, and thus b⊗N → A⊗N is injective. Writing
E′ : 0 → b → A → A/b → 0 and looking at the Tor sequence of E′⊗N, the injectivity of this map shows
Tor1(A/b, N) = 0.

Now let M be a finitely generated module, generated by say x1, . . . , xn, and for i = 0, . . . , n let Mi =

∑i
j=0 Axj. Then each Mi/Mi−1, i = 1, . . . n is generated by one element x̄i, so the map fi : A → Mi/Mi+1

given by a 7→ ax̄i is a surjective A-module homomorphism, and by the second display of p. 19 (the first
isomorphism theorem), if we write ai = ker( fi) we have A/ai

∼= Mi/Mi−1. Consider the short exact
sequences Ei : 0 → Mi−1 → Mi → A/ai → 0 given by these isomorphisms. Suppose inductively that
Tor1(Mi−1, N) = 0; this is trivial for i = 1 and M0 = 0 = A/(1). The Tor sequence of Ei ⊗N gives, in part,
0 = Tor1(Mi−1, N)→ Tor1(Mi, N)→ Tor1(A/ai, N) = 0, so by exactness Tor1(Mi, N) = 0. By induction,
Tor1(M, N) = 0 for all finitely generated modules.

Now let 0 → K → P be any injection of finitely generated A-modules. Complete this to a short exact
sequence E′′ : 0 → K → P → K/P → 0, where K/P is finitely generated as well. The Tor sequence of
E′′⊗N gives 0 = Tor(K/P, N) → K⊗N → P⊗N, so K⊗N → P⊗N is injective. Since K � P was an
arbitrary injection of finitely generated A-modules, by criterion iv) of (2.19), N is flat.

20 To see this we show that A/b has the universal property ([2.16]) of the direct system (A/ai , πij), writing πij : A/ai � A/aj and
πi : A/ai � A/b. Set π0i : A � A/ai . Evidently πj ◦ πij = πi : A/ai � A/aj � A/b. Let αi : A/ai → P be such that αj ◦ πij = αi .
If we want to define α : A/b → P such that α ◦ πi = αi , taking i = 0, we are forced to try α(π0(a)) = α(a + b) = α0(a) for a ∈ A.
Indeed, for any i and any a + ai ∈ A/ai we have

αi(a + ai) = αi(π0i(a)) = α0(a) = α(π0(a)) = α(πi(a + ai))

so this homomorphism meets the requirement and A/b has the universal property.
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27. A ring A is absolutely flat if every A-module is flat. Prove that the following are equivalent:
i) A is absolutely flat;
ii) every principal ideal is idempotent;
iii) every finitely generated ideal is a direct summand of A.

i) =⇒ ii): Let a� A. The inclusion a ↪→ A is of course injective; by assumption, the module A/a
is flat, so the induced map a⊗A A/a → A⊗A A/a ∼−→ A/a is injective, where the isomorphism is by the
absorption law (2.14.iv). But this composition is the zero map, for it takes a⊗ 1̄ 7→ a⊗ 1̄ 7→ ā = 0̄, and thus
the module a⊗A A/a = 0. Since we have a short exact sequence 0 → a → A → A/a → 0, tensoring with
a, assumed flat, gives by (2.19), an exact sequence 0 = a⊗Aa → A⊗Aa → 0 = a⊗A A/a, showing the
composition a⊗Aa→ A⊗Aa→ a, using [2.14.iv], is an isomorphism. But this sends a⊗ a′ 7→ a⊗ a′ 7→ aa′,
so since this map is surjective, every element of a is a finite sum of elements aa′ with a, a′ ∈ a and thus
a = a2. In particular, for any x ∈ A we have (x) = (x)2 idempotent.

ii) =⇒ iii): If every finitely generated ideal a is generated by some idempotent e, then by the proof
of iii) =⇒ ii) in [1.22], we have a decomposition A ∼= (e)⊕ (1− e). Obviously this decomposition is only
interesting if e 6= 0, 1.

It remains to show each finitely generated ideal is generated by a single idempotent. For a principal
ideal (x), by assumption x ∈ (x2), so we may write x = ax2 for some a ∈ A. Multiplying both sides by a,
we have ax = a2x2 = (ax)2, so e = ax is idempotent. Since e = ax ∈ (x) and x = ax2 = (ax)x = ex ∈ (e),
we have (x) = (e). Now any finitely generated ideal a = (x1, . . . , xn) = (e1, . . . , en) is generated by
idempotents, where ei is an idempotent generating (xi). As in [1.11.iii], we show every ideal finitely
generated by idempotents is generated by a single element. This is trivial for n = 1, so inductively suppose
it holds for all ideals with n generators, and let a = (x1, . . . , xn, y) be an ideal generated by n+ 1 elements.
Let e be an idempotent generating (x1, . . . , xn) and f an idempotent generating (y), so that a = (e, f ). If
we let z = e + f − e f, then we have ez = e2 + e f − e2 f = e and f z = f e + f 2 − f e f = f, so a = (e, f ) = (z)
is principal, and there is thus an associated idempotent g such that (g) = (z) = a.

iii) =⇒ i): Let N be an arbitrary A-module. To show it is flat, by [2.26] it suffices to show that
TorA

1 (A/a, N) = 0 for all finitely generated ideals a ∈ A. By assumption, each of these is a direct sum-
mand, so A ∼= a⊕ A/a, and by (2.14.iv,iii) we have isomorphisms N ∼= A⊗N ∼= (a⊗N)⊕ (A/a⊗N), so
the inclusion a ↪→ A induces an injection a⊗N � A⊗N. Now the Tor exact sequence for 0→ a→ A→
A/a → 0 includes the fragment 0 = TorA

1 (A, N) → TorA
1 (A/a, N) → a⊗N → A⊗N, so TorA

1 (A/a, N)
is isomorphic to the kernel of a⊗N � A⊗N, which is zero.

28. A Boolean ring is absolutely flat.
In a Boolean ring each element is idempotent, so each principal ideal is idempotent, so by [2.27] the

ring is absolutely flat.

The ring of Chapter 1, Exercise 7 is absolutely flat.
Recall that this is a ring A in which for every element a there is a number n = n(a) > 1 such that

an = a. Then a = a2an−2 ∈ (a2) so every principal ideal is idempotent, and by [2.27] A is absolutely flat.
CITE [1.12]?

Every homomorphic image of an absolutely flat ring is absolutely flat.
Let A be absolutely flat and let (x̄) be a principal ideal in A/a. Then for the lift x ∈ A we have, by

[2.27], that (x)2 = (x), so there is a ∈ A such that ax2 = x. Downstairs in A/a we have āx̄2 = x̄, so
(x̄)2 = (x̄) and A/a is absolutely flat by [2.27] again.

If a local ring is absolutely flat, then it is a field.
Let m be the maximal ideal of a local, absolutely flat ring A. We want to show m = 0. Suppose x ∈ m.

Then by [2.27] we have an idempotent e ∈ (x) with (e) = (x), and e = 0 ⇐⇒ x = 0. Then f = 1− e is
an idempotent as well, but also f is a unit by (1.9) since e is in the Jacobson radical R = m. Then we have
1 = f−1 f = f−1 f 2 = ( f−1 f ) f = f, so e = 0. Thus m = 0, so A ∼= A/(0) = A/m is a field.

If A is absolutely flat, every non-unit in A is a zero-divisor.
Let x ∈ A be a non-unit; then (x) 6= (1) is a finitely generated ideal, and so by [2.27] there is another

ideal b 6= (0) such that A ∼= (x)⊕ b. Then bx ∈ (x) ∩ b = (0), so x is a zero-divisor.

41



Chapter 3: Rings and Modules of Fractions

Exercise. Verify that these definitions [repeated below] are independent of the choices of representatives (a, s) and
(b, t), and that S−1 A satisfies the axioms of a commutative ring with identity.

We recall that S is a multiplicative submonoid of A, meaning a subset closed under multiplication and
containing 1. An element of S−1 A is defined to be an equivalence class a/s of pairs (a, s) ∈ A× S under
the relation ≡ given by

(a, s) ≡ (b, t) ⇐⇒ ∃u ∈ S [(at− bs)u = 0].

The book shows that ≡ indeed is an equivalence relation, and then defines

a
s
+

b
t

:=
at + bs

st
,

a
s
· b

t
:=

as
bs

.

It falls to us to verify these operations are well defined. To show a
s +

b
t is independent of the representatives

of a/s and b/t chosen, suppose we calculated with two pairs of representatives (a, s) ≡ (a′, s′) and
(b, t) ≡ (b′, t′). Then by definition there are u, v ∈ S such that (as′ − a′s)u = 0 = (bt′ − b′t)v in A. We
need to verify that (at+ bs, st) ≡ (a′t′+ b′s′, s′t′), meaning that there exists w ∈ S such that ([at+ bs]s′t′−
[a′t′ + b′s′]st)w = 0 in A. But w = uv works, for

w([at+ bs]s′t′− [a′t′+ b′s′]st) = uv(as′tt′+ bss′t′− a′stt′− b′ss′t) = u(as′− a′s)tt′v+ v(bt′− b′t)ss′u = 0+ 0 = 0.

Similarly, · is well defined: (ab, st) ≡ (a′b′, s′t′), for setting w = uv we have

w(abs′t′ − a′b′st) = uv(abs′t′ − a′bst′ + a′bst′ − a′b′st) = u(as′ − a′s)bt′v + v(bt′ − b′t)a′su = 0 + 0 = 0.

Note as a preliminary that for any a/s ∈ A and t ∈ S we have at/st = a/s, for (at)s− a(st) = 0 by
commutativity and associativity of · in A.

Now we verify that (S−1 A, +, 0/1) is an abelian group. + is associative, since given a/s, b/t, c/u ∈
S−1 A we have(

a
s
+

b
t

)
+

c
u
=

at + bs
st

+
c
u
=

atu + bsu + cst
stu

=
a
s
+

bu + ct
tu

=
a
s
+

(
b
t
+

c
u

)
,

using distributivity and commutativity of · in A. We see + is commutative, for

a
s
+

b
t
=

at + bs
st

=
bs + at

ts
=

b
t
+

a
s

,

using commutativity of + and · in A. For any element v ∈ S, we have 0/v = 0v/1v = 0/1 a neutral
element for +, since

0
1
+

a
s
=

0s + a1
1s

=
a
s

,

using the properties of 0 and 1 in A. The additive inverse of a/s is (−a)/s, because

a
s
+
−a
s

=
as + (−a)s

s2 =
0
s2 =

0
1

.

Now we want to prove that (S−1 A, +, ·, 0/1, 1/1) is a commutative ring. The new · is associative since(
a
s

b
t

)
c
u
=

ab
st

c
u
=

abc
stu

=
a
s

bc
tu

=
a
s

(
b
t

c
u

)
,
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implicitly using associativity of · in A. The new · is commutative because

a
s

b
t
=

ab
st

=
ba
ts

=
b
t

a
s

,

using commutativity of · in A. The element 1/1 is neutral for · because

1
1

a
s
=

1a
1s

=
a
s

,

1 being neutral for · in A. Finally, · distributes over + because

a
s

(
b
t
+

c
u

)
=

a
s

bu + ct
tu

=
abu + act

stu
=

absu + acst
stsu

=
absu
stsu

+
acst
stsu

=
ab
st

+
ac
su

=
a
s

b
t
+

a
s

c
u

.

Let M be an A-module. If we redefine a, b, c to be elements of an M, then (but for our tendency to
write as rather than sa, which strictly speaking doesn’t matter for modules over commutative rings) the
proofs of well-definedness, associativity, commutativity, 0/1, and −a/s = −(a/s) for (S−1 A, +, 0/1) go
through to define an abelian group structure on (S−1M, +, 0/1). Now we show S−1M carries a natural
S−1 A-module structure. If we let b = m ∈ M, the well-definedness proof for · in S−1 A shows that a

s
m
t = am

st
gives a well-defined scalar product S−1 A× S−1M → S−1M. We have the four axioms of p. 17 to verify.
If we let a ∈ M, the proof 1

1
a
s = a

s shows 1/1 acts as the identity on S−1M, the fourth axiom. Letting
b, c ∈ M, the associativity of ·, and the distributivity of · over + for S−1 A provide the third and first
axioms. Letting a, b ∈ A, s, t, u ∈ S and m ∈ M, the second (and last) axiom is(

a
s
+

b
t

)
m
u

=
at + bs

st
m
u

=
atm + bsm

stu
=

atm
stu

+
bsm
stu

=
am
su

+
bm
tu

.

Proposition 3.11.v) The operation S−1 commutes with formation of finite sums, products, intersections and radicals.
(3.4.i,ii) show S−1 distributes over finite sums and intersections. (1.18) shows S−1(ab) = (S−1a)(S−1b),

and S−1r(a) ⊆ r(S−1a). It remains to show r(S−1a) ⊆ S−1r(a), so suppose x/s ∈ S−1 A is in r(S−1a).
Then for some n > 0 its nth power is some a/t ∈ S−1a, meaning xn/sn = (x/s)n = a/t in S−1 A. By the
definition of equality in S−1 A, there is some u ∈ S so that utxn = usna ∈ a. Multiplying both sides by
(ut)n−1 we see (utx)n ∈ a, and utx ∈ r(a). Thus utx/uts = x/s ∈ S−1r(a) as claimed.

EXERCISES
1. Let S be a multiplicatively closed subset of a ring A, and let M be a finitely generated A-module. Prove that

S−1M = 0 if and only if there exists s ∈ S such that sM = 0.
Assume sM = 0 for some s ∈ S, and let m/t ∈ S−1M. Then s(1m− t0) = 0 in M, so m/t = 0/1 in

S−1M.
Conversely, let M be an A-module finitely generated by m1, . . . , mn, and suppose that S−1M = 0. Then

in particular we have for each i that m/1 = 0/1 in S−1M, so there is si ∈ S such that 0 = si(1mi − 1 ·
0) = simi in M. Let s = s1 · · · sn, which is in S since S is multiplicatively closed. Then for any element
m = ∑ aimi ∈ M we have 0 = sm = s(1m− 1 · 0), and m/1 = 0/1 in S−1M.

2. Let a be an ideal of a ring A, and let S = 1 + a. Show that S−1a is contained in the Jacobson radical of S−1 A.
Since 0 ∈ a we have 1 ∈ S = 1+ a, and if a, b ∈ a, then (1+ a)(1+ b) = 1+ a + b + ab ∈ S = 1+ a, so S

is multiplicatively closed. Now to show S−1a ⊆ R(S−1 A), it is enough, by (1.9), to show the set 1− S−1a =

1− (S−1 A)(S−1a) is made up of units. But if a
1+b ∈ S−1a, then 1

1 −
a

1+b = 1+b−a
1+b ∈ S−1S ⊆ (S−1 A)×.

Use this result and Nakayama’s lemma to give a proof of (2.5) which does not depend on determinants.
(2.5) states that for all finitely generated A-modules M and a� A such that aM = M there is x ∈ 1 + a

such that xM = 0.
So suppose M is finitely generated by some m1, . . . , mn with aM = M. Then localizing by S = 1+ a, by

(3.11.v) we have (S−1a)(S−1M) = S−1M. The last paragraph shows that S−1a ⊆ R(S−1 A), the Jacobson
radical, and S−1M is finitely generated over S−1 A by m1/1, . . . , mn/1, so the conditions of Nakayama’s
Lemma are met, and we conclude S−1M = 0. But then by [3.1] there is x ∈ S = 1 + a such that xM = 0.
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3. Let A be a ring, let S and T be two multiplicatively closed subsets of A, and let U be the image of T in S−1 A. Show
that the rings (ST)−1 A and U−1(S−1 A) are isomorphic.

As a preliminary, we prove the canonical map φS : A → S−1 A is a epimorphism, meaning not that is
surjective, but that it is right-cancellable. Suppose we have a ring homomorphisms µ : S−1 A → B, and let
λ = µ ◦ φS. Since for all s ∈ S we have φS(s) ∈ S−1 A a unit, we then have λ(s) = µ(φS(s)) a unit of B. By
(3.1) there is a unique ring homomorphism ν : S−1 A→ B such that ν ◦ φS = λ. Thus

µ ◦ φS = ν ◦ φS =⇒ µ = ν. (3.1)

Now U is a multiplicative submonoid of S−1 A since it is the image of a multiplicative submonoid under
a ring homomorphism, which preserves multiplication and unity. ST is also multiplicative submonoid of
A, since 1 ∈ S, T implies 1 = 1 · 1 ∈ ST, and if st, s′t′ ∈ ST, where s, s′ ∈ S and t, t′ ∈ T, then
(st)(s′t′) = (ss′)(tt′) ∈ ST since S and T are multiplicatively closed. Note S = S · 1 ⊆ ST and T = 1T ⊆ ST.

Consider the canonical map φST : A→ (ST)−1 A. Each element of S is taken to a unit, since S ⊆ ST, so
by (3.1) there is a unique homomorphism ρST

S : S−1 A→ (ST)−1 A such that

ρST
S ◦ φS = φST . (3.2)

A
φS //

φST ((QQQQQQQQQQQQQQQ S−1 A
φU //

ρST
S

$$

U−1(S−1 A)

ψ

��
(ST)−1 A

ψ′

OO
By the proof of that proposition we have ρST

S (a/s) = φST(a)φST(s)−1 = a/s ∈
(ST)−1 A. Now each element t/1 ∈ U ⊆ S−1T ⊆ S−1 A is taken by ρST

S to
t/1 ∈ (ST)−1 A, which is a unit since T ⊆ ST. Then (3.1) again induces a
unique homomorphism ψ : U−1(S−1 A)→ (ST)−1 A such that, if φU : S−1 A →
U−1(S−1 A) is the canonical map, then

ψ ◦ φU = ρST
S . (3.3)

Composing with φS : A→ S−1 A on the right we get

ψ ◦ φU ◦ φS
Eq. ??
= ρST

S ◦ φS
Eq. ??
= φST . (3.4)

If ψ is a bijection, we are done. However it’s more natural to use universal properties to construct
an inverse. Now the composition φU ◦ φS : A → S−1 A → U−1(S−1 A) taking a 7→ a/1 7→ a/1

1/1 takes each
element of S to a unit (inverse 1/s

1/1 ) and each element of T to a unit (inverse 1/1
t/1 ), and so takes each element

of ST to a unit. By (3.1), there is a unique homomorphism ψ′ : (ST)−1 A→ U−1(S−1 A) such that

ψ′ ◦ φST = φU ◦ φS. (3.5)

Composing with ψ on the left gives ψ ◦ ψ′ ◦ φST
Eq. ??
= ψ ◦ φU ◦ φS

Eq. ??
= φST . Since φST is an epimorphism

(Eq. ??), ψ ◦ ψ′ = id(ST)−1 A. On the other hand, since ψ ◦ φU
Eq. ??
= ρST

S , composing with ψ′ on the left and

φS on the right gives ψ′ ◦ ψ ◦ φU ◦ φS
Eq. ??
= ψ′ ◦ φST

Eq. ??
= φU ◦ φS. Since φU and φS are epimorphisms (Eq.

??), we have ψ′ ◦ ψ = idU−1(S−1 A).
1

1 A proof avoiding universal properties is as follows. Define a ring isomorphism ψ : (ST)−1 A → U−1(S−1 A). Set ψ(a/st) = a/s
t/1 .

To see it is well-defined, suppose a/st = a′/s′t′ in (ST)−1 A; we claim that a/s
t/1 = a′/s′

t′/1 . This will follow if there is u = t0/1 ∈ U such

that at′ t0
s = u a

s
t′
1 = u a′

s′
t
1 = a′ tt0

s′ in S−1 A. This will in turn be the case if there is s0 ∈ S such that s0at′t0s′ = s0a′tt0s in A. But since
we assumed a/st = a′/s′t′, by definition there is s′′t′′ ∈ ST such that s′′t′′as′t′ = s′′t′′a′st, and we may take s0 = s′′ and t0 = t′′.

Now we show it is a bijection. Any element of U−1(S−1 A) can be written as a/s
t/1 for some a ∈ A, s ∈ S, t ∈ T, and then is mapped

onto by a/st, so φ is surjective. Now suppose a/s
t/1 = φ(a/st) = 0 = 0

1 = 0/1
1/1 . By the definition of equality in U−1(S−1 A), there is

u = t′/1 ∈ U such that at′
s = t′

1
a
s

1
1 = t′

1
0
1

t
1 = 0

1 in S−1 A. But then by the definition of equality in S−1 A there is s′ ∈ S such that
s′t′a = s′0s = 0. Then a/1 = 0/1 in (ST)−1 A, so a

st is zero and φ is injective.
It remains to show ψ is a ring homomorphism. Now ψ(1/(1 · 1)) = 1/1

1/1 is the unity of U−1(S−1 A), and if we let a/st and
a′/s′t′ ∈ (ST)−1 A, we have the equations

φ

(
a
st

+
a′

s′t′

)
= φ

(
as′t′ + a′st

sts′t′

)
=

at′s′+a′ ts
ss′
tt′
1

=
at′
s + a′ t

s′
tt′
1

=
a
s

t′
1 + a′

s′
t
1

t
1

t′
1

=
a
s
t
1
+

a′
s′
t′
1

= φ

(
a
st

)
+ φ

(
a′

s′t′

)
,

φ

(
a
st
· a′

s′t′

)
= φ

(
aa′

sts′t′

)
=

aa
ss′
tt′
1

=
a
s ·

a′
s′

t
1 ·

t′
1

=
a
s
t
1
·

a′
s′
t′
1

= φ

(
a
st

)
φ

(
a′

s′t′

)
.
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4. Let f : A → B be a homomorphism of rings and let S be a multiplicatively closed subset of A. Let T = f(S). Show
that S−1B and T−1B are isomorphic as S−1 A-modules.

As a homomorphic image of a multiplicative submonoid, T is a multiplicative submonoid of B. Now
g = idB× f is a surjection B× S � B× T, and we will show it induces a bijection of equivalence classes
S−1B ↔ T−1B. The action of S ⊆ A on B, by definition is s · b = f(s)b, so the equivalence relation ≡S on
B× S is defined by (b, s) ≡S (b′, s′) :⇐⇒ ∃s′′ ∈ S ( f(s′′s)′b = f(s′′s)b′) this is the same equation that
holds just if (b, f(s)) ≡T (b′, f(s′)) in B× T. Thus two elements of B× S define the same element of S−1B
just if their g-images define the same element of T−1B, so g induces a bijection φ : S−1B → T−1B. Since
f is a homomorphism, it follows easily that φ is also a homomorphism of rings. Finally, if a/s ∈ S−1 A

and b/s′ ∈ S−1B, we have φ
(

a
s

b
s′

)
= φ

(
f(a)b
ss′

)
= f(a)b

f(s) f(s′) = a
s

b
f(s′) = a

s φ
(

b
s′

)
, so φ is a S−1 A-module

isomorphism.

5. Let A be a ring. Suppose that, for each prime ideal p, the local ring Ap has no nilpotent element 6= 0. Show that A
has no nilpotent element 6= 0. If each Ap is an integral domain, is A necessarily an integral domain?

By (3.12), we have N(Ap) = N(A)p for each prime p, where N(A) is the nilradical of A. By (3.8), this
means N(A) = 0.

It is possible for a ring with zero-divisors to have all localizations at primes integral domains, for
suppose A = ∏n

j=1 k j is a product of n ≥ 2 fields; it is not an integral domain, but we shall show its
localizations at primes are. By [1.22], the only prime ideals of A are pj = 0k j ×∏i 6=j ki; their complements
are Sj = k×j ×∏i 6=j ki Now each inserted k j is naturally an A-module, and A is a direct sum of these

modules. By (3.4.i), localization distributes over finite direct sums of A-modules. Now S−1
j k j

∼= k j, while

for i 6= j we have 0 ∈ Sj · ki, so by [3.1], S−1
j ki = 0. Thus all localizations Apj

∼= k j at primes are fields, and
a fortiori integral domains.

6. Let A be a ring 6= 0 and let Σ be the set of all multiplicatively closed subsets S of A such that 0 /∈ S. Show that Σ
has maximal elements and that S ∈ Σ is maximal if and only if A\S is a minimal prime ideal of A.

Certainly {1} ∈ Σ, so Σ is non-empty. To find maximal elements of Σ, we apply Zorn’s Lemma. Let
(Sa)a∈I be a totally ordered chain in Σ; we claim its union S is an upper bound. Surely 0 /∈ S since 0 is in no
Sa, and if two elements s, t ∈ S are given, they belong to some Sα and Sβ, respectively. If γ = max{α, β},
then we have both s, t ∈ Sγ, so st ∈ Sγ ⊆ S, and thus S ∈ Σ is an upper bound for the chain.

Assume p is a prime ideal, and let S = A\p. Then by the definition of being prime, a, b ∈ S = A\p
implies ab ∈ S, so S is multiplicatively closed. Conversely, if the complement of a multiplicative submonoid
is an ideal, it is prime. Since 0 ∈ p, we don’t have 0 in S, so S ∈ Σ.

Let S ∈ Σ be maximal, and p = A\S. Note that the smallest multiplicative submonoid containing a ∈ A
and S is {san : s ∈ S, n > 0}. If a ∈ p, this monoid is strictly larger than S, and so by maximality of S ∈ Σ,
contains zero. Thus a ∈ p just if there are n > 0 and s ∈ S with san = 0. Suppose a, b ∈ p, and let m, n > 0
and s, t ∈ S such that sam = tbn = 0. If p = m + n− 1, then am or bn divides each term of (a− b)p so
st(a− b)p = 0, and a− b ∈ p. Thus p is an additive subgroup of A. If x ∈ A is any other element, then
s(ax)m = (sam)xm = 0xm = 0, so ax ∈ p as well. Thus p is an ideal. If q ( p was a smaller prime ideal, then
A\q would be an element of Σ strictly containing S, which we assumed is impossible, so p is minimal.

If, on the other hand p is a minimal prime ideal, then S = A\p is an element of Σ. If T ⊇ S is maximal,
then A\T ⊂ p is a minimal prime ideal, hence equal to p = A\S, and so S = T is maximal.

7. A multiplicatively closed subset S of a ring A is said to be saturated if

xy ∈ S ⇐⇒ x ∈ S and y ∈ S.

Prove that
i) S is saturated ⇐⇒ A\S is a union of prime ideals.

Suppose a subset S ⊆ A is such that A\S =
⋃
pα is a union of prime ideals. Then 1 /∈ pα for all

α, so 1 ∈ S. Suppose x, y ∈ S = A\⋃ pα. Then for all pα we have x, y /∈ pα, so xy /∈ pα, and thus
xy ∈ ⋂(A\pα) = A\⋃ pα = S. Thus S is a multiplicative submonoid. On the other hand, if we have x /∈ S,
then there is some pα 3 x, and that being an ideal we have xy ∈ pα ⊆ A\S, and symmetrically for y. Thus
S is saturated.
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Now suppose S ⊆ A is saturated. To show the complement is a union of prime ideals, it suffices to
manufacture, for any element a ∈ A\S, a prime ideal p 3 a disjoint from S. Note that if a ∈ A\S, by
saturation for all b ∈ A we have ab /∈ S, so that (a) is an ideal disjoint from S. The set Υ of ideals of A
containing a and disjoint from S is then non-empty, and it is closed under increasing unions, so by Zorn’s
Lemma it contains a maximal element p. We will be done if we can show p is prime, so suppose x, y /∈ p.
Then (x)+ p and (y)+ p are not in Υ, and so intersect S. If s, t ∈ S are such that s ∈ (x)+ p and t ∈ (y)+ p,
then st ∈

(
(x) + p

)(
(y) + p

)
⊆ (xy) + p, so xy /∈ p. Thus p is prime.

ii) If S is any multiplicatively closed subset of A, there is a unique smallest saturated multiplicatively closed subset
S containing S, and that S is the complement in A of the union of the prime ideals which do not meet S. (S is called
the saturation of S.)

Let S be the complement of the union of primes p not meeting S: S := A\⋃{p ∈ Spec(A) : S ∩ p = ∅}.
Then S is saturated, by i), and contains S, since A\S ⊆ A\S. Moreover, any saturated set containing S is
the complement of a union of primes not meeting S, and since S is the complement of the largest such
union, it is the smallest saturated set containing S.

If S = 1 + a, find S.
A prime p meets S just if we have a ∈ a and x ∈ p such that x = 1 + a, or 1 = a− x, so that (1) = a+ p.

Thus the union in A\S is over all prime ideals not coprime to a. In particular, for every such p, there is
a maximal ideal m ⊇ a+ p. Since every maximal ideal is prime and every prime ideal is contained in a
maximal ideal, it suffices to take the union of maximal ideals containing a. Thus S = A\⋃{m ∈ Max(A) :
a ⊆ m}.

8. Let S, T be multiplicatively closed subsets of A, such that S ⊆ T. Let φ : S−1 A → T−1 A be the homomorphism
which maps each a/s ∈ S−1 A to a/s considered as an element of T−1 A. Show that the following statements are
equivalent:
i) φ is bijective.
ii) For each t ∈ T, t/1 is a unit in S−1 A.
iii) For each t ∈ T there exists x ∈ A such that xt ∈ S.
iv) T is contained in the saturation of S (Exercise 7).
v) Every prime ideal which meets T also meets S.

Note that S ⊆ T =⇒ ST = T since T is multiplicatively closed. Now use the unique homomor-
phism ρT

S : S−1 A → T−1 A, defined in the proof of [3.3], such that ρT
S ◦ φS = φT . (3.1) shows ρT

S (a/s) =

φT(a)φT(s)−1 = a/s ∈ T−1 A.
i) =⇒ ii): If ρT

S is bijective, it is an isomorphism, so since ρT
S (t/1) = t/1 ∈ T−1 A is a unit (inverse

1/t), t/1 ∈ S−1 A is also a unit.
ii) =⇒ iii): If t/1 is a unit in S−1 A, then there is x/s ∈ S−1 A such that tx/1s = 1/1, which by

definition means there is s′ ∈ S such that s′tx1 = s′s1 in A. Then (s′x)t ∈ S.
iii) =⇒ i): Suppose ρT

S (a/s) = 0/1 in T−1 A. Then there is t ∈ T such that ta = 0. If x ∈ A is such that
xt ∈ S, then (xt)a = 0 shows that a/s = 0/1 in S−1 A. Now let a/t ∈ T−1 A be arbitrary, and let x ∈ A be
such that xt ∈ S. Then a/t = xa/xt = ρT

S (xa/xt) is the image of an element of S−1 A.
iii) =⇒ iv): S is saturated, so if for each t ∈ T there is x ∈ A such that xt ∈ S ⊆ S, then by definition

we have x, t ∈ S, so in particular T ⊆ S.
iv) =⇒ iii): Write S′ = {a ∈ A : ∃x ∈ A (ax ∈ S)}, so that by definition We claim S′ = S is the

saturation of S. Surely S ⊆ S′ ⊆ S, since if s ∈ S then s · 1 ∈ S, and since if ax ∈ S then a, x ∈ S. To show
the other inclusion it suffices to show S′ is also saturated. Clearly, if a, b ∈ S′, then there exist x, y ∈ A
such that ax, by ∈ S, and then ab · xy = ax · by ∈ S, so ab ∈ S′. Supposing on the other hand that a /∈ S′,
then there is no x ∈ A such that ax ∈ S, and certainly for all b, y ∈ A we have aby /∈ S, so ab /∈ S′; and
symmetrically if b /∈ S′. Thus S′ = S is saturated.

By definition t ∈ S′ ⇐⇒ ∃x ∈ A (xt ∈ S).
iv) ⇐⇒ v):

T ⊆ S ⇐⇒ T ⊆ S = S ⇐⇒
⋃
{primes not meeting S} = A\S ⊆ A\T =

⋃
{primes not meeting T}

⇐⇒ {primes not meeting S} ⊆ {primes not meeting T}
⇐⇒ {primes meeting T} ⊆ {primes meeting S}.
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9. The set S0 of all non-zero-divisors in A is a saturated multiplicatively closed subset of A. Hence the set D of zero-
divisors in A is a union of prime ideals (see Chapter 1, Exercise 14). Show that every minimal prime ideal of A is
contained in D.

If 1 = 0, then S0 should probably be considered empty, so henceforward let’s assume not. Then 1 ∈ S0.
If x, y ∈ S0, then xy 6= 0, and for all a ∈ A we have a(xy) = (ax)y 6= 0, so xy ∈ S0. Thus S0 is a
multiplicative submonoid. Now suppose x ∈ D, say with ax = 0. For any y ∈ A we then have axy = 0, so
xy ∈ D; thus S0 is saturated.

Recall from [3.6] that Σ is the collection of multiplicative submonoids S of A not containing 0. We claim
that S0 is contained in every maximal element S ∈ Σ. Indeed, if we did not have S0 ⊆ S, then the product
S0S would strictly contain S, and thus contain s0s = 0, for some s0 ∈ S0 and s ∈ S, contradicting the
defining assumption S0 ∩ D = ∅. Now by [3.6] the maximal elements of Σ are of the form A\p for p a
minimal prime of A, so we have A\D ⊆ A\p, or p ⊆ D, for all minimal primes p.

The ring S−1
0 A is called the total ring of fractions of A. Prove that

i) S0 is the largest multiplicatively closed subset of A for which the homomorphism A→ S−1
0 A is injective.

a 7→ a/1 = 0/1 in S−1 A implies there is some s ∈ S such that sa · 1 = 0 · 1 = 0 in A. This cannot
happen if S ⊆ S0, but can happen for any S strictly larger than S, since such will contain a zero-divisor s.

ii) Every element in S−1
0 A is either a zero-divisor or a unit.

Let a/s ∈ S−1
0 A. If a/s is a zero-divisor, there is b/t ∈ S−1

0 A such that ab/st = 0/1, so there exists
u ∈ S0 such that uab = 0st = 0 in A, and ab = 0, then, since u is not a zero-divisor; thus a is a zero-divisor
in A. Thus if a/s ∈ S−1

0 A is not a zero-divisor, then a ∈ S0, so s/a ∈ S−1
0 A is an inverse to a/s, which is

then a unit.

iii) Every ring in which every non-unit is a zero-divisor is equal to its total ring of fractions (i.e., A → S−1
0 A is

bijective).
If S = {1} we obviously have A ∼= S−1 A, and the inclusion {1} ↪→ S0 induces the homomorphism

φ : A→ S−1
0 A as in [3.8]. This map is bijective just if, by condition ii), for each s ∈ S0, s/1 is a unit in S−1

0 A.
But each s ∈ S0 has an inverse s−1 in A by assumption, and then s−1/1 is an inverse of s/1 in S−1

0 A.

10. Let A be a ring.
i) If A is absolutely flat (Chapter 2, Exercise 27) and S is any multiplicatively closed subset of A, then S−1 A is
absolutely flat.

Let M be an S−1 A-module, and write M|A for M viewed as an A-module by restriction of scalars along
the canonical map A→ S−1 A. We can then take S−1(M|A), allowing division by elements of S again, and
we want to show the composition of natural maps ψ : M → M|A → S−1(M|A) taking m 7→ m 7→ m/1
gives an S−1 A-module isomorphism. For surjectivity, let m/s be any element of S−1(M|A). In M, the
scalar product m′ = 1

s m is defined, and we have sm′ = m in the module M. Since s ∈ A, we also have
sm′ = m in M|A. But then, by definition m′/1 = m/s in S−1M, so ψ is surjective. For injectivity, suppose
ψ(m) = m/1 = 0/1 in S−1(M|A). Then there is s ∈ S such that sm = 0 in M|A. But then sm = 0 in M,
so 0 = 1

s sm = m. Thus ψ is injective. That ψ preserves the S−1 A-module structure is seen as follows. All
homomorphisms are A-linear. If we take m ∈ M and apply 1/s to get m′ = 1

s m, then we have sm′ = m
in M|A, since s ∈ A, and thus s(m′/1) = sψ(m′) = m in S−1(M|A). But we also have s m

s = m in

S−1(M|A), so s
(

m′
1 −

m
s

)
= 0 ∈ S−1(M|A), and multiplying on the left by 1/s we see m′/1 = m/s. Thus

ψ
(

1
s m
)
= 1

s ψ(m), so ψ is S−1 A-linear.

To show S−1 A is absolutely flat, now, let M be an S−1 A module and φ : N′ � N an injective S−1 A-
module homomorphism. We want idM ⊗ φ : M⊗S−1 AN′ � M⊗S−1 AN to be injective. Note that M|A⊗AN′|A →
M|A⊗AN|A is injective since all A-modules are flat. Since localization is exact, we also have S−1(M|A⊗AN′|A)→
S−1(M|A⊗AN′|A) injective. But by (3.7), this is equivalent to an injective S−1 A-module homomorphism
S−1(M|A)⊗S−1 AS−1(N′|A) � S−1(M|A)⊗S−1 AS−1(N|A), and we have shown that this is the same as
idM ⊗ φ : M⊗S−1 AN′ � M⊗S−1 AN.

ii) A is absolutely flat ⇐⇒ Am is a field for each maximal ideal m.
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If A is absolutely flat, then by i) each Am is absolutely flat. But then by [2.28], Am, being local, is a field.
Now assume each localization Am is a field, and let M be an A-module. The localization Mm is an

Am-module, and since Am is a field, it is a free Am-module. But free modules are flat, by [2.4] (sums of flat
modules are flat, and vice versa), and the absorption law (2.14.iv). Thus Mm is a flat Am-module for each
m. By (3.10), M is a flat A-module.

11. Let A be a ring. Prove that the following are equivalent:
i) A/N is absolutely flat (N being the nilradical of A).
ii) Every prime ideal of A is maximal.
iii) Spec(A) is a T1-space (i.e., every subset consisting of a single point is closed).
iv) Spec(A) is Hausdorff.

i) =⇒ iv): Let A/N be absolutely flat and X = Spec(A/N). Let x 6= y ∈ X be two distinct points. We
find them disjoint basic open neighborhoods (defined in [1.17]) Xe, Xf . Since px, py are distinct maximal
ideals, we have px + py = (1), so there are elements a ∈ px and b ∈ py with (a)+ (b) = (1). By [2.27.ii], there
are idempotents e generating (a) and g generating (b), so that (e, g) = (1). Let f = g(1− e). Then e f = 0,
while g = eg + f ∈ (e, f ), so (e, f ) = (1). Since e ∈ px and px 6= (1), we have x ∈ Xf , and similarly y ∈ Xe.
But by [1.17.i,ii] we have Xe ∩Xf = Xe f = X0 = ∅. Also Xe ∪Xf = V(e)∩V( f ) = V

(
(e) + ( f )

)
= V(1) = ∅.

Now Spec(A) is homeomorphic to X by [1.21.iv], and so also Hausdorff.
iv) =⇒ iii): Fix x ∈ X. For each y 6= x we have a Uy containing y but not x. Then {x} = X\⋃y 6=x Uy is

closed.
iii) ⇐⇒ ii): By [1.18.i], {x} is closed just if px is maximal. Thus all singletons are closed just if all

primes are maximal.

ii) ⇐⇒ i): All primes of A are maximal
(1.7)⇐⇒ ∀m ∈ Max(A), no prime ideal of A is strictly between m and N
(1.1)⇐⇒ ∀m ∈ Max(A), the only prime of A/N contained in m/N is (0)

(3.11.iv)⇐⇒ ∀m ∈ Max(A), the only prime ideal of (A/N)m is (0)
⇐⇒ ∀m ∈ Max(A), (A/N)m is a field
[3.10]⇐⇒ A/N is absolutely flat.

If these conditions are satisfied, show that Spec(A) is compact and totally disconnected (i.e., the only connected
subsets of Spec(A) are those consisting of a single point).

We already showed Spec(A) was compact in [1.17]. In the proof that i) =⇒ iv) above, we found,
for any two distinct points x, y, disjoint open neighborhoods Xf , Xe whose union is the entire space.
Any subset S ⊆ Spec(A) containing x, y is then disconnected by S ∩ Xf and S ∩ Xe, so Spec(A) is totally
disconnected.

12. Let A be an integral domain and M an A-module. An element x ∈ M is a torsion element of M if Ann(x) 6= 0,
that is if x is killed by some non-zero element of A. Show that the torsion elements of M form a submodule of M.
This submodule is called the torsion submodule and is denoted by T(M).

Let x, y ∈ T(M) and c ∈ A. Then there are a, b 6= 0 in A such that ax = by = 0. Since A is an
integral domain, ab 6= 0 and we have ab(x + y) = b0 + a0 = 0, so x + y ∈ T(M). Also a(cx) = c0 = 0, so
cx ∈ T(M).

If T(M) = 0, the module M is said to be torsion-free. Show that
i) If M is any A-module, then M/T(M) is torsion-free.

Let x̄ ∈ M/T(M) and suppose a ∈ A\{0} is such that ax̄ = 0̄. Then any representative x of x̄ in M is
such that ax ∈ T(M). But then there is b 6= 0 such that bax = 0 in M. Since ba 6= 0, we see x ∈ T(M), so
x̄ = 0̄.

ii) If f: M→ N is a module homomorphism, then f
(
T(M)

)
⊆ T(N).

Let x ∈ T(M) and 0 6= a ∈ A such that ax = 0. Then 0 = f(ax) = a f(x), so f(x) ∈ T(N).

iii) If 0→ M′ → M→ M′′ is an exact sequence, then the sequence 0→ T(M′)→ T(M)→ T(M′′) is exact.
Write M′ f−→ M′ g−→ M′′. T( f ) is injective because it is a restriction of the injective map f. T(g) ◦ T( f ) is

zero because it is a restriction of the zero map g ◦ f. If x ∈ T(M) ∩ ker(g), then it is in im( f ), so there is
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y ∈ M′ such that x = f(y). If 0 6= a ∈ A is such that ax = 0, then f(ay) = 0; as f is injective, ay = 0, so
y ∈ T(M′).

iv) If M is any A-module, then T(M) is the kernel of the mapping x 7→ 1⊗ x of M into K⊗A M, where K is the
field of fractions of A.

Take S = A\{0} and use (3.5), which gives an isomorphism K⊗A M ∼−→ S−1M taking (a/x)⊗m 7→
am/x. We then have 1⊗m 7→ m/1 = 0 in S−1M just if ([3.1]) there is x ∈ S such that xm = 0.2

13. Let S be a multiplicatively closed subset of an integral domain A. In the notation of Exercise 12, show that
T(S−1M) = S−1(TM).

Let x ∈ T(M) and 0 6= a ∈ Ann(x). Then for all s ∈ S we have a(x/s) = ax/s = 0 in S−1M, so
S−1(T(M)) ⊆ T(S−1M). Conversely, suppose x/s ∈ T(S−1M). Then there is a nonzero a/t ∈ S−1 A such
that ax/st = 0/1, so there is u ∈ S such that uax = 0. But ua 6= 0 since A is an integral domain, so
x ∈ T(M) and x/s ∈ S−1(T(M)). Thus T(S−1M) = S−1(T(M))

Deduce that the following are equivalent:
i) M is torsion-free.
ii) Mp is torsion-free for all prime ideals p.
iii) Mm is torsion-free for all maximal ideals m.

For each a ∈ A, the map la : x 7→ ax is an A-module homomorphism M→ M; it induces x/s 7→ ax/s in
each Mp for p a prime. By (3.9), la is injective just if each localization (la)m for m maximal (or just prime)
is injective. By the above, this is the same as demanding la/s is injective for all s ∈ S. But a module is
torsion-free just if all la (and friends) are injective, for a 6= 0.

14. Let M be an A-module and a an ideal of A. Suppose that Mm = 0 for all maximal ideals m ⊇ a. Prove that
M = aM.

By (1.1), there is a bijective correspondence between maximal ideals m ⊇ a and maximal ideals m′ of
A/a. Now if Mm = 0, then

0 = Mm/(aM)m
(3.4.iii)∼= (M/aM)m

(3.5)∼= Am⊗A M/aM

as Am-modules. For any x ∈ a, any s ∈ A\m, and any m̄ ∈ M/aM we then have (x/s)⊗ m̄ =
(1/s)⊗ xm̄ = 0 in Am⊗A M/aM, so this A/a-module is naturally isomorphic to (A/a)m⊗A/aM/aM = 0.
Now (M/aM)m/a

∼= (A/a)m/a⊗A/aM/aM by (3.5), and [3.4] shows (A/a)m and (A/a)m/a are isomor-
phic, so we finally see each localization of M/aM at a maximal ideal of A/a is zero. Then (3.8) says that
M/aM = 0. Thus M = aM.

15. Let A be a ring, and let F be the A-module An. Show that every set of n generators of F is a basis of F.
Let ei be the standard basis of An and xi our generators; φ : ei 7→ xi is then a surjective homomorphism,

and 〈xi〉 will be a basis just if φ is also injective. By (3.9), φ is injective just if each φm is injective for m� A
maximal. Thus without loss of generality we may assume A is local. Let N = ker(φ), so we have an exact
sequence 0 → N → F → F → 0. Tensoring with the residue field k = A/m gives an exact sequence
k⊗N → k⊗ F → k⊗ F → 0. Now (2.14.iii,iv) give k⊗ F = k⊗ A⊕ n ∼= (k⊗ A)⊕ n ∼= kn. The map kn → kn

is a surjection of vector spaces of the same dimension, hence an isomorphism, and thus k⊗N = 0. Now
[2.12] shows that N is finitely generated, and [2.2] gives k⊗N = (A/m)⊗N ∼= N/mN = 0. Thus N = mN,
and Nakayama’s Lemma (2.6) gives N = 0 (m being the Jacobson radical of the local ring A). Thus φ is
injective.

2 Alternately, we may follow the book’s hint. Suppose x ∈ T(M), and 0 6= a ∈ A is such that ax = 0. Then in K⊗A M we have the
equalities 1⊗ x = a

a ⊗ x = 1
a ⊗ ax = 1

a ⊗ 0 = 0.
For the other inclusion, we write K⊗A M as a direct limit. For each x ∈ S = A\{0}, we have a cyclic A-module Ax := Ax ⊆ K, and

given x, y ∈ S, we have natural inclusions Ax ↪→ Ax, y and Ay ↪→ Axy, given by a/x 7→ ay/xy and a/y 7→ ax/xy, so these modules
Ax form a direct system, with an inclusion Ax ↪→ Ay just when x | y. Since every element ξ ∈ K can be written as a/x for some
a ∈ A and x ∈ S, by [2.17], K = lim−→ Ax.

By [2.20], K⊗A M ∼= lim−→ (Ax⊗A M). Now by [2.15], every element 1⊗m representing 0 is already equal to zero at some finite
stage; that is, there is some x ∈ S such that 1⊗m = 0 in Ax⊗A M. But as an A-module Ax is isomorphic to A under a/x 7→ a, so we
have a composite isomorphism Ax⊗A M→ A⊗A M→ M taking (a/x)⊗m 7→ a⊗m 7→ am. Since 0 = 1⊗m = (x/x)⊗m 7→ xm we
then have xm = 0, so x ∈ T(M).
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Deduce that every set of generators of F has at least n elements.
Supposing m < n elements x1, . . . , xm generate F, then expanding this set at random by nonzero

elements y1, . . . , yn−m, we would have a set of n generators. By what we’ve proven above, this would be a
basis. But since the xi are generators, we could write y1 = ∑m

i=1 aixi with not all ai = 0, contradicting this
set being a basis.

We also showed this in [2.11]. (Surjections Am � An only occur for m ≥ n.)

16. Let B be a flat A-algebra. Then the following conditions are equivalent:
i) aec = a for all ideals a of A.
ii) Spec(B)→ Spec(A) is surjective.
iii) For every maximal ideal m of A we have me 6= (1).
iv) If M is any non-zero A-module, then MB 6= 0.
v) For every A-module M, the mapping x 7→ 1⊗ x of M into MB is injective.

B is said to be faithfully flat over A.
Write f: A→ B for the map making B a flat A-algebra.
i) =⇒ ii) : Recall that f ∗ : Spec(B)→ Spec(A) is given by q 7→ qc. Thus f ∗(pe) = p for all p ∈ Spec(A),

so f ∗ is surjective.
ii) =⇒ iii): Let m ∈ Max(A). If f ∗(n) = m, then we have f(m) ⊆ n, so me = B f(m) ⊆ n. If me = (1),

then f ∗(n) = f ∗
(
(1)
)
= (1) 6= m, so me 6= (1).

iii) =⇒ iv): We use contraposition. Supposing iv) false, let M 6= 0 be an A-module such that MB =
B⊗A M = 0. Since B is flat, inclusions M′ ↪→ M induce injections M′B � MB, so M′B = 0 for all submodules
M′ ⊆ M. In particular this is the case for all cyclic submodules Ax. Ax is isomorphic, as an A-module, to
a quotient of A, say A/a. Now 0 = (Ax)B ∼= B⊗A A/a ∼= B/aB = B/ f(a)B, using [2.2] and the definition
a · b = f(a)b of the A-module structure on B, so ae = f(a)B = B. If m ⊇ a is a maximal ideal of A, then
also B = me, so iii) doesn’t hold.

iv) =⇒ v): We again use contraposition. Suppose v) is false, and let M be an A-module such that the
canonical map to MB isn’t injective. Then there is a non-zero element x ∈ M such that 1⊗ x = 0 in MB. By
flatness, the inclusion Ax ↪→ M induces an injection (Ax)B � MB, but the image of this map is B⊗ x = 0,
so (Ax)B = 0 and iv) does not hold.

v) =⇒ i): We once again use contraposition. We always have a ⊆ aec, by (1.17.i), so suppose a� A
is such that a ( aec. Then the submodule aec/a of M := A/a is nonzero. By [2.2], MB = B⊗A(A/a) ∼=
B/aB = B/ae, so the natural map M → MB is essentially the map A/a → B/ae induced by f, whose
kernel is f−1(ae)/a = aec/a, which we have noted is not zero.

17. Let A f−→ B g−→ C be ring homomorphisms. If g ◦ f is flat and g is faithfully flat, then f is flat.
Let j : N ↪→ M be an inclusion of A-modules. g ◦ f is flat, so jC : NC � MC is injective.

Now MC = C⊗A M ∼= C⊗BB⊗A M ∼= (MB)C by (2.14.iv) and (2.15), and similarly for N.
Since g is faithfully flat, the canonical maps iN : NB → (NB)C and iM : MB → (MB)C are
injective, and we have the commutative diagram at right. fC is injective since g ◦ f is flat. If
fB wasn’t an injection, iM ◦ fB would not be injective. But iM ◦ fB = fC ◦ iN is a composition
of injections.

NB
fB //

��
iN
��

MB
��
iM
��

(NB)C // fC

// (MB)C

18. Let f : A → B be a flat homomorphism of rings, let q be a prime ideal of B and let p = qc. Then f ∗ : Spec(Bq) →
Spec(Ap) is surjective.

Since for all s ∈ S := A\p we have f(s) /∈ q, f induces a map f̃: Ap → Bq taking a/s 7→ f(a)/ f(s).
We also have an A-algebra Bp = f(S)−1B, and since f(S) ⊆ B\q =: T, [3.3] gives an isomorphism
Bq = T−1B = U−1( f(S)−1B) = U−1Bp, where U = {t/1 ∈ Bp : t ∈ T}. Now f̃ evidently factors through
this ring: Ap → Bp → Bq. Since f is flat, (3.10) says the map Ap → Bp is flat. Since Bq is a localization of
Bp, by (3.6) the map Bp → Bq is flat. Then [2.8.ii] shows that Bq is flat as an Ap-module. Now if p/s is an
element of the maximal ideal pAp of Ap, we have f̃(p/s) = f(p)/ f(s) ∈ f(p)Bq ⊆ qBq, so it is not the case
that (pAp)e = (1). Then by [3.16.iii], Bq is faithfully flat over Ap and the map f ∗ : Spec(Bq) → Spec(Ap)
is surjective
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19. Let A be a ring, M an A-module. The support of M is defined to be the set Supp(M) of prime ideals p of A such
that Mp 6= 0. Prove the following results:
i) M 6= 0 ⇐⇒ Supp(M) 6= ∅.

This follows from (3.8): M = 0 ⇐⇒ ∀p ∈ Spec(A) (Mp = 0).

ii) V(a) = Supp(A/a).
Let p ∈ Spec(A) and S = A\p. By [3.8] and (3.4.iii), we have (A/a)p ∼= S−1 A/S−1a. This is non-zero

just if (1/1) = S−1 A 6= S−1a, so that 1/1 6= a/s for any a ∈ a and s ∈ S. By definition, this means there
is no t ∈ S such that st = at ∈ a ∩ S. Redefining s′ = st and a′ = at, without loss of generality t′ = 1, so
(A/a)p 6= 0 ⇐⇒ a∩ S = ∅ But since S = A\p, we have a∩ S 6= ∅ ⇐⇒ a ⊆ p ⇐⇒ p ∈ V(a).

iii) If 0→ M′ → M→ M′′ → 0 is an exact sequence, then Supp(M) = Supp(M′) ∪ Supp(M′′).
Let p ∈ Spec(A). By (3.3), localization gives an exact sequence 0 → M′p → Mp → M′′p → 0. If

p ∈ Supp(M′), then M′p 6= 0 injects into Mp, so p ∈ Supp(M). If p ∈ Supp(M′′), then Mp surjects
onto M′′p 6= 0, so p ∈ Supp(M). If p /∈ Supp(M′) ∪ Supp(M′′), then our exact sequence reduces to
0→ 0→ Mp → 0→ 0, so Mp = 0 and p /∈ Supp(M).

iv) If M = ∑ Mi, then Supp(M) =
⋃

Supp(Mi).
The inclusions Mi ↪→ M give rise to injections (Mi)p � Mp by (3.3). Thus if any (Mi)p 6= 0 we have

Mp 6= 0, so
⋃

Supp(Mi) ⊆ Supp(M). On the other hand, we have a natural surjection
⊕

Mi � ∑ Mi =
M, and (see next paragraph) localization distributes over direct sums, so by exactness again we have a
surjection

⊕
(Mi)p � Mp. Thus if all (Mi)p = 0, then Mp = 0.

To see localization distributes over direct sums, note

S−1
(⊕

Mi

) (3.5)∼= S−1 A⊗A

(⊕
Mi

) [2.20]∼=
⊕

(S−1 A⊗Mi)
(3.5)∼=

⊕
S−1Mi. (3.6)

Note that if we forgot tensor isn’t left exact (which I did, for a while), we would think we had coun-
terexamples to this. Consider Fp = Z/pZ and Q as Z-modules. Now Q is generated over Z by the
elements 1

n , so it is a sum of the submodules 1
n Z. Thus the elements zn = 1⊗ 1

n generate Fp⊗ZQ over
Fp. In fact all are zero, since the generator zn = p ⊗ 1

pn = 0. We can view Fp⊗ZQ as the direct limit

of Mn = Fp⊗Z
1
n Z along the maps Mn → Mmn induced by 1

mn Z ↪→ 1
n Z, and this shows that the map

Mn → Mpn is zero. Thus Fp⊗ZQ = 0 has empty support. Now the cyclic Fp-modules Mn are all isomor-
phic to Fp, for we have isomorphisms Mn ∼= 1

n Z/ p
n Z ∼= Z/pZ, which has support {(0)}. If tensor were

left exact, the inclusion 1
n Z ↪→ Q would induce an injection Mn � Fp⊗ZQ = 0, and we would have

{(0)} ⊆ ∅, which is obviously false. In fact the induced map is 1⊗ 1
n 7→ zn = 0.

v) If M is finitely generated, then Supp(M) = V(Ann(M)) (and is therefore a closed subset of Spec(A)).
Let x1, . . . , xn be generators for M. Then Axi are cyclic modules, so there are ai � A such that the maps

a 7→ axi induce isomorphisms A/ai
∼−→ Axi. Since M = ∑i Axi, by iv) and i) of this exercise, and [1.15.iv],

Supp(M) =
⋃

Supp(Axi) =
⋃

Supp(A/ai) =
⋃

V(ai) = V
(⋂

ai

)
.

Now a ∈ A annihilates M just if for each i we have axi = 0, and this happens exactly when a ∈ ai, so⋂
ai = Ann(M) and Supp(M) = V(Ann(M)).

vi) If M, N are finitely generated, then Supp(M⊗AN) = Supp(M) ∩ Supp(N).
For any p ∈ Spec(A), (3.7) gives (M⊗AN)p = Mp⊗Ap

Np. Now the localizations Mp and Np are again
finitely generated modules over the local ring Ap, so [2.3] shows the tensor product is non-zero if and
only if both factors are nonzero. So p ∈ Supp(M⊗AN) just if p is in both Supp(M) and Supp(N).

vii) If M is finitely generated and a is an ideal of A, then Supp(M/aM) = V(a+ Ann(M));
M/aM ∼= A/a⊗A M by (3.5), so by iv) we have Supp(M/aM) = Supp(A/a) ∩ Supp(M). By ii) and v)

above, and [1.15.iii], this is V(a) ∩V(Ann(M)) = V(a∪Ann(M)) = V(a+ Ann(M)).
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viii) If f : A → B is a ring homomorphism and M is a finitely generated A-module, then Supp(B⊗A M) =
f ∗−1(Supp(M)).

Let q ∈ Spec(B), and p = qc. We show q ∈ Supp(MB) ⇐⇒ p ∈ Supp(M).

(B⊗A M)q
(3.5)∼= Bq⊗A M

(2.14.iv)∼= (Bq⊗Ap
Ap)⊗A M

(2.15)∼=
(3.5)

Bq⊗Ap
Mp.

Now if Mp = 0, clearly (MB)q = 0. Thus we have the containment Supp(B⊗A M) ⊆ ( f ∗)−11(Supp(M)).
On the other hand, suppose 0 = (MB)q ∼= Bq⊗Ap

Mp, and let x1, . . . , xn be generators of M over
A. Then the equations (1/1)⊗ (xi/1) = 0 hold in Bq⊗Ap

Mp By (2.13) there is a finitely generated Ap-
submodule Ni ⊆ B where already (1/1)⊗ (xi/1) = 0. Let N = ∑n

i=1 Ni ⊆ B; then N is finitely generated,
and (1/1)⊗ (x/1) = 0 in N⊗Ap

Mp for all x ∈ Mp, so N⊗Ap
Mp = 0. But then by [2.3] we have either

N = 0 or Mp = 0, and we have 1/1 ∈ N, so Mp = 0.

The ⊆ containment holds for any module M, but the ⊇ doesn’t necessarily hold for non-finitely gener-
ated modules. Here is an obvious counterexample, thanks to Angelo Vistoli3: Take f: A = Z � Z/pZ =

B, for p > 0 a prime number, and M = Q. Then B⊗A M = 0 since 1̄⊗ 1/1 = 1̄⊗ p̄/p = p̄⊗ 1
p = 0̄⊗ 1

p = 0,
and so Supp(MB) = Supp(0) = ∅ by i). On the other hand, Supp(M) = Spec(Z) since no nonzero
element of Z annihilates an element of Q.4 Now the only nontrivial ideal of B = Z/pZ is (0), and
(0)c = f−1((0)) = (p), so ( f ∗)−1(Spec(Z)) = {(0)} 6= ∅.

To see the delicacy of the assumption of finite generation, it is illuminating to look at a failed proof
and see what goes wrong. First, suppose M = Ax ∼= A/a is cyclic. Then MB = B⊗A M ∼= B/aB = B/ae

by [2.2] and the definition of the A-module structure on B. Thus Supp(MB) = V(Ann(B/ae)) = V(ae)
by v), while Supp(M) = V(Ann(A/a)) = V(a). By (1.17.i) ae ⊆ q =⇒ a ⊆ aec ⊆ qc = p, while
a ⊆ p = qc =⇒ ae ⊆ qce ⊆ q, so Supp(MB) = ( f ∗)−1(Supp(M)) for M cyclic. Now suppose M is
generated over A by some xi, so MB is generated over B by the 1⊗ xi. Write ai = AnnA(xi). Now, using
the cyclic case at the line break,

Supp(MB) = Supp
(

∑ B(1⊗ xi)
) iv)
=
⋃

Supp(B(1⊗ xi))
?
=
⋃

Supp(B⊗A Axi)

=
⋃
( f ∗)−1(Supp(Axi)) = ( f ∗)−1

(⋃
Supp(Axi)

) iv)
= ( f ∗)−1(Supp(M)).

What goes wrong is the step labeled with a question mark, for tensor is not left exact! The map B⊗A Axi →
B⊗A M induced by the inclusion Axi ↪→ M need not be injective, so the support of the submodule of
MB generated by 1⊗ xi can easily be smaller than Supp(B⊗A Axi). This happens, for example, in our
“counterexample” in iv), where M = Q, A = Z, and B = Fp, using that 0 = Fp · (1⊗ 1

n Z) is not
Fp⊗Z

1
n Z ∼= Fp⊗ZZ ∼= Fp:

∅ = SuppFp

(
∑ Fp · (1⊗ 1/n)

) iv)
=
⋃

SuppFp
(Fp · (1⊗ 1/n)) ⊆

⋃
SuppFp

(Fp⊗Z(1/n)Z) =
⋃

SuppFp
(Fp⊗ZZ)

=
⋃
( f ∗)−1(SuppZ(Z)) = ( f ∗)−1({Spec(Z)}) = ( f ∗)−1({(p)}) = {(0)}.

This point may not be that subtle, but it eluded me for longer than I care to admit.

20. Let f : A→ B be a ring homomorphism, f ∗ : Spec(B)→ Spec(A) the associated mapping. Show that
i) Every prime ideal of A is a contracted ideal ⇐⇒ f ∗ is surjective.

By definition, f ∗ is surjective if and only if for every p ∈ Spec(A) there is q ∈ Spec(B) such that
p = f ∗(q) = qc, meaning every prime ideal of A is a contracted ideal.

ii) Every prime ideal of B is an extended ideal =⇒ f ∗ is injective.

3 http://mathoverflow.net/questions/50406/extension-of-scalars-and-support-of-a-non-finitely-generated-module
4 In fact S−1Q ∼= Q for any S = Z\q, by the map φ : S−1Z⊗ZQ ∼= S−1Q → Q taking n

s ⊗
a
b 7→

na
bs . To see injectivity, note that

in S−1Z⊗ZQ we have n
s ⊗

a
b = 1

s ⊗
na
b = 1

s ⊗
sna
sb = 1

1 ⊗
na
sb , so any sum of decomposable elements ni

si
⊗ ai

bi
can be written as 1⊗ z,

where z = ∑i
ni ai
sibi

, and then φ(1⊗ z) = z = 0 ⇐⇒ 1⊗ z = 0. φ is surjective since 1/1 ∈ S−1Z.
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Suppose q1 = ae
1 and q2 = ae

2 are prime ideals of B whose images under f ∗ are equal. That means,
by the definition of f ∗, that aec

1 = qc
1 = qc

2 = aec
2 . But then extending again, and using (1.17.ii), we get

q1 = ae
1 = aece

1 = aece
2 = ae

2 = q2.

Is the converse of ii) true?
No. Note that we always have qce ⊆ q, so the trick will be to sabotage all extensions of primes so

that they are not themselves prime, and the containment is proper. Let A be a ring and consider the
ring5 A[ε] := A[x]/(x2). Since there is a quotient map π : A[ε] � A with kernel (ε), each prime p� A
gives rise to a distinct prime π−1(p) of A[ε] containing (ε). Since ε2 = 0, all primes of A[ε] contain (ε),
so these are all the primes of A[ε]. We can write them as p+ = π−1(p) = pA + (ε). Now consider the
inclusion j : A → A[ε]. Then for a prime p� A we have pe = pA[ε] = pA + pε. This ideal is not prime,
since A[ε]/pe ∼= (A/p)[ε] is not a domain. The prime ideals p+ properly contain pe. Thus no extended
ideal pe is prime, and no prime ideal p+ is extended. On the other hand j∗ : p+ 7→ p is a bijective function
Spec(A[ε])↔ Spec(A).

21. i) Let A be a ring, S a multiplicatively closed subset of A, and φ : A → S−1 A the canonical homomorphism. Show
that φ∗ : Spec(S−1 A) → Spec(A) is a homeomorphism of Spec(S−1 A) onto its image in X = Spec(A). Let this
image be denoted by S−1X.
In particular, if f ∈ A, the image of Spec(A f ) in X is the basic open set Xf (Chapter 1, Exercise 17).

The one-to-one correspondence given by (3.11.iv) is a bijection between Y = Spec(S−1 A) and S−1X =
{p ∈ X : p ∩ S = ∅}, given by contraction φ∗ and extension of prime ideals. In particular, pec = p for
primes p ⊆ A\S.6 By [1.21.i], φ∗ is continuous. Since all ideals of S−1 A are extended ideals by (3.11.i), to
prove φ∗|S−1X is a homeomorphism onto its image, it is enough to show φ∗ sends a non-empty closed set
V(ae) ⊆ Y to the closed subset V(a) ∩ S−1X ⊆ X. Indeed, if a ⊆ p ⊆ A\S, then ae ⊆ pe 6= (1), and if
ae ⊆ pe 6= (1), then a ⊆ aec ⊆ pec = p.

Now let S = {1, f, f 2, . . .} for some f ∈ A. Then S−1p ∈ Spec(A f ) just if p ∩ S = ∅, and since p is
prime, this happens just if f /∈ p, so that p ∈ Xf .

ii) Let f : A → B be a ring homomorphism. Let X = Spec(A) and Y = Spec(B), and let f ∗ : Y → X be
the mapping associated with f. Identifying Spec(S−1 A) with its canonical image S−1X in X, and Spec(S−1B)
(= Spec( f(S)−1B)) with its canonical image S−1Y in Y, show that S−1 f ∗ : Spec(S−1B) → Spec(S−1 A) is the
restriction of f ∗ to S−1Y, and that S−1Y = f ∗−1(S−1X).

Let q ∈ Y. Then f(S)∩ q 6= ∅ ⇐⇒ ∃s ∈ S
(

f(s) ∈ q
)
⇐⇒ ∃s ∈ S

(
s ∈ f−1(q)

)
⇐⇒ S∩ f−1(q) 6= ∅,

so q ∈ S−1Y ⇐⇒ f ∗(q) ∈ S−1X ⇐⇒ q ∈ ( f ∗)−1(S−1X), showing S−1Y = ( f ∗)−1(S−1X).

S−1q
� //

_

(S−1 f )∗
��

q_

f ∗

��
S−1( f−1(q)

) � // f−1(q)

Spec(S−1B) ≈

(φ∗f(S))
−1

//

(S−1 f )∗
��

S−1Y � � //

f ∗

��

Spec(B)

f ∗

��
Spec(S−1 A) ≈

(φ∗S)
−1
// S−1X � � // Spec(A)

Now S−1 f : S−1 A → S−1B is given by a
s 7→

f(a)
f(s) . Let q ∈ S−1Y and

a/s ∈ S−1 A. We have

a
s
∈ (S−1 f )−1(S−1q) ⇐⇒ ∃q ∈ q ∃t ∈ S

[
f(a)
f(s)

=
q

f(t)

]
⇐⇒ ∃u, t ∈ S ∃q ∈ q [ f(uta) = f(us)q ∈ q].

This certainly is the case if f(a) = q ∈ q (take t = s and u = 1), and if
f(a) /∈ q, then since f(S)∩ q = ∅ we have f(Sa)∩ q = ∅ (q being prime),
so a/s /∈ (S−1 f )−1(S−1q). Thus (S−1 f )−1(S−1q) = S−1( f−1(q)

)
, giving

the commutative diagrams at left.

iii) Let a be an ideal of A and let b = ae be its extension in B. Let f̄: A/a→ B/b be the homomorphism induced by
f. If Spec(A/a) is identified with its canonical image V(a) in X, and Spec(B/b) with its image V(b) in Y, show
that f̄ ∗ is the restriction of f ∗ to V(b).

Let q ∈ V(b). Then a ⊆ aec = bc ⊆ qc = f ∗(q), so f ∗(V(b)) ⊆ V(a).
Now write π : A � A/a and v : B � B/b. Then by definition, f̄

(
π(a)

)
=

f(a) + b = v
(

f(a)
)
, so f̄ ◦ π = v ◦ f . Taking ∗’s and using [1.21.vi], π∗ ◦

f̄ ∗ = f ∗ ◦v∗, giving the commutative diagram at right.

Spec(B/b) v∗

≈
//

f̄ ∗

��

V(b) � � //

f ∗

��

Spec(B)

f ∗

��
Spec(A/a) π∗

≈
// V(a) � � // Spec(A)

5 of “dual numbers”: cf. http://en.wikipedia.org/wiki/Dual_numbers
6 by (3.11.ii), pec =

⋃
s∈S(p : s), and since S ∩ p = ∅, we have sa ∈ p ⇐⇒ a ∈ p, and pec = p. This is closely related to (3.16).
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iv) Let p be a prime ideal of A. Take S = A\p in ii) and then reduce mod S−1p as in iii). Deduce that the subspace
f ∗−1(p) of Y is naturally homeomorphic to Spec(Bp/pBp) = Spec(k(p)⊗AB), where k(p) is the residue field of
the local ring Ap.

Spec(k(p)⊗ AB) is called the fiber of f ∗ over p.
Making the identifications of ii) and iii), we have the commutative diagram at

right. Now k(p) = Ap/pAp is a field, so its prime spectrum is {(0)}. Following
the definitions of the inclusions, we see Spec(k(p)) corresponds to the set of
primes in Spec(Ap) that contain pAp, which in turn corresponds to the set of
primes in Spec(A) that are contained in p and contain p, or in other words the
singleton {p}. Thus Spec(Bp/pBp) is identified with the preimage ( f ∗)−1(p) of
p. Now writing T = (A/p)\{0} for the image

Spec(Ap/pAp)� _

��

Spec(Bp/pBp)� _

��

( fp)∗
oo

Spec(Ap)� _

��

Spec(Bp)� _

��

( fp)∗
oo

Spec(A) Spec(B)
f ∗

ooof S = A\p in A/p, we have

k(p)⊗AB = (Ap/pAp)⊗AB
(3.4.iii)∼= (A/p)p⊗AB

[3.4]∼= T−1(A/p)⊗AB
(3.5)∼= T−1(A/p)⊗A/pA/p⊗AB

[2.2]∼= T−1(A/p)⊗A/pB/pB
(3.5)∼= T−1(B/pB)

[3.4]∼= S−1(B/pB)
(3.4.iii)∼= Bp/pBp.

22. Let A be a ring and p a prime ideal of A. Then the canonical image of Spec(Ap) in Spec(A) is equal to the
intersection of all the open neighborhoods of p in Spec(A).

Write S = A\p. The canonical image S−1X of Spec(Ap) in Spec(A) is the set of primes q� A that don’t
meet A\p, or in other words are contained in p. By [1.17], the basic open sets Xf form a basis of Spec(A),
so every open neighborhood of p contains some Xf , and the intersection of all open neighborhoods of p is
Z :=

⋂{Xf : p ∈ Xf }.
Now if p ∈ Xf , we have f /∈ p, so for any prime q ⊆ p we a fortiori have f /∈ q; so every open set Xf 3 p

we have S−1X ⊆ Xf . Thus S−1X ⊆ Z. On the other hand, suppose q /∈ S−1X. Then q meets S = A\p, so
there exists f ∈ q\p. Then p ∈ Xf but q /∈ Xf , and therefore q /∈ Z. Thus Z ⊆ S−1X.

23. Let A be a ring, let X = Spec(A) and let U be a basic open set in X (i.e., U = Xf for some f ∈ A: Chapter
1, Exercise 17).
i) If U = Xf , show that the ring A(U) = A f depends only on U and not on f.

Write S f = {1, f, f 2, . . .}, and note that p ∈ Xf ⇐⇒ f /∈ p ⇐⇒ S f ∩ p = ∅, since p is prime. Recall
([3.7.ii]) that the saturation S f is defined to be the complement of the union of all prime ideals which do not
meet S f, so that T := S f = Sg. Recall the natural homomorphisms ρT

f : A f → T−1 A and ρT
g : Ag → T−1 A

of [3.2], and that, by [3.8], since T is the saturation of S f and of Sg, these maps are isomorphisms. Then
ρ

g
f := (ρT

g )
−1 ◦ ρT

f is an isomorphism A f
∼−→ Ag, and we have the following commutative diagram:

A
φ f

""EEEEEEEEE
φg

||yyyyyyyyy
φT
��

A f
∼
ρT

f

// T−1 A Ag.∼
ρT

g

oo

Since φ f is an epimorphism (Eq. ?? in [3.3]) it follows from the commutativity of the two small triangles
that ρ

g
f : A f → Ag is the unique isomorphism of the two rings making the big triangle commute: φg =

ρ
g
f ◦ φ f. Thus A(U) is unique up to a unique isomorphism.7

7 An alternate, more direct proof not using saturation is as follows.
If Xf = Xg, by [1.17.iv], r

(
( f )
)
= r
(
(g)
)
. In particular, f ∈ r

(
(g)
)

and g ∈ r
(
( f )
)
, so there are u, v ∈ A and n, m > 0 such that

gn = uf and f m = vg.
By (3.2), φg will induce a unique isomorphism ρ : A f → Ag such that φg = ρ ◦ φ f : A→ A f → Ag just if

• For all n ≥ 0, we have
f n

1
a unit of Ag;

• φg(c) =
c
1
= 0 =⇒ ∃n ≥ 0 [ f nc = 0];

• Every element of Ag is of the form
c
1

(
f k

1

)
.
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ii) Let U′ = Xg be another basic open set such that U′ ⊆ U. Show that there is an equation of the form gn = u f for
some integer n > 0 and some u ∈ A, and use this to define a homomorphism ρ : A(U)→ A(U′) (i.e., A f → Ag) by
mapping a/ f m to aum/gmn. Show that ρ depends only on U and U′. This homomorphism is called the restriction
homomorphism.

If Xg ⊆ Xf , then by definition every prime p not containing g doesn’t contain f.8 By de Morgan’s laws,
every prime containing f contains g. Intersecting these sets of primes, by (1.14) we have g ∈ r

(
(g)
)
⊆

r
(
( f )
)
. Thus there is n > 0 so that gn ∈ ( f ). Then for some u ∈ A, gn = u f. To define a unique homomor-

phism ρ : A f → Ag such that φg = ρ ◦ φ f: A → A f → Ag, by (3.1) it suffices to show that φg( f ) = f /1
(and hence φg( f n)) is a unit. But since gn = u f in A we have ( f /1)(u/gn) = 1 in Ag. Thus a unique
ρ

g
f : A f → Ag exists such that φg = ρ

g
f ◦ φ f and it must take 1/ f 7→ u/gn so that ( f /1)ρ(1/ f ) = 1/1.

To prove the first item it will suffice to show f /1 is a unit in Ag. But u f = gn in A, so (u/gn)( f /1) = 1/1 in Ag, so that f /1 has
inverse u/gn. Note that also (u/1)( f /gn), so u/1 is a unit of Ag as well.

For the second item, suppose a/1 = 0 in Ag. Then by definition there is k ≥ 0 such that gka = 0 in A. Multiplying by vngn−k we
get f mnc = vnu fa = vngna = 0.

For the third item, note that since f m = vg in A, we have ( f m/1)(1/g) = v/1 in Ag. Multiplying by ( f /1)−m, we see 1/g =

(v/1)( f /1)−m in Ag. Thus an arbitrary element a/gl of Ag can be written as (avl/1)( f /1)−lm.

Yet another proof, this time not using universal properties or saturations, follows. I include it because I took the time to work it
out, but the reader is advised to skip it.

Define ρ
g
f : A f → Ag by c/ f k 7→ c( f ′)k and ρ f

g : Ag → A f by c/gk 7→ c(g′)k , where f ′ = u/gn and g′ = v/ f m Then

(ρ f
g ◦ ρ

g
f )

(
c
f k

)
= ρ f

g

(
cuk

gkn

)
=

cukvkn

f kmn .

But cukvkn/ f kmn = c/ f k in A f, for

f kcukbkn = c(u f )kvkn = cgknvkn = c(vg)kn = c f kmn

in A. Symmetrically ρ
g
f ◦ ρ f

g = idAg . It remains to show these maps are well-defined homomorphisms. By symmetry, it will suffice to

do so for ρ
g
f . Suppose c/ f k = d/ f l in A f. Then by definition there is p ≥ 0 such that f p f lc = f p f kd. For ρ

g
f to be well-defined we

require that

cuk

gkn = ρ
g
f

(
c
f k

)
= ρ

g
f

(
d
f l

)
=

dul

gln

in Ag. But this means, by definition, there is q ≥ 0 such that

c f l gquk+l = gq(u f )lcuk = gqglncuk = gqgkndul = gq(u f )kdul = d f k gquk+l

in A. Take q = pn. Then, as hoped,

c f l gpnuk+l = c f l(u f )puk+l = (c f l f p)uk+l+p = (d f k f p)uk+l+p = d f k(u f )puk+l = d f k gpnuk+l .

By definition, ρ
g
f is multiplicative, for we have

ρ
g
f

(
c
f k

)
ρ

g
f

(
d
f l

)
= c( f ′)kd( f ′)l = (cd)( f ′)k+l = ρ

g
f

(
c
f k ·

d
f l

)
.

Finally, for additivity, note that

ρ
g
f

(
c
f k +

d
f l

)
= ρ

g
f

(
c f l + d f k

f k+l

)
= (c f l + d f k)( f ′)k+l =

(c f l + d f k)uk+l

gn(k+l)
;

ρ
g
f

(
c
f k

)
+ ρ

g
f

(
d
f l

)
= c( f ′)k + d( f ′)l =

cuk

gnk +
dul

gnl =
cuk gnl + dul gnk

gn(k+l)
=

cuk(u f )l + dul(u f )k

gn(k+l)
.

8 From this, we see that the union of primes not meeting Sg = {1, g, g2, . . .} is a subset of the union of primes not meeting S f,
so by the definition of saturation in [3.7.ii], we have S f ⊆ Sg, so [3.3] and [3.8] give us a unique homomorphism S f

−1 A → Sg
−1 A

commuting with the maps φ from A. Recall that [3.8] gives us unique isomorphisms A f
∼−→ S f

−1 A and Sg
−1 A ∼−→ Ag commuting

with the φ; letting ρ
g
f be the composition A f

∼−→ S f
−1 A→ Sg

−1 A ∼−→ Ag, we have a unique ring homomorphism A f → Ag such that

φg = ρ
g
f ◦ φ f. But this doesn’t give us an explicit expression for the homomorphism.
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To show uniqueness, suppose ρ
f
f ′ : A f ′

∼−→ A f and ρg′
g : Ag

∼−→ Ag′ are canonical

isomorphisms, commuting with the canonical maps φ from A, and let ρ
g
f and ρ

g′

f ′

be the unique maps given in the preceding paragraph. Canonicity means that all
the triangles in the diagram at right commute. That “ρ depends only on U and
U′” can mean nothing stronger than that the outer square commutes. Now

ρ
g′

f ′ ◦ φ f ′ = φg′ = ρ
g′
g ◦ φg = ρ

g′
g ◦ ρ

g
f ◦ φ f = ρ

g′
g ◦ ρ

g
f ◦ ρ

f
f ′ ◦ φ f ′ .

A f

ρ
g
f // Ag

ρ
g′
g∼

��

A
φ f

``AAAAAAA

φg
>>}}}}}}}

φ f ′~~}}}}}}}} φg′

  AAAAAAAA

A f ′

ρ
f
f ′ ∼

OO

ρ
g′
f ′

// Ag′

As φ f ′ is an epimorphism (Eq. ?? in [3.3] again), ρ
g′

f ′ = ρ
g′
g ◦ ρ

g
f ◦ ρ

f
f ′.

iii) If U = U′, then ρ is the identity map.
ρU

U = idA(U) satisfies the equation φU = ρU
U ◦ φU , and is unique since φU is an epimorphism by Eq. ??

of [3.3].

iv) If U ⊇ U′ ⊇ U′′ are basic open sets in X, show that the diagram
A(U) //

%%KKKK
A(U′′)

A(U′)

99rrrr

(in which the arrows are restriction homomorphisms) is commutative.

S−1 A

ρT
S

DDD

!!DD
ρV

S

��

T−1 A

ρV
T

DDD

""DD

A

φS

OO

φTzzz

==zzz

φV

// V−1 A

Recall that [3.3] and [3.8] give us, for multiplicatively submonoids S ⊆ T ⊆
A unique homomorphisms ρT

S : S−1 A → T−1 A such that φT = ρT
S ◦ φS, where

φS : A → S−1 A is the epimorphic (Eq. ??) canonical map. If S ⊆ T ⊆ V ⊆ A are
multiplicative submonoids, we have

φV = ρV
T ◦ φT = ρV

T ◦ ρT
S ◦ φS,

but ρV
S ◦ φS = φV as well, so since φS is epimorphic, ρV

T ◦ ρT
S = ρV

S . Now let
U = X f ⊇ U′ = X f ′ ⊇ U′′ = X f ′′ and S = S f ⊆ T = S f ′ ⊆ V = S f ′′ , and use ii).

v) Let x (= p) be a point of X. Show that
lim−→
U3x

A(U) ∼= Ap.

Let, again, S = A\p. For f, g ∈ S, write f ≤ g if r
(
(g)
)
⊆ r
(
( f )
)
, or equivalently if Xg ⊆ Xf . This makes

S into a directed pre-order, for

• r
(
( f )
)
⊆ r
(
( f )
)
=⇒ f ≤ f,

• f ≤ g ≤ h implies r
(
(h)
)
⊆ r
(
(g)
)
⊆ r
(
( f )
)
, which implies f ≤ h, and

• if f, g ∈ S we have fg ∈ S, and r
(
( fg)

)
⊆ r
(
( f )
)
∩ r(

(
g)
)
.

Now one can take direct limits over directed pre-orders, but the result is the same if we collapse the pre-
order to its skeleton, or arbitrarily take one element in each equivalence class, where f ≡ g ⇐⇒ f ≤
g ≤ f, and then take the direct limit. Since we defined direct limits over partial orders, let’s do that. For
each basic open set U, take just one representative f such that U = Xf . The uniqueness of part ii) makes
our choice, up to a unique isomorphism, irrelevant. Then the restricted pre-order (S′, ≤) is a directed set.
Consider the system B = (A f , ρ

g
f ) f , g∈S′ , where the restriction map ρ

g
f of ii) is defined if f ≤ g. Now S′ is

a directed set and parts iii) and iv) of this exercise give axioms (1) and (2) of [2.14] defining compatibility
conditions for maps in a direct system. Thus B is a direct system. Write B = lim−→B for the limit, and
ρ f : A f → B for the canonical map.

Now for each f ∈ S′ we have S f = {1, f, f 2, . . .} ⊆ S, so by [3.3] and [3.8] there is a unique map
σf := ρS

f : A f = S−1
f A→ S−1 A = Ap such that σf ◦ φ f = φS. If f ≤ g ∈ S′, then

σg ◦ ρ
g
f ◦ φ f = ρS

g ◦ ρ
g
f ◦ φ f = ρS

f ◦ φ f = σf ◦ φ f ,
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2 *

where the middle equality comes from the slightly generalized version of part iv), and then since φ f is an
epimorphism (Eq. ?? of [3.3]), σg ◦ ρ

g
f = σf. Since the σf meet this compatibility condition, by [2.16], there

then exists a unique ring map σ : B → Ap such that σ ◦ ρ f = σf for all f ∈ S′. It remains to show σ is a
bijection.

Let b ∈ B be such that σ(b) = 0 in Ap. By [2.15] there is some f ∈ S′ such that b has a representative
in A f, so let a ∈ A and n ≥ 0 be such that ρ f(a/ f n) = b. Then we have 0 = σ(b) = σ(ρ f(a/ f n)) =

σf(a/ f n) = ρS
f (a/ f n). That means that considered as an element of Ap we have a/ f n = 0, so by [3.1] there

is s ∈ A\p = S such that sa = 0 in A. But then in As f we have ρ
s f
f (a/ f n) = asn/(s f )n = 0, so

b = ρ f(a/ f n) = ρs f (ρ
s f
f (a/ f n)) = ρs f (0) = 0,

showing σ is injective.
Let any element a/s ∈ S−1 A = Ap be given. Then a/s ∈ As is of course such that ρS

s (a/s) = a/s, and
if we let b = ρs(a/s), then

σ(b) = σ(ρs(a/s)) = σs(a/s) = ρS
s (a/s) = a/s.

Therefore σ is surjective, completing the proof.

The assignment of the ring A(U) to each basic open set U of X, and the restriction homomorphisms ρ, satisfying
the conditions iii) and iv) above, constitutes a presheaf of rings on the basis of open sets (Xf ) f∈A. v) says that the
stalk of this presheaf at x ∈ X is the corresponding local ring Ap.

23 1
2 *. Complete the description of a presheaf structure on X = Spec(A), by defining A(U) for all open subsets U ⊆ X,

not just basic ones.
Let V ⊆ X be an arbitrary open set, and let {X fi

}i∈I be all the basic open sets contained in V. Let Si be
the saturation of {1, fi, f 2

i , . . .}, so that Si = A\⋃Ui by [3.7.ii]. By [3.8] we have a canonical isomorphism
A(Ui) ∼= S−1

i A. Then SV =
⋂

i∈I Sj is a saturated set since it contains 1, and

xy ∈ SV ⇐⇒ ∀i ∈ I (xy ∈ Si) ⇐⇒ ∀i ∈ I (x ∈ Si & y ∈ Si) ⇐⇒ x ∈ SV & y ∈ SV .

Now
SV =

⋂
i∈I

(
A\

⋃
p∈Ui

p
)
= A\

⋃
i∈I

⋃
p∈Ui

p = A\
⋃{

p : p ∈
⋃
i∈I

Ui

}
= A\

⋃
p∈V

p. (3.7)

Define A(V) := S−1
V A. If W ⊆ V is a smaller open set, Eq. ?? shows that SV ⊆ SW , so [3.3] and [3.8] give us

a natural restriction map ρW
V : A(V)→ A(W). [23.iii,iv] show that these maps define a presheaf, and [3.8]

shows this definition agrees with the other one if V is a basic open set. Since every open set contains a basic
open set, the rings A(U f ) are cofinal in the A(V), so the direct limits Ap

∼= lim−→V3p A(V) ∼= lim−→U f3p
A(U f )

are isomorphic and stalks are unchanged.

24. Show that the presheaf of Exercise 23 has the following property. Let (Ui)i∈I be a covering of X by basic open sets.
For each i ∈ I let si ∈ A(Ui) be such that, for each pair of indices i, j, the images of si and sj in A(Ui ∩Uj) are
equal. Then there exists a unique s ∈ A (= A(X)) whose image in A(Ui) is si, for all i ∈ I. (This essentially implies
that the presheaf is a sheaf.)

Let Ui = X fi
. By [1.17.v], X is compact , so there are finitely many U1, . . . , Un covering X. Thus

X\
n⋂

i=1

V( fi) =
n⋃

i=1

(
X\V( fi)

)
=

n⋃
i=1

X fi
= X.

By [1.15.iii,i], ∅ =
⋂n

i=1 V( fi) =
(

∑n
i=1( fi)

)
, so no maximal ideal contains ∑n

i=1( fi), which then must be

(1). Fix m ≥ 1. (1.16) shows that for any ideals a, b� A, if a+ b = (1), then am + b = (1), since a ⊆ r(am).
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Applying this repeatedly to the sum ∑n
i=1( fi) = (1), taking a = ( f1), then ( f2), etc., we see ∑n

i=1( f m
i ) = 1,

so there are ai ∈ A such that
n

∑
i=1

ai f m
i = 1. (3.8)

We first show uniqueness of s ∈ A, assuming it exists. If s and s′ both meet the conditions, then
ρ

Ui
X (s) = ρ

Ui
X (s′) for each canonical restriction map ρ

Ui
X = φi : A → A(Ui), so ρ

Ui
X (s − s′) = 0. We want

to show t = s − s′ is zero. Now t ∈ ker(ρUi
X ) if and only if, by [3.1], for some number mi ≥ 0 we have

f mi
i t = 0. Let m = maxn

i=1 mi, so for i = 1, . . . , n we have f m
i t = 0. Multiplying t by the expression Eq. ??

for 1, we get

t = 1t =
n

∑
i=1

ai f mt =
n

∑
i=1

ai · 0 = 0.

Now we must show existence. We initially restrict attention to the open cover {U1, . . . , Un}. Suppose
si ∈ A fi

is given by b′i/ f mi
i . Let m = maxn

i=1 mi. Then setting bi = b′i f m−mi
i , we have si = (b′i/ f mi

i )( fi/ fi)
m−mi =

bi/ f m
i . Write gi = f m

i .9 Now X fi
∩ X f j

= X fi f j
by [1.17.i], and the images bi/gi = bj/gj in A fi f j

just if there
is mij ≥ 0 such that (gigj)

mij gjbi = (gigj)
mij gm

i bj. (If X fi f j
= ∅, then fi f j is nilpotent, by [1.17.ii], and then

1/1 = ( fi f j/ fi f j) is nilpotent, so 1 = 0 ∈ A fi gi
and the restrictions agree trivially.) Take p = maxi, j mij;

then
gp

i gp+1
j bi = gp+1

i gp
j bj. (3.9)

We want to find an s such that s/1 = bi/gi in each A fi
, meaning there exists k such that gk+1

i s = gk
i (sgi) =

gk
i bi in A. In an attempt to make this work and find s, fix j, take Eq. ??, with m to be determined later, and

multiply both sides by gk
j bj. Then

gk
j bj =

n

∑
i=1

aibjgk
j gm

i .

We want to use Eq. ?? to get one more gj on the right-hand side, so we should require m ≥ p + 1 and
k ≥ p. Then

gk
j bj =

n

∑
i=1

ai(bjg
p
j gp+1

i )gk−p
j gm−p−1

i
Eq. ??
=

n

∑
i=1

ai(big
p+1
j gp

i )gk−p
j gm−p−1

i = gk+1
j

n

∑
i=1

aibigm−1
i .

In particular, k = p and m = p + 1 work. Then if we take s = ∑n
i=1 aibig

p
i , we have gp

j bj = gp+1
j s for all

j = 1, . . . , n, so this s satisfies ρ
Uj
X (s) = sj, as hoped.

Now let Ui = V = Xh be an arbitrary element of the initial cover (hence not necessarily one of
U1, . . . , Un). We must show ρV

X = si =: t. Now Wj = Uj ∩V, for j = 1, . . . , n, are by [1.17.i] also basic open
sets, and by assumption

ρ
Wj
V (t) = ρ

Wj
Uj
(sj) = ρ

Wj
X (s)

[3.23.iv]
= (ρ

Wj
V ◦ ρV

X)(s).

Thus ρ
Wj
V (t − ρV

X(s)) = 0 for j = 1, . . . , n. But the Wj cover Xh = Spec(Ah). Now by the uniqueness
clause above, applied to Ah instead of A and the open cover Wj instead of Uj, and implicitly using the
isomorphisms (Ah) f j/1

∼= Ah f j
, we have t = ρV

X(s).

25. Let f : A→ B, g : A→ C be ring homomorphisms and let h : A→ B⊗AC be defined by h(x) = f(x)⊗ g(x). Let
X, Y, Z, T be the prime spectra of A, B, C, B⊗AC respectively. Then h∗(T) = f ∗(Y) ∩ g∗(Z).

The first thing is to note that, as on p. 31, the suggested map h is not an A-algebra homomorphism.
See [2.23]. Instead define h : a 7→ f(a)⊗ 1 = 1⊗ g(a).

9 Though a posteriori it seems natural, the substitution of gi for fi and the conditions on k, m later I learned from looking over
Jinhyun Park’s solution: http://mathsci.kaist.ac.kr/~jinhyun/sol2/comm.html.
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That out of the way, let p ∈ X and write k = Ap/pAp. We have

p ∈ h∗(T) ⇐⇒ ∅ 6= (h∗)−1(p)
[3.21.iv]
≈ Spec(k⊗AB⊗AC)

(2.14.i,ii)
≈ Spec(B⊗Ak⊗AC)

(2.14.i)
≈ Spec(B⊗A(k⊗kk)⊗AC)

(2.15)
≈ Spec

(
(B⊗Ak)⊗k(k⊗AC)

)
Now the only ring with empty spectrum is the zero ring, and a tensor product of vector spaces is nonzero
just if each factor is nonzero. Thus p ∈ h∗(T) just if k⊗AB and k⊗AC are nonzero. By [3.21.iv] again, this
happens just if p ∈ f ∗(Y) and p ∈ g∗(Z).

26. Let (Bα, gαβ) be a direct system of rings and B the direct limit. For each α, let fα : A→ Bα be a ring homomorphism
such that gαβ ◦ fα = fβ whenever α ≤ β (i.e. the Bα form a direct system of A-algebras). The fα induce f : A→ B.
Show that

f ∗
(

Spec(B)
)
=
⋂
α

f ∗α
(

Spec(Bα)
)
.

To see the map f is well defined, choose any α and define f(a) = gα( fα(a)), where gα : Bα → B is the
canonical map in the definition of the direct limit. Suppose γ ≥ α. Then

gα ◦ fα
[2.14]
= gγ ◦ gαγ ◦ fα = gγ ◦ fγ

Thus, for any α, β, find γ ≥ α, β; then gα ◦ fα = gγ ◦ fγ = gβ ◦ fβ, so the definition is independent of α.
Let p ∈ Spec(A) be given, and set k = Ap/pAp. Recall from [2.20] that lim−→(Bα⊗Ak) ∼= B⊗Ak, so

the two have homeomorphic spectra. Now by [3.21.iv], p ∈ f ∗
(

Spec(B)
)

just if Spec(B⊗Ak) 6= ∅ just if
k⊗AB 6= 0. On the other hand p ∈ f ∗α

(
Spec(Bα)

)
just if k⊗ABα 6= 0. Now by [2.21], k⊗AB = 0 just if for

some α, k⊗ABα = 0.

27. i) Let fα : A → Bα be any family of A-algebras and let f : A → B be their tensor product over A (Chapter 2,
Exercise 23). Then

f ∗
(

Spec(B)
)
=
⋂
α

f ∗α
(

Spec(Bα)
)
.

Recall from [2.23] that B = lim−→ BJ , where each J is a finite set of α’s, BJ =
⊗A

α∈J Bα, and if J =

{α1, . . . , αm} and I = J ∪ {αm+1, . . . , αn} we define gJ I(b1⊗ · · · ⊗ bn) = b1⊗ · · · ⊗ bn⊗ 1⊗ · · · ⊗ 1. For
each J, f J : a 7→ fα1(a)⊗ 1⊗ · · · ⊗ 1 = a(1⊗ · · · ⊗ 1) defines an A-algebra homomorphism A → BJ
independent of the apparent choice of non-1 coordinate by the definition of the tensor product. Now
we are in the situation of [3.26], and f ∗

(
Spec(B)

)
=
⋂

J f ∗J
(

Spec(BJ)
)
. But by iterated application of

[3.25], we have f ∗J
(

Spec(BJ)
)
=
⋂

α∈J f ∗α
(

Spec(Bα)
)
, so f ∗

(
Spec(B)

)
=
⋂

J f ∗J
(

Spec(BJ)
)
. (To consider

only singletons J = {α} is strictly speaking insufficient since without [3.25], we don’t know for I 3 α what
relation exists between f ∗I

(
Spec(BI)

)
and f ∗α

(
Spec(Bα)

)
.)

ii) Let fα : A → Bα be any finite family of A-algebras and let B = ∏α Bα. Define f: A → B by f(x) = ( fα(x)).
Then f ∗

(
Spec(B)

)
=
⋃

α f ∗α
(

Spec(Bα)
)
.

Recall [1.22]: if eα has α-coordinate 1 and other coordinates 0, and b� B, then b = ∑ beα, and, writing
πα : B � Bα for the canonical projection, B/b ∼= ∏ Bα/πα(b), so p� B is prime just if it is of the form
p+α = pαeα + ∑β 6=α(eβ) for some α and some prime pα � Bα. Recall that this gives a homeomorphism
between Spec(B) and the disjoint union of the Spec(Bα). Now

f−1(p+α ) = f−1({b = (bα) ∈ B : ∃a ∈ A ∀β ( fβ(a) = bβ & fα(a) = bα ∈ pα)}
)
= {a ∈ A : fα(a) ∈ pα} = f−1

α (pα), so

f ∗
(

Spec(B)
)
=
⋃
α

{ f−1(p+α ) : pα ∈ Spec(Bα)} =
⋃
α

{ f−1
α (pα) : pα ∈ Spec(Bα)} =

⋃
α

f ∗α
(

Spec(Bα)
)
.

iii) Hence the subsets of X = Spec(A) of the form f ∗
(

Spec(B)
)
, where f: A→ B is a ring homomorphism, satisfy

the axioms for closed sets in a topological space. The associated topology is the constructible topology on X. It is
finer than the Zariski topology (i.e., there are more open sets, or equivalently more closed sets).
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For a homomorphism f: A→ B, write C f = f ∗
(

Spec(B)
)

for the closed set of the constructible topology
defined by f. To finish checking the C f define a topology, we should ensure that ∅ and X are among them.
But X = CidA , and ∅ = Cz for z : A → 0, which has no prime ideals. Every V(a) closed in the Zariski
topology is C f for the canonical map f : A � A/a, so the constructible topology is at least as fine as the
Zariski topology. It is not always strictly finer, as witness the zero ring or a ring with only one prime ideal.

iv) Let XC denote the set X endowed with the constructible topology. Show that XC is compact.
To show every finite open cover of X has a finite subcover is the same as showing that for every

collection of closed sets of X with empty intersection, some finite subset has empty intersection.
So let {C f : f : A→ B f } have empty intersection. Write g : A→ B =

⊗
f B f for the canonical map given

by [2.23] making B an A-algebra. Then by [3.27.i],

∅ =
⋂

C f =
⋂

f ∗
(

Spec(B f )
)
= g∗

(
Spec(B)

)
,

so Spec(B) is empty. Since by (1.4) every ring where 0 6= 1 has a maximal ideal, B = lim−→J
BJ = 0. But then

by [2.21], we have some BJ =
⊗A

f∈J B f = 0 for some finite subset J of the f. Write h : A → BJ . Applying
[3.27.i] again, we have

∅ = h∗
(

Spec(BJ)
)
=
⋂
f∈J

f ∗
(

Spec(B f )
)
=
⋂
f∈J

C f .

28. (Continuation of Exercise 27.)
i) For each g ∈ A, the set Xg (Chapter 1, Exercise 17) is both open and closed in the constructible topology.

If f : A → Ag is the canonical map, then C f is by (3.11.iv) the set of primes not meeting {1, g, g2, . . .},
so C f = Xg is closed in the constructible topology. On the other hand since the constructible topology is
at least as fine as the Zariski topology, Xg is open. More explicitly, let a = r

(
(g)
)

be the intersection of all
primes containing g. Then for all primes p ∈ Spec(A) we have p ∈ V(a) ⇐⇒ g ∈ p ⇐⇒ p /∈ Xg, so
Xg = X\V(a). But V(a) is C f for the canonical map f: A→ A/a.

ii) Let C′ denote the smallest topology on X for which the sets Xg are both open and closed, and let XC′ denote the set
X endowed with this topology. Show that XC′ is Hausdorff.

Let x, y ∈ XC′ be distinct points. Then the corresponding primes px, py ∈ Spec(A) are not equal, so
one is not strictly contained in the other. Suppose without loss of generality that px 6⊆ py. Then there is
f ∈ px\py, meaning y ∈ Xf , but x ∈ XC′\Xf . But these are disjoint open sets by the definition of C′.

iii) Deduce that the identity mapping XC → XC′ is a homeomorphism. Hence a subset E of X is of the form
f ∗
(

Spec(B)
)

for some f: A→ B if and only if it is closed in the topology C′.
First, the identity mapping XC → XC′ is of course a bijection.
Second, the topology C′ is the topology generated by subbasic closed sets Xg and X\Xg for each g ∈ A.

(Thus a closed set K of XC′ is one that can be written as finite a union of arbitrary intersections of these.)
But these subbasic sets are also closed in XC, so every closed set of XC′ is closed in XC and the identity
map is continuous.

Third, a continuous bijection ψ : Y ↔ Z between a compact space Y and a Hausdorff space Z is well
known to be a homeomorphism.10

iv) The topological space XC is compact, Hausdorff and totally disconnected.
Since XC is compact, XC′ is Hausdorff, and we have just shown XC ≈ XC′ , it remains to see XC is totally

disconnected. But this follows from our proof it is Hausdorff, for given any distinct x, y ∈ S ⊆ XC we
have found disjoint closed open sets U = Xf and V = XC\Xf separating them, whose union is the whole
space XC, and so S = (U ∩ S)q (V ∩ S) is a disjoint union of closed open sets (in the relative topology)
separating x from y.

10 It suffices to prove it takes open sets to open sets. Let U ⊆ Y be open; then its complement K = Y\U is closed. As a closed
subset of a compact space, K is compact. Since ψ is continuous, ψ(K) is compact. As a compact subset of a Hausdorff space, ψ(K) is
closed. Thus Z\ψ(K) = ψ(Y\K) = ψ(U) is open.
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29. Let f : A → B be a ring homomorphism. Show that f ∗ : Spec(B) → Spec(A) is a continuous closed mapping
(i.e., maps closed sets to closed sets) for the constructible topology.

Let any constructible closed set K ⊆ Spec(B) be given, and let g : B→ C be such that K = g∗
(

Spec(C)
)
.

Then
f ∗(K) = f ∗

(
g∗
(

Spec(C)
)) [1.21.vi]

= (g ◦ f )∗
(

Spec(C)
)

is by definition a closed set of Spec(A) in the constructible topology.

30. Show that the Zariski topology and the constructible topology on Spec(A) are the same if and only if A/N is
absolutely flat (where N is the nilradical of A).

First suppose A/N is absolutely flat. Then by [3.11], X = Spec(A) in the Zariski topology is Hausdorff.
Since the constructible topology is at least as fine as the Zariski topology, the identity map XC → X
is a continuous bijection from a compact space to a Hausdorff space, hence a homeomorphism; see the
footnote to [3.28.iii].

Now suppose X = XC. Then X is Hausdorff, so by [3.11], A/N is absolutely flat.
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Chapter 4: Primary Decomposition

Proposition 4.8. Let S be a multiplicatively closed subset of A, and let q be a p-primary ideal.
ii) If S ∩ p = ∅, then S−1q is S−1p-primary, and its contraction in A is q.

The book states that “The verification that S−1q is primary is straightforward.” We complete the this
verification. Suppose x/s, y/t ∈ S−1 A are such that xy/st ∈ S−1q. Then there are some z ∈ q and u ∈ S
such that xy/st = z/u in S−1 A. That means there is v ∈ S such that vuxy = vstz ∈ q ⊆ A. Since q is
primary, either vux ∈ q or yn ∈ q for some n > 0. If vux ∈ q, then vux/svu = x/s ∈ S−1q. If yn ∈ q, then
(y/t)n = (1/tn)(yn/1) ∈ S−1q. Thus x/s ∈ S−1q or (y/t)n ∈ S−1q, showing S−1q is primary.

Proposition 4.12*.1 Let A be a ring, S a multiplicatively closed subset of A. Write φS : A→ S−1 A for the canonical
map. For any ideal a, let S(a) denote the contraction along φS of S−1a in A (bottom of p. 53, [4.11]). The ideal S(a)
is called the saturation of a with respect to S.
i)
⋃

s∈S(a : s) = {x ∈ A : ∃s ∈ S (sx ∈ a)} = S(a) = aec ⊇ a.
ii) S(0) = ker(φS).
iii) Let Sp = A\p for p a prime ideal of A. If q is p-primary, then Sp(q) = q.
iv) Sp(0) is contained in every p-primary ideal of A.
v) If S1 ⊆ S2 ⊆ A are multiplicative submonoids, then S1(a) ⊆ S2(a).
vi) If b� A is an ideal containing a, then S(a) ⊆ S(b).

i): a ⊆ aec is part of (1.17.i). Since S−1a = S−1 A · a = ae, by definition we have S(a) =
(
S−1a

)c
= aec.

Now x ∈ S(a) ⇐⇒ x/1 ∈ S−1a ⇐⇒ ∃a ∈ A ∃s ∈ S (x/1 = a/s). By the definition of S−1 A, this
happens if and only if there exist t, s ∈ S and a ∈ a such that tsx = ta ∈ S · a = a. Thus x ∈ S(a) ⇐⇒
Sx ∩ a 6= ∅ ⇐⇒ ∃s ∈ S (sx ∈ a). This happens just if x ∈ ⋃s∈S(a : s).

ii): (0)e = S−1(0) = (0), so S
(
(0)
)
= (0)ec = (0)c = φ−1

S
(
(0)
)
= ker(φS).

iii): x ∈ Sp(q) ⇐⇒ ∃s ∈ Sp (sx ∈ q). Since s /∈ p = r(q) and q is primary, x ∈ q, so q ⊆ qec = Sp(q) ⊆ q.
iv): Let q be p-primary. If x ∈ Sp(0), there is s ∈ Sp such that sx = 0 ∈ q. Since by definition s /∈ p = r(q),

no power of s is in q, so since q is primary, x ∈ q.
v): If ∃s ∈ S1 (sx ∈ a), then s ∈ S2, so ∃s ∈ S2 (sx ∈ a). By i), we have S1(a) ⊆ S2(a).
vi): Apply (1.17.iv*) twice: a ⊆ b =⇒ ae ⊆ be =⇒ S(a) = aec ⊆ bec = S(b).

EXERCISES
1. If an ideal a has a primary decomposition, then Spec(A/a) has only finitely many irreducible components.

Let a =
⋂n

i=1 qi be the primary decomposition. Recall from [1.20.iv] that the irreducible components of
X = Spec(A/a) are the closed sets V(p̄), where p̄ is a minimal prime ideal of A/a. These are of the form
p̄ = p/a for primes p� A minimal over a, hence in bijection with the set of primes minimal over a. By
(4.6), this is the set of minimal elements of the finite set of r(qi), hence finite.

2. If a = r(a), then a has no embedded prime ideals.
a = r(a) =

⋂{p ∈ Spec(A) : a ⊆ p} gives a “primary decomposition” of a since prime ideals are
primary (clearly, p. 50). The scare quotes are because there may be infinitely many primes. Now if we take
the intersection over only the minimal primes over a, the intersection is clearly still a, and by construction
there are no embedded primes. The intersection still needn’t be finite however. Take for example an infinite
direct product A = ∏i∈I ki of fields, and for each i ∈ I let pi = {0} ×∏j 6=i k j. Then A/pi

∼= ki, is a field, so
pi is prime, and the zero ideal (0) is the intersection of the pi, but if any of these is omitted, the intersection
contains non-zero elements.

1 This is not a proposition from the book. It is original, and designed to be used in and generalize some parts of [4.10–13].

62



Chapter 4: Primary Decomposition Ex. 4.3

3. If A is absolutely flat, every primary ideal is maximal.
Let q� A be primary, and p = r(q). By [2.28], A/q is absolutely flat, and every zero-divisor is nilpotent.

But by [2.28] again, every non-unit is a zero-divisor, so every non-unit is nilpotent. By [1.10], it follows
that A/q has exactly one prime ideal; hence is a local, absolutely flat ring. But then by [2.28] yet again,
A/q is a field, and it follows that q was maximal.

4. In the polynomial ring Z[t], the ideal m = (2, t) is maximal and the ideal q = (4, t) is m-primary, but is not a
power of m.

Z[t]/m ∼= Z/(2) is a field, while Z[t]/q ∼= Z/(4) has all zero-divisors (0̄ and 2̄) nilpotent, and so is
primary. The radical r(q) = r

(
(4) + (t)

)
= r
(
r(4) + r(t)

)
= r(2, t) = m by (1.13.v,vi). The powers of m are

(2, t), m2 = (4, 2t, t2), etc. q is contained in m, properly since 2 /∈ q, and contains m2, again properly since
t /∈ m2. For n ≥ 2 we have mn ⊆ m2 ( q ( m, so q is not a power of m.

5. In the polynomial ring K[x, y, z] where K is a field and x, y, z are independent indeterminates, let p1 = (x, y),
p2 = (x, z), m = (x, y, z); p1 and p2 are prime, and m is maximal. Let a = p1p2. Show that a = p1 ∩ p2 ∩m2 is a
reduced primary decomposition of a. Which components are isolated and which are embedded?

Write A = K[x, y, z]. Now A/p1
∼= K[z] and A/p2 ∼= K[y] are integral domains, and A/m ∼= K is a

field. We have the following five equations:

a = p1p2 = (x, y)(x, z) = (x2, xy, xz, yz);

m2 = (x, y, z)(x, y, z) = (x2, y2, z2, yz, xz, xy);

p1 ∩m2 = (x, y) ∩ (x2, y2, z2, yz, xz, xy) = (x2, y2, xz, yz, xy);

p2 ∩m2 = (x, z) ∩ (x2, y2, z2, yz, xz, xy) = (x2, z2, yz, xz, xy);

p1 ∩ p2 = (x, y) ∩ (x, z) = (x, yz);

so none of the last three pairwise intersections is a. On the other hand,

p1 ∩ (p2 ∩m2) = (x, y) ∩ (x2, z2, yz, xz, xy) = (x2, xy, yz, xz) = a,

and r(p1) = p1, r(p2) = p2, and r(m2) = m (by (1.13.vi)) are distinct prime ideals, so this is an irredundant
primary decomposition of a. We have p1 ( m ) p2, and p1 6⊆ p2 6⊆ p1, so p1 and p2 are isolated and m is
embedded.

6. Let X be an infinite compact Hausdorff space, C(X) the ring of real-valued continuous functions on X (Chapter
1, Exercise 26). Is the zero ideal decomposable in this ring?

No. First recall from [1.16.i] that every maximal ideal m of C(X) is of the form mx = { f ∈ C(X) : f(x) =
0} for some x ∈ X.

Next note that every primary ideal is contained in a unique maximal ideal. Indeed suppose a ⊆ mx ∩my
with x 6= y ∈ X. Since X is Hausdorff, there are disjoint open neighborhoods U 3 x and V 3 y. Since a
compact Hausdorff space is normal, Urysohn’s lemma can be applied. Thus there are an f ∈ C(X) such
that f(x) = 1 and f(X\U) = {0} and a g ∈ C(X) such that f(y) = 1 while f(X\V) = {0}. Since U∩V = ∅,
we see (X\U) ∪ (X\V) = X, so fg = 0 ∈ a, while f ∈ my\mx and gn ∈ mx\my, so neither is in a, and thus
a is not primary.

Now let qi ⊆ mxi be a finite collection of primary ideals and their containing maximal ideals. Since
each qi is contained in only one maximal ideal, there is fi ∈ qi vanishing at xi and no other point. Then
0 6= ∏i fi ∈ ∏ qi ⊆

⋂
qi, since X has infinitely many points, and thus

⋂
qi 6= (0). Thus there can be no

primary decomposition (meaning finitely many components) of (0) in C(X).
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7. Let A be a ring and let A[x] denote the ring of polynomials in one indeterminate over A. For each ideal a of A, let
a[x] denote the set of all polynomials in A[x] with coefficients in a.
i) a[x] is the extension of a to A[x].

Identify a� A with its image in A[x]; then ae := aA[x] = a[x]. Very explicitly, a · A[x] = {∑ ai · pi(x) :
ai ∈ a, pi(x) ∈ A[x]}, but each ai · pi(x) has all coefficients in a, and so is in a[x]; conversely, each element
∑ aixi ∈ a[x] can be written as ∑ ai · pi(x) for ai ∈ a and pi(x) = xi ∈ A[x].

ii) If p is a prime ideal in A, then p[x] is a prime ideal in A[x].
This is [2.7]. To reiterate, note that p[x] is the kernel of the canonical surjection of A[x] onto (A/p)[x],

an integral domain.

iii) If q is a p-primary ideal in A, then q[x] is a p[x]-primary ideal in A[x].
q[x] = q+ q · (x), while p[x] = p+ p · (x), and r

(
(x)
)
= (x). p and q can be identified with their images

in A[x], and in the bigger ring we still have r(q) = p = r(p). Then (1.13.v,iii) give

r
(
q[x]

)
= r
(

r(q) + r
(
q · (x)

))
= r
(
p+ r(q) ∩ r

(
(x)
))

= r
(
p+ p∩ (x)

)
= r
(
p+ p · (x)

)
= r
(
p[x]

)
= p[x].

Now to see q[x] is primary, note that the quotient A[x]/q[x] ∼= (A/q)[x]. Every zero-divisor in A/q is
nilpotent (p. 50). Suppose ∑ b̄ixi = p̄(x) ∈ (A/q)[x] is a zero-divisor. Then by [1.2.iii], there is ā ∈ A/q
such that ā p̄(x) = 0. This means ā · b̄i = 0 for each i, so each b̄i ∈ A/q is a zero-divisor, hence nilpotent.
Then by [1.2.ii], p̄(x) is nilpotent. This shows (p. 50) that q[x] is primary.

iv) If a =
⋂n

i=1 qi is a minimal primary decomposition in A, then a[x] =
⋂n

i=1 qi[x] is a minimal primary decompo-
sition in A[x].

∑ bjxj ∈ a[x] ⇐⇒ ∀j
(
bj ∈ a =

⋂
i
qi
)
⇐⇒ ∀i ∀j (bj ∈ qi) ⇐⇒ ∀i

(
∑ bjxj ∈ qi[x]

)
⇐⇒ ∑ bjxj ∈

⋂
i
qi[x],

so a[x] =
⋂n

i=1 qi[x] as hoped. By iii), each qi is primary, so this is a primary decomposition. If we leave
out some qj, then the above shows

⋂
i 6=j qi[x] =

(⋂
i 6=j qi

)
[x], which by assumption is not a[x], using

irredundancy of the given primary decomposition of a.

v) If p is a minimal prime ideal of a, then p[x] is a minimal prime ideal of a[x].
From ii), p[x] is a prime ideal containing a[x]. If q ∈ Spec(A[x]) is such that a[x] ⊆ q ⊆ p[x], then taking

contractions we have a ⊆ A ∩ q ⊆ p, with A ∩ q prime. Since p was minimal over a, we have A ∩ q = p.
Now p ⊆ q, so p[x] = p+ p · (x) ⊆ q, and thus q = p[x]. Thus p[x] was minimal over a[x].

8. Let k be a field. Show that in the polynomial ring k[x1, . . . , xn] the ideals pi = (x1, . . . , xi) (1 ≤ i ≤ n) are prime
and all their powers are primary.

Write A = k[x1, . . . , xn]. Then A/pi
∼= k[xi+1, . . . , xn] is an integral domain, so pi is prime. Now

consider some power pm
i . Write qm

i for its intersection with the subring Bi = A[x1, . . . , xi]. Then pm
i =

qm
i [xi+1, . . . , xn]. By [4.7.iii], if qm

i is primary, then pm
i will also be.

So consider the quotient ring C = Bi/qm
i . Write this as C = k[y1, . . . , yi], where the only relations

yi = x̄i are (commutativity and) that any monomial in them of total degree greater than m is zero.
Consider a product pq in C. If both p and q have nonzero constant term, then so does pq 6= 0. Any term
divisible by some yj is annihilated by q = ∏i

j=1 ym−1
j , so p ∈ C is zero-divisor if and only if its constant

term is zero. If that is the case, then pm = 0 since each term will have total degree ≥ m. Thus every
zero-divisor in C is nilpotent and qm

i is primary.

9. In a ring A, let D(A) denote the set of prime ideals p which satisfy the following condition: there exists a ∈ A such
that p is minimal in the set of prime ideals containing (0 : a). Show that x ∈ A is a zero divisor ⇐⇒ x ∈ p for
some p ∈ D(A).

If a 6= 0 but xa = 0, then x ∈ (0 : a) 6= (1), so there exists a prime p ⊇ (0 : a) 3 x. By an application
of Zorn’s Lemma, or by [1.8] applied to A/(0 : a) and (1.1), there is a minimal prime p over (0 : a), which
then contains x.
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Now suppose x ∈ p ∈ D(A), with a ∈ A such that p ⊇ (0 : a) is minimal. Apparently a 6= 0, since
otherwise (1) = (0 : 0) is contained in no prime. By (1.1) and p. 9, p̄ = p/(0 : a) is a minimal prime of
Ā = A/(0 : a), and x̄ = x + (0 : a) ∈ p̄. Write S = Ā\p̄. Since p̄ is minimal, by [3.6], S is maximal in the
collection Σ of multiplicative submonoids of Ā not containing 0̄. Let S′ be the smallest submonoid of Ā
containing S ∪ {x̄}; explicitly, S′ = {sx̄n : s ∈ S, n ≥ 0}. Since x̄ ∈ p̄ = Ā\S, by the maximality of S we
have S ( S′ /∈ Σ, so 0̄ ∈ S′\S, and there are s ∈ S and n > 0 with 0 = sx̄n = x̄(sx̄n−1), showing x̄ is a
zero-divisor in Ā. Write ȳ = sx̄n−1 6= 0; then xy ∈ (0 : a) in A. Now by assumption ȳ 6= 0̄, so y /∈ (0 : a),
and thus ay 6= 0. But since xy ∈ (0 : a) we have 0 = xya = x(ay), so x is a zero-divisor in A.

Let S be a multiplicatively closed subset of A, and identify Spec(S−1 A) with its image in Spec(A) (Chapter 3,
Exercise 21). Show that

D(S−1 A) = D(A) ∩ Spec(S−1 A).

Write ae = S−1a for the extension of a� A along the canonical φS : A → S−1 A and X = Spec(A),
S−1X = {x ∈ Spec(A) : px ∩ S = ∅}. If x ∈ X\S−1X, then pe

x = (1), so not a prime and not in D(S−1 A).
So evidently D(S−1 A) ⊆ S−1X. From now on suppose p ∈ S−1X.

Let x ∈ A. Then (x) is finitely generated, so by (3.15) we have

Ann(x)e = S−1 Ann(x) = S−1((0) : (x)
)
=
(
S−1(0) : S−1(x)

)
= Ann

(
S−1(x)

)
= Ann(x/1).

Now for any x ∈ A and s ∈ S we have Ann(x/s) = Ann(x/1) since ax/ts = 0 ⇐⇒ ∃u ∈ S (uax = 0 ∈
A) ⇐⇒ ax/s = 0.

Now every ideal of S−1 A is extended by (3.11.i), so S−1p ∈ D(S−1 A) ⇐⇒ ∃x ∈ A such that S−1p
is minimal over Ann(x/1) = S−1 Ann(x) =. Contracting both sides p = pec ⊇ Ann(x)ec ⊇ Ann(x). If
there were an intermediate prime q such that a ⊆ q ⊆ p, then extending, ae ⊆ qe ⊆ pe, so qe = pe, and by
(3.11.iv), q = p. Thus p ∈ D(A).

On the other hand, suppose p ∈ D(A) ∩ S−1X is minimal over a = Ann(x). Then Ann(x/1) = S−1a ⊆
S−1p. If S−1q is such that S−1a ⊆ S−1q ⊆ S−1p, then by (3.11.iv), a ⊆ q ⊆ p, so by assumption q = p and
S−1q = S−1p. Thus S−1p is minimal over S−1a, so S−1p ∈ D(S−1 A).

If the zero ideal has a primary decomposition, show that D(A) is the set of associated prime ideals of 0.
Let the primary decomposition be (0) =

⋂
qi. Then (4.5) and (4.7) say that pi = r(qi) are the ideals

r(0 : x) for x ∈ A, so the (finite) set of ideals r(0 : x) are those primes associated to (0). But each r(0 : x)
is minimal over (0 : x), so in D(A).

10. For any prime ideal p in a ring A, let Sp(0) denote the kernel of the homomorphism A→ Ap. Prove that
i) Sp(0) ⊆ p.

Since (0) ⊆ p, (4.12*.i), (4.12*.vi) twice, and (3.13) give Sp(0) = (0)ec ⊆ pec = p.2

ii) r
(
Sp(0)

)
= p ⇐⇒ p is a minimal prime ideal of A.

Taking r of i), we see r
(
Sp(0)

)
⊆ p regardless of minimality.

Now write S = A\p. By (4.12*.i) or [3.1], Sp(0) = {x ∈ A : ∃s ∈ S (sx = 0)} = ⋃
s∈S Ann(s). Thus

p ⊆ r
(
Sp(0)

)
= r
(⋃

s∈S Ann(s)
) p. 9
=
⋃

s∈S r
(

Ann(s)
)
⇐⇒ for each x ∈ p there are n > 0 and s ∈ S such that sxn = 0
⇐⇒ ∀x ∈ p, 0 ∈ (smallest submonoid containing S ∪ {x})
⇐⇒ S is maximal among multiplicative submonoids T 6 3 0 of A
⇐⇒
[3.6]

p is minimal.

iii) If p ⊇ p′, then Sp(0) ⊆ Sp′(0).
Since p ⊇ p′ ⇐⇒ Sp ⊆ Sp′ , this follows from (4.12*.v).

iv)
⋂

p∈D(A) Sp(0) = 0, where D(A) is defined in Exercise 9.
Obviously, 0 is in each Sp(0). On the other hand, if x 6= 0, then (0 : x) 6= (1), and there is a prime p

minimal over (0 : x); by definition, p ∈ D(A). Since (0 : x) ⊆ p, there is no s ∈ A\p such that sx = 0, and
so [3.1] says x /∈ Sp(0).

2 Alternately, suppose x ∈ Sp(0); by (4.12*.i), there is s ∈ Sp such that sx = 0 ∈ p. Since p is prime and doesn’t contain s, we must
have x ∈ p.

65



Ex. 4.11 Chapter 4: Primary Decomposition

11. If p is a minimal prime ideal of a ring A, show that Sp(0) (Exercise 10) is the smallest p-primary ideal.
Write q = Sp(0). Using minimality of p and [4.10.ii], r(q) = p. To see q is primary, suppose xy ∈ q. Then

there is n > 0 such that xnyn = (xy)n ∈ p. If x /∈ q, then xn /∈ p for all n, so yn ∈ p = r(q), and there exists
m > 0 such that ymn = (yn)m ∈ q. Thus q is primary.

Let a be the intersection of the ideals Sp(0) as p runs through the minimal prime ideals of A. Show that a is
contained in the nilradical of A.

Let P ⊆ Spec(A) be the set of minimal prime ideals. Since all primes contains a member of P, we have,
by (1.8), that N =

⋂
P. Now for each p ∈ P we have Sp(0) ⊆ p by [4.10.i], so a :=

⋂
p∈P Sp(0) ⊆

⋂
P = N.

Suppose that the zero ideal is decomposable. Prove that a = 0 if and only if every prime ideal of 0 is isolated.
If (0) is decomposable, then (4.6) states each minimal prime ideal is a minimal ideal of (0) (and vice

versa). Moreover, there are only finitely many prime ideals of (0). If every prime ideal of (0) is isolated,
then all are minimal, and so (0) =

⋂{primes of (0)} = ⋂
P = N, forcing a = 0.

On the other hand, suppose a = 0. Then 0 = a =
⋂{Sp(0) : p ∈ P} gives a primary decomposition

of (0). We may discard all but finitely many terms to obtain an irredundant decomposition. Now if (0)
had an embedded prime P containing an isolated prime p, we would have SP(0) ⊆ Sp(0) by [4.10.iii],
contradicting irredundancy.

12. Let A be a ring, S a multiplicatively closed subset of A. For any ideal a, let S(a) denote the contraction of S−1a in
A. The ideal S(a) is called the saturation of a with respect to S. Prove that
i) S(a) ∩ S(b) = S(a∩ b).

Note that ae ∩ be = S−1a ∩ S−1b = S−1(a ∩ b) = (a ∩ b)e by (4.12*.i) and (3.11.v). Then recalling (1.18),
S(a) ∩ S(b) = aec ∩ bec = (ae ∩ be)c = (a∩ b)ec = S(a∩ b).34

ii) S
(
r(a)

)
= r
(
S(a)

)
. By (1.18), contraction commutes with r, and by (3.11.v), extension S−1 does.Therefore

by (4.12*.i), S
(
r(a)

)
= r(a)ec =

(
r(ae)

)c
= r(aec) = r

(
S(a)

)
.5

iii) S(a) = (1) ⇐⇒ a meets S.
S(a) = (1) ⇐⇒ 1 ∈ S(a) ⇐⇒ ∃s ∈ S (s = s · 1 ∈ a) ⇐⇒ a∩ S 6= ∅.

iv) S1
(
S2(a)

)
= (S1S2)(a).

If x ∈ (S1S2)(a), then there are s1 ∈ S1 and s2 ∈ S2 such that s1s2x ∈ a. Then s1x ∈ S2(a), and
x ∈ S1

(
S2(a)

)
. On the other hand, if x ∈ S1

(
S2(a)

)
, then there is s1 ∈ S1 such that s1x ∈ S2(a), so there is

s2 ∈ S2 such that s2s1x ∈ a, and then x ∈ (S1S2)(a).

If a has a primary decomposition, prove that the set of ideals S(a) (where S runs through all multiplicatively closed
subsets of A) is finite.

Let the decomposition be a =
⋂ n

i=1 qi. By (4.9), S(a) is determined entirely by which of the pi = r(qi) it
meets. This yields at most 2n different possibilities for S(a). (Make at most n possible choices of “empty”
or “non-empty,” one for each intersection S ∩ pi.)

13. Let A be a ring and p a prime ideal of A. Then nth symbolic power of p is defined to be the ideal (in the notation
of Exercise 12)

p(n) = Sp(p
n)

where Sp = A\p. Show that
i) p(n) is a p-primary ideal;

3 Alternately, suppose that x ∈ S(a ∩ b). Then there is s ∈ S such that sx ∈ a ∩ b, so sx ∈ a and sx ∈ b, meaning x ∈ S(a) and
x ∈ S(b); thus x ∈ S(a)∩ S(b). Now suppose x ∈ S(a)∩ S(b). Then there are s, t ∈ S such that sx ∈ a and tx ∈ b. Then t(sx) ∈ ta ⊆ a
and s(tx) ∈ sb ⊆ b, so (st)x ∈ a∩ b. Thus x ∈ S(a∩ b).

4 Note that (4.12*.vi) follows: if a ⊆ b, then S(a) ∩ S(b) = S(a∩ b) = S(a), so S(a) ⊆ S(b).
5 Alternately, if x ∈ S

(
r(a)

)
, then there is s ∈ S such that sx ∈ r(a), so there is n > 0 such that snxn = (sx)n ∈ a. Then since sn ∈ S

we have xn ∈ S(a), so x ∈ r(S(a)). If x ∈ r(S(a)), then there is n > 0 such that xn ∈ S(a), so there is s ∈ S such that sxn ∈ a. Then
(sx)n = sn−1(sx) ∈ a as well, so sx ∈ r(a) and x ∈ S

(
r(a)

)
.

66



Chapter 4: Primary Decomposition Ex. 4.14

(3.13) shows pe is maximal, so by (4.2) (pe)n is primary. By (3.11.v), (pe)n = (pn)e. Since contraction
preserves being primary (p. 50) and p(n) = (pn)ec by (4.12*.i), it follows p(n) is primary.6 As for the radical,

r(p(n))
(4.12*.i)
= r

(
(pn)ec) (1.18)

=
(
r(pn)e)c (3.11.v)

= r(pn)ec (1.13.vi)
= pec (3.13)

= p.

ii) if pn has a primary decomposition, then p(n) is its p-primary component;
First, p(n) is the smallest p-primary ideal containing pn. If q ⊇ pn is p-primary and x ∈ p(n), then by

(4.12*.i) there is s ∈ Sp such that xs ∈ pn ⊆ q. Since s /∈ r(q) = p, we have sm /∈ q for all m; as q is primary,
it follows that x ∈ q. Thus p(n) ⊆ q.

Let
⋂
qi = pn be a primary decomposition. Then by (1.13.vi,iii), p = r(pn) = r

(⋂
qi
)
=
⋂

r(qi). By
(1.11.ii), p = r(qi) for some q = qi. Thus p definitely is a prime of pn. If we had r(qj) ( p for some j, we
would have p =

⋂
r(ql) ⊆ r(qj) ( p, a contradiction; thus p is isolated. Since p(n) is the smallest p-primary

ideal containing pn, pn = p(n) ∩j 6=i qi is also a primary decomposition; but by the uniqueness (4.11) of
isolated primary components, it follows qi = p(n).

iii) If p(m)p(n) has a primary decomposition, then p(m+n) is its p-primary component;
First show p(m+n) is the smallest p-primary ideal containing p(m)p(n). Let q ⊇ p(m)p(n) be p-primary,

and x ∈ p(m+n). Then there is s ∈ Sp such that xs ∈ pm+n = pmpn ⊆ p(m)p(n) ⊆ q. Since s /∈ r(q) = p and q

is primary, it follows that x ∈ q. Thus p(m+n) ⊆ q.
Now suppose p(m)p(n) =

⋂
qi is a primary decomposition. Since r(p(m)) = r(p(n)) = p, it follows from

(1.13.iii,vi) that r(p(m)p(n)) = r(p(m)) ∩ r(p(n)) = p ∩ p = p. As in part ii), p = r(qi) for some i, so p is a
prime of p(m)p(n), and since the radical is not a proper subset of p, we know p is isolated. Since p(m+n)

is the smallest p-primary ideal containing p(m)p(n), by (4.11) it follows p(m+n) is the uniquely determined
p-primary component of p(m)p(n).

iv) p(n) = pn ⇐⇒ p(n) is p-primary.
N.B. The book has a misprint here: by part i), p(n) is always p-primary, so the condition should be that

pn is p-primary.
Suppose p(n) = pn. Then since p(n) is p-primary by i), pn is p-primary. On the other hand suppose pn

is p-primary. Then pn =
⋂{pn} gives a trivial primary decomposition, so by the first uniqueness theorem

(4.5), p is the only prime of pn. By part ii), p(n) is the p-primary component of pn, so we conclude p(n) = pn.

14. Let a be a decomposable ideal in a ring A and let p be a maximal element of the set of ideals (a : x), where x ∈ A
and x /∈ a. Show that p is a prime ideal belonging to a.

First, let q be p′-primary and x /∈ q, so (q : x) is a p′-primary ideal by (4.4.ii). Suppose x is such that
(q : x) is maximal among all ideals of this form. Let y ∈ A\(q : x) ⊆ A\q. Using (1.12.i,iii) we have
(q : x) ⊆

(
(q : x) : y

)
= (q : xy), and this last is p′-primary by (4.4.ii) since we assumed xy /∈ q. As we are

assuming (q : x) maximal of this form, (q : xy) = (q : x), so for every z ∈ A, xyz ∈ q =⇒ xz ∈ q. Taking
z = yn, xyn+1 ∈ q =⇒ xyn ∈ q, and stringing these together, xyn ∈ q =⇒ x ∈ q. But we assumed x /∈ q,
so that there is no power yn of y such that yn ∈ (q : x), or in other words y /∈ r(q : x) = p′. Summarizing,
y ∈ A\(q : x) =⇒ y ∈ A\p′, or p′ ⊆ (q : x). But by assumption (q : x) ⊆ p′, so a maximal ideal of the
form (q : x), if such exists, is equal to r(q).

Now write a =
⋂n

i=1 qi for an irredundant primary decomposition, and set pi = r(qi).Suppose x ∈ A
is such that (a : x) is maximal among such ideals. (1.12.iv) gives (a : x) =

(⋂
qi : x

)
=
⋂
(qi : x), and

(4.4) shows each (qi : x) is (1) or is pi-primary. We can make any set of (qi : x) = (1), i ∈ I, by taking
x ∈ ⋂i∈I qi, so if (a : x) is maximal, while still (a : x) 6= (1) (⇐⇒ x /∈ a), we have all but one (qi : x) = (1),
and (qi : x) maximal among such proper ideals. The preceding paragraph shows this happens if and only
if (a : x) = (qi : x) = pi, a prime ideal belonging to a.

6 Alternately, suppose xy ∈ p(n); we will show x ∈ p(n) or y ∈ r(p(n)). There is s ∈ Sp such that sxy ∈ pn. If x /∈ p(n), then sx /∈ pn,
so the highest possible power of p containing sx is pn−1. Then, using (1.13.vi), we must have y ∈ p = r(pn).
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15. Let a be a decomposable ideal in a ring A, let Σ be an isolated set of prime ideals belonging to a, and let qΣ be the
intersection of the corresponding primary components. Let f be an element of A such that, for each prime ideal p
belonging to a, we have f ∈ p ⇐⇒ p /∈ Σ, and let S f be the set of all powers of f. Show that qΣ = S f(a) = (a : f n)

for all large n.
Note that the solution itself doesn’t explicitly use that Σ is composed of isolated primes of a. I think

the assumption is only needed because if one has an isolated prime p contained in an embedded prime P
with p /∈ Σ and P ∈ Σ, it’s not possible to require f ∈ p /∈ Σ but f /∈ P ∈ Σ.

(a : f n) ⊆ S f(a): By definition, S f(a) = {x ∈ A : ∃ f n ∈ S f ( f nx ∈ a)} = ⋃
n≥0(a : f n).

S f(a) = qΣ: Fix a primary decomposition a =
⋂m

i=1 qi, with pi = r(qi), such that Σ = {p1, . . . , pp}.7 8

Since pi are prime, we have S f ∩ pi 6= ∅ just if f ∈ pi just if pi /∈ Σ, so S f meets pp+1, . . . , pm but no others.
Then (4.9) says S f(a) =

⋂p
i=1 qi = qΣ.

∃n ≥ 0
(
qΣ ⊆ (a : f n)

)
: Since by (1.12.iv) we have (a : f n) =

⋂
(qi : f n), we are looking for n large

enough that for each i and each x ∈ qΣ we have f nx ∈ qi. In case pi ∈ Σ, we already have f 0x = x ∈ qΣ ⊆ qi.
For pi /∈ Σ, we have by the definition of f that f ∈ pi = r(qi). Thus there is ni ≥ 1 such that f ni

i ∈ qi. Taking
n = maxi ni we then have f nx ∈ qi for all i.

16. If A is a ring in which every ideal has a primary decomposition, show that every ring of fractions S−1 A has the same
property.

Recall from (3.11.i,ii) that every proper ideal of S−1 A is an extended ideal S−1a for some a� A with
S ∩ a = ∅. So let a proper ideal S−1a� S−1 A be given, and let a =

⋂
qi be a primary decomposition of a.

By (3.11.v) we then have S−1a = S−1(⋂ qi
)
=
⋂

S−1qi. But by (4.8) that the proper primary ideals of S−1 A
are exactly those ideals of the form S−1q with q primary in A such that S ∩ r(q) = ∅, so

⋂
S−1qi, perhaps

omitting a few qi that meet S, is a primary decomposition of S−1a.

17. Let A be a ring with the following property.
(L1) For every ideal a 6= (1) in A and every prime ideal p, there exists x /∈ p such that Sp(a) = (a : x), where
Sp = A\p.

Then every ideal in A is an intersection of (possibly infinitely many) primary ideals.
For future overuse, we state and prove a slight generalization of a result of [4.11]: if a 6= (1) is an ideal

of A and p is a prime ideal minimal over a, then q = Sp(a) is a p-primary ideal. To prove this, note that
in the ring A/a, p/a is a minimal prime, and [4.11] gives that q̄ = Sp/a(0̄) is p/a-primary. We claim that
q̄ = q/a, so that q, being the contraction of a primary ideal, is primary, by a remark on p. 50. Indeed, if
sx ∈ a for s ∈ Sp, then s̄x̄ = 0̄, where s̄ ∈ Sp/a = (A/a)\(p/a), the image of A\p. On the other hand, if
s̄x̄ = 0̄, with s̄ ∈ Sp/a, then (s + a)(x + a) ⊆ a, so sx ∈ a. Finally r(q̄) = p/a, so using the exercise (1.18)
on contraction (along A→ A/a), r(q) = r(q̄c) = (r(q̄))c = (p/a)c = p, so q is p-primary as claimed.910

Let p0 be minimal over a0 := a, and set q0 := Sp0(a0). By the above paragraph q0 is p0-primary and by
(L1), there is x0 /∈ p0 such that q0 = (a0 : x0).

We claim a0 = q0 ∩ [a0 + (x0)]. Indeed, a0 ⊆ q0 and a0 ⊆ a0 + (x0). On the other hand let a0 + b0x0 ∈
a0 + (x0) be arbitrary. If it is also in q0 = (a0 : x0), then x0(a0 + b0x0) = a0x0 + b0x2

0 ∈ a0, implying
b0x2

0 ∈ a0 ⊆ q0. Since x2n
0 /∈ p0 ⊇ q0, which is primary, we have b0 ∈ q0 = (a0 : x0), so b0x0 ∈ a0 and hence

a0 + b0x0 ∈ a0.

7 This paragraph adapted from Yimu Yin’s solution: http://pitt.edu/~yimuyin/research/AandM/exercises04.pdf
8 Here is a divergent, worse proof of S f(a) ⊆ qΣ that I came up with before looking up others’ solutions. Assume x ∈ S f(a). By

[4.12.i], S f(a) =
⋂

S f(qi), so there are ni ≥ 0 such that f ni x ∈ S f(qi) for each i. Since qi is primary, we have x ∈ qi or ( f ni )mi ∈ qi for
some ni ≥ 0, meaning f ∈ r(qi) = pi . By assumption f ∈ pi ⇐⇒ pi /∈ Σ, so for each qi with pi ∈ Σ we have x ∈ qi . Thus x ∈ qΣ.

9 We can arguably simplify the situation of the problem slightly by replacing A with A/a and a with (0̄). If we find a way to
write

⋂
p∈Ξ Sp/a(0̄) = (0̄) for some set Ξ ⊆ Spec(A), and these Sp/a(0̄) are primary, then contracting will show, by (1.18), that

a =
⋂

p∈Ξ Sp(a) is an intersection of primary ideals upstairs. Also, (L1) survives in A/a since, by (1.18), (0̄ : x̄p)c =
(
(0̄)c : (x̄p)c) =(

a : (xp) + a
)
= (a : xp), so (0̄ : x̄p) = (0̄ : x̄p)ce = (a : xp)e = Sp(a)/a. (Finally looking over the book’s “hint,” I’m no longer sure

this simplification really simplifies very much. In fact, it may make things a little harder.)
10 What I now want to do is as follows. Recall from [4.9] the set D(A) of prime ideals p of A such that there exists a ∈ A with p

minimal in the set of prime ideals containing (0 : a). By [4.10.iv],
⋂

p∈D(A) Sp(0) = 0. This would be what we wanted if we could be
assured the Sp(0) were all are primary. Let P be the set of minimal primes of A. If p ∈ P, then ([4.11]) Sp(0) = (0 : xp) is p-primary.
But it’s not clear we should have D(A) = Spec(A) or D(A) = P. We also have

⋂
p∈P Sp(0) =

⋂
p∈P

(
0 : (xp)

)
=
(
0 : ∑p∈P(xp)

)
,

which will equal zero if ∑p∈P(xp) contains a non-zero-divisor. But I am not sure why this would be the case.
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Since this is so, there is an ideal a1 ⊇ a0 + (x0) maximal with respect to the requirement that q0 ∩ a1 =
a0. Suppose a1 6= (1). Then there is a prime ideal p1 minimal among those containing a1, and q1 := Sp1(a1)
is p1-primary. By (L1), q1 = (a1 : x1) for some x1 /∈ p1. By the same argument as the previous paragraph,
replacing every subscript 0 by a 1, we see a1 = q1 ∩ [a1 + (x1)]. Then a0 = q0 ∩ a1 = q0 ∩ q1 ∩ [a1 + (x1)].

We continue this process of producing qα by transfinite induction. For the “successor” step, suppose
we have a0 = [aα + (xα)] ∩

⋂
β≤α qβ for some ordinal α and some primary ideals qβ and aα 6⊆ r(qβ) for any

β < α. If aα 6= (1), then as above there is aα+1 containing aα + (xα), maximal subject to the constraint that
a0 = aα+1 ∩

⋂
β≤α qβ. Take pα+1 a minimal prime over aα+1, so that qα+1 = Spα+1(aα+1) is pα+1-primary. By

(L1) there is xα+1 /∈ pα+1 such that qα+1 = (aα+1 : xα+1). The same argument showing a0 = q0 ∩ [a0 + (x0)]
shows that aα+1 = qα+1 ∩ [aα+1 + (xα+1)], so

a0 = aα+1 ∩
⋂

β≤α

qβ = [aα+1 + (xα+1)] ∩
⋂

β≤α+1

qβ.

For the “limit” step, suppose that for all α < β we have a0 = aα+1 ∩
⋂

γ≤α qγ, with aα ( aγ for α < γ.
Set aβ :=

⋃
α<β aα. Then aα ( aβ for each α < β, and

aβ ∩
⋂

α<β

qα =
⋃

α<β

(
aα ∩

⋂
α<β

qα

)
=

⋃
α+1<β

(
aα+1∩

⋂
γ≤α

qγ ∩
⋂

α<γ<β

qγ

)
=

⋃
α+1<β

(
a0∩

⋂
γ<β

qγ

)
=

⋃
α+1<β

a0 = a0.

If at any stage we get aα = (1) we are done. In particular, if for some n < ω we have an = (1),
then we have found a primary decomposition of a = a0. Since for α < β we have strict containment
aα ( aβ, the number of different aα we encounter is bounded by the cardinality of A, so the process does
eventually terminate, leaving us with a decomposition a =

⋂
α<β qα for some primary ideals qα and some

β of cardinality less than that of A.

18. Consider the following condition on a ring A:
(L2) Given an ideal a and a descending chain S1 ⊇ S2 ⊇ · · · ⊇ Sn ⊇ · · · of multiplicatively closed subsets of A,
there exists an integer n such that Sn(a) = Sn+1(a) = · · · . Prove that the following are equivalent:
i) Every ideal in A has a primary decomposition;
ii) A satisfies (L1) and (L2).

i) =⇒ (L1): Let a� A have primary decomposition
⋂
qi and let p ∈ Spec(A) and Sp = A\p. Also let

pi = r(qi). Let Σ be the set of indices i with qi ⊆ pi ⊆ p (hence qi ∩ Sp = ∅) and Ξ the set of those with
qi 6⊆ p (hence qi ∩ Sp 6= ∅). (4.9) says that Sp(a) =

⋂
i∈Σ qi. Now (a : x) =

⋂m
i=1(qi : x), and (qi : x) = (1)

if x ∈ qi and = qi if x /∈ pi, so we are looking for x ∈ ⋂m
i∈Ξ qi\

⋃
i∈Σ pi. For each i ∈ Ξ, there is an element

xi ∈ qi\p, and then x := ∏i∈Ξ xi ∈
⋂
qi\p since p is prime. But since

⋃
i∈Σ pi ⊆ p, we have (a : x) = Sp(a)

as desired.
i) =⇒ (L2): Let a� A have primary decomposition

⋂m
i=1 qi. (4.9) states that Sn(a) =

⋂
i∈Ξn qi, where

Ξn ⊆ {1, . . . , m} is the set of indices i such that Sn ∩ r(qi) = ∅. As n gets bigger, Ξn decreases; but it can
decrease at most m times, so at some finite stage it is all done decreasing and Sn(a) has stabilized.

ii) =⇒ i): Let a� A be given. [4.17] shows there exist primary qα, α < β, such that a =
⋂
qα. We

will be done if we can show finitely many suffice. Write pα = r(qα) and Sβ = A\⋃α<β pα. Then [3.7.i]
shows that the Sα are saturated multiplicative submonoids of A and apparently Sα ⊇ Sβ for α < β.
Recall from the proof of [4.17] that at each finite stage of the construction we have an ideal an+1 such
that a = an+1 ∩ qn ∩ · · · ∩ q0, and an+1 6⊆ pm for m < n + 1. Then an+1 ∩ Sn 6= ∅ and [4.12.iii] says that
Sn(an+1) = (1), so Sn(a) = q0 ∩ · · · ∩ qn. (L2) says that the sequence Sn(a) stabilizes in finitely many steps,
say at Sn(a) = q0 ∩ · · · ∩ qn. Then for all α ≥ n we have Sα(a) = q0 ∩ · · · ∩ qn.

Write a = Sn(a) ∩ qα ∩
⋂

γ/∈{0, ..., n, α} qγ. Then taking Sα and using the finitary distributive property
[4.12.i], we should get a term Sα(qα). Note qα ⊆ pα does not meet A\pα ⊇ Sα. Thus if x ∈ Sα(qα), so there
is s ∈ Sα such that sx ∈ qα, that qα is primary implies ∃n (sn ∈ qα) (which cannot happen) or x ∈ qα, so
the contributed term is Sα(qα) = qα. Thus

⋂n
i=0 qi ∩ qα ∩ · · · =

⋂n
i=0 qi, so

⋂n
i=0 qi ⊆ qα. Since this holds for

all α > n, we see a =
⋂

α<β qα =
⋂n

i=0 qi has a primary decomposition.
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19. Let A be a ring and p a prime ideal of A. Show that every p-primary ideal contains Sp(0), the kernel of the canonical
homomorphism A→ Ap.

This was proved for the first statement of [4.11].

Suppose that A satisfies the following condition: for every prime ideal p, the intersection of all p-primary ideals
of A is equal to Sp(0). (Noetherian rings satisfy this condition: see Chapter 10.) Let p1, . . . , pn be distinct prime
ideals, none of which is a minimal prime ideal of A. Then there exists an ideal a in A whose associated prime ideals
are p1, . . . , pn.

We attempt an induction proof. For n = 1, the ideal a = p1 satisfies the condition. Suppose that the
result has been proved for n, and let pn+1 be one last prime. Then there is an ideal b with a primary
decomposition

⋂n
i=1 qi where r(qi) = pi. What we’d like is to take any pn+1-primary ideal qn+1 and let

a = b∩ qn+1. This will give us the decomposition we want unless it is redundant. If it is redundant, there
is some term containing the intersection of the rest. Taking radicals and using the distributivity property
(1.13.iii), the intersection of some n of the primes is contained in the remaining prime. By (1.11.ii), this
implies that the big prime contains one of the first n. We can arrange then, by reordering the pi so that
pn+1 is maximal among them, that qn+1 we don’t have

⋂
i 6=j qi ⊆ qj for any j 6= n + 1. Write p′ = pn+1

Now we only have to worry about the possibility that
⋂n

i=1 qi ⊆ q′. If there is a p′-primary q′ for
which this doesn’t happen, we are done. Otherwise, taking the intersection of both sides over all such,
we see

⋂n
i=1 qi ⊆ Sp′(0), using the first part of [4.11]. By [4.10.iii], for a smaller prime p ⊆ p′ we have⋂n

i=1 qi ⊆ Sp′(0) ⊆ Sp(0); in particular, we may take p minimal. Now again taking radicals of both sides
and using (1.13.iii), we get

⋂n
i=1 pi ⊆ p. By (1.11.ii) again, this means pi ⊆ p for some i ∈ {1, . . . , n}; but

then by minimality of p, we have pi = p. But the assumption of the problem was that none of the pi were
minimal, so the possibility that worried us in this paragraph is forestalled, and we are done.

Primary decomposition of modules
Practically the whole of this chapter can be transposed to the context of modules over a ring A. The following

exercises indicate how this is done.

20. Let M be a fixed A-module, N a submodule of M. The radical of N in M is defined to be

rM(N) = {x ∈ A : xq M ⊆ N for some q > 0}.

Show that rM(N) = r(N : M) = r
(
Ann(M/N)

)
. In particular, rM(N) is an ideal.

x ∈ rM(N) ⇐⇒ ∃q > 0 (xq M ⊆ N) ⇐⇒ ∃q > 0
(

xq ∈ (N : M)
)
⇐⇒ x ∈ r(N : M).

By (2.2.ii), and since N ⊆ M, we have (N : M) = Ann
(
(N + M)/N

)
= Ann(M/N), so taking radicals,

r(N : M) = r
(
Ann(M/N)

)
.

State and prove the formulas for rM analogous to (1.13).
−i) P ⊆ N =⇒ rM(P) ⊆ rM(N): xq M ⊆ P, implies xq M ⊆ N.
0) rB(Cn) = rB(C) for B an A-algebra, C a subalgebra, and n > 0: Cn ⊆ C, so rB(Cn) ⊆ rB(C) by −i).

If xqB ⊆ C, then taking nth powers,
and remembering 1 ∈ B, gives xqnB ⊆ Cn.

i) rB(b) ⊇ f−1(b), for f : A→ B an A-algebra and b� B: If b ∈ b, then bB = (b) ⊆ b,
and by definition if f(a) = b, then aB = f(a)B ⊆ b.

ii) r
(
rM(N)

)
= rM(N): x ∈ r

(
rM(N

)
) ⇐⇒ ∃p > 0

(
xp ∈ rM(N)

)
⇐⇒ ∃p, q > 0

(
xpq M ⊆ N

)
⇐⇒ x ∈ rM(N).

iii) rM(N ∩ P) = rM(N) ∩ rM(P): If xn M ⊆ N ∩ P, then trivially xn M ⊆ N and xn M ⊆ P.
If xn M ⊆ N and xp M ⊆ P, then for q = max{n, p} we have xq M ⊆ N ∩ P.

iv) rM(N) = (1) ⇐⇒ M = N: 1 ∈ r
(
Ann(M/N)

)
⇐⇒ 1 ∈ Ann(M/N) ⇐⇒ M/N = 0 ⇐⇒ M = N.

v) rM(N + P) ⊇ r
(
rM(N) + rM(P)

)
: By −i), rM(N), rM(P) ⊆ rM(N + P), so rM(N) + rM(P) ⊆ rM(N + P).

Taking radicals and applying ii), r
(
rM(N) + rM(P)

)
⊆ r
(
rM(N + P)

)
= rM(N + P).

The converse is false. Let A 6= 0, M = A⊕ A with action a(b, c) = (ab, ac),
N = A⊕ (0), and P = (0)⊕ A,

Then M = N + P, so rM(N + P) = (1), but rM(N) = rM(P) = 0.
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vi) If p is prime, r(pn) = p for all n > 0: I’ve no clue how to interpret a power of a module.
I seem to have failed this problem, in that I wasn’t sure in all cases what the appropriately analogous

formulas were. The ones involving algebras were stretches, brought about by the difficulty of comparing
N and rM(N), one being a submodule of M and the other being an ideal of A.

21. An element x ∈ A defines an endomorphism φx of M, namely m 7→ xm. The element x is said to be a zero-divisor
(resp. nilpotent) in M if φx is not injective (resp. is nilpotent). A submodule Q of M is primary in M if Q 6= M
and every zero-divisor in M/Q is nilpotent.

Show that if Q is primary in M, then (Q : M) is a primary ideal and hence rM(Q) is prime ideal p. We say that
Q is p-primary (in M).

Suppose xy ∈ (Q : M) and y /∈ (Q : M) so that xy(M/Q) = 0 but y(M/Q) 6= 0. Then the endo-
morphism φ̄x ◦ φ̄y = φ̄xy of M/Q is zero, though φ̄y is not. Then φ̄x has non-empty kernel, so x is a
zero-divisor of Q. By the definition of “primary,” x is then nilpotent in M/Q, so for some n > 0 we have
0 = φ̄◦nx = φ̄xn : M/Q → M/Q. Then the associated endomorphism φxn : m 7→ xnm of M has image in Q,
so xn ∈ (Q : M). Thus (Q : M) is primary.

Prove the analogues of (4.3) and (4.4).
Lemma 4.3*. If Qi ⊆ M (1 ≤ i ≤ n) are p-primary, then Q =

⋂n
i=1 Qi is p-primary.

Since the Qi are primary, hence not equal to M, their intersection Q 6= M. Suppose x ∈ A is a zero-
divisor of M/Q. Then there is some nonzero m ∈ M such that xm ∈ Q =

⋂
Qi. Then x is a zero-divisor

of each M/Qi, so by assumption is nilpotent, meaning there is ni > 0 such that xni M ⊆ Qi. Taking
n = maxi ni we see xn M ⊆ Q, so x is nilpotent in M/Q. Thus Q is primary. As for the radical,

r(Q : M) = r
(⋂

Qi : M
) (1.12.iv)

= r
(⋂

(Qi : M)
) (1.13.iii)

=
⋂

r(Qi : M) =
⋂

i
p = p.

Lemma 4.4*. i) Let N ⊆ M be A-modules and m ∈ N. Then (N : m) = (1);
ii) Let Q ⊆ M be a p-primary submodule, and m ∈ M. If m /∈ Q then (Q : m) is p-primary;
iii) Let Q ⊆ M be a p-primary submodule, and x ∈ A. If x /∈ p then (Q : x) := {m ∈ M : xm ∈ Q} = Q.

i): Since m ∈ N and N is an A-module, Am ⊆ N, so (N : m) = (1).
ii): Suppose xy ∈ (Q : m), so xym ∈ Q. Suppose y /∈ (Q : m), so that ym /∈ Q. Then x is a zero-divisor

in M/Q, so by the assumption Q is primary, there is n > 0 such that xn acts as zero on M/Q. Then
xn M ⊆ Q, and in particular xnm ∈ Q, so xn ∈ (Q : m). Thus (Q : m) is primary.

Note that m ∈ M implies (Q : M) ⊆ (Q : m). Taking radicals, p ⊆ r(Q : m). On the other hand assume
x ∈ r(Q : m). Then for some minimal n > 0 we have xnm ∈ Q. Then x(xn−1m̄) = 0̄ in M/Q, so x is a
zero-divisor of M/Q and hence there is p > 0 such that xp M ⊆ Q. Then x ∈ rM(Q) = p. Thus (Q : m) is
p-primary.

iii): Obviously if m ∈ Q then xm ∈ Q, so Q ⊆ (Q : x). By contraposition, we will suppose m ∈ (Q : x)\Q
and show x ∈ p. Well, xm ∈ Q, and m̄ 6= 0̄ in M/Q, so x is a zero-divisor, and for some power n > 0 we
have xn M ⊆ Q. But then x ∈ rM(Q) = p.

22. A primary decomposition of N in M is a representation of N as an intersection

N = Q1 ∩ · · · ∩Qn

of primary submodules of M; it is a minimal primary decomposition if the ideals pi = rM(Qi) are all distinct
and if none of the components Qi can be omitted from the intersection; that is Qi 6⊇

⋂
j 6=i Qj (1 ≤ i ≤ n).

Prove the analogue of (4.5), that the prime ideals pi depend only on N (and M). They are called the prime ideals
belonging to N in M.

Theorem 4.5*. Let N be a decomposable submodule of M and let N =
⋂n

i=1 Qi be a minimal primary decomposition
of N. Let pi = rM(Qi) (1 ≤ i ≤ n). Then the pi are precisely the prime ideals which occur in the set of ideals
r(N : m) (m ∈ M), and hence are independent of the particular decomposition of N.
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Ex. 4.23 Chapter 4: Primary Decomposition

Set Pi =
⋂

j 6=i Qj. By the assumption of irredundancy, Qi ( Pi. Let m ∈ Pi\Qi, and consider the ideal

(N : m) = (Pi ∩Qi : m)
(1.12.iv)
= (Pi : m) ∩ (Qi : m). By (4.4*.i,ii) of [4.21] above (Pi : m) = M and (Qi : m) is

pi-primary, so (N : m) is pi-primary. Thus each pi is r(N : m) for some m ∈ M.11

Suppose on the other hand that r(N : m) is a prime p for some m ∈ M. Note (N : m) =
(⋂

Qi :

m
) (1.12.iv)

=
⋂
(Qi : m), so by (4.4*) above, p = r(N : m) =

⋂
m/∈Qi

pi. Since the prime p is an intersection of
some of the pi, (1.11.ii) shows p = pi for some i.

Show that they are also the prime ideals belonging to 0 in M/N.
Note that for any module P ⊆ M we have (N : P) = (0+ N : P+ N). Indeed xP ⊆ N ⇐⇒ x(P+ N) ⊆

0 + N = N. Taking radicals, r(N : P) = r(0 + N : P + N). Specializing to cyclic submodules Am gives
r(N : m) = r(0̄ : m̄), so one is prime just if the other is, and by Theorem 4.5*, the same primes belong to
N ⊆ M and 0 ⊆ M/N.

23. State and prove the analogues of (4.6)–(4.11) inclusive. (There is no loss of generality in taking N = 0.)
We must convince ourselves we genuinely aren’t losing any generality. What we should do is try

to lift a primary decomposition, as we know (p. 50) primary ideals are preserved under contraction.
So suppose we are given an irredundant primary decomposition 0 =

⋂
Qi/N in M/N (recalling the

correspondence (p. 18) between submodules of M/N and submodules of M containing N). Apparently
N =

⋂
Qi, and we should show that the Qi are rM/N(Qi/N)-primary. Much as in the last part of [4.22], we

have (Qi/N : M/N) = {x ∈ A : xM ⊆ Qi} = (Qi : M), and taking radicals gives rM(Qi) = rM/N(Qi/N).
Now we must show Qi is primary. Suppose x ∈ A is a zero-divisor of M/Qi. The third isomorphism
theorem (2.1.i) gives M/Qi

∼= (M/N)/(Qi/N), so x is a zero-divisor of the latter, hence nilpotent since
Qi/N is primary, hence nilpotent in M/Qi since they are isomorphic. Thus Qi is primary. It is clear
that irredundancy is preserved under lifting, as Qi/N ⊇ ⋂

j 6=i Qj/N ⇐⇒ Qi ⊇
⋂

j 6=i Qj by the order-
preserving correspondence of p. 18.12

Proposition 4.6*. Let N ⊆ M be a decomposable module. Then any prime ideal p ⊇ rM(N) contains a minimal
prime ideal belonging to N, and thus the minimal prime ideals of N are precisely the minimal elements in the set of
all prime ideals containing rM(N).

Write N =
⋂

Qi, so that ([4.20.iii]) rM(N) =
⋂

rM(Qi) =
⋂
pi. If p ⊇ ⋂

pi, then by (1.11.ii), there is i
with p ⊇ pi, and surely for any pj ⊆ pi we have pj ⊆ p, so p contains an isolated prime ideal of N. In
particular, if p is minimal over rM(N), this shows it equals some isolated pj.

Proposition 4.7*. Let N ⊆ M be a decomposable module, let N =
⋂n

i=1 Qi be a minimal primary decomposition,
and let pi = rM(Qi). Then

n⋃
i=1

pi = {x ∈ A : (N : x) 6= N}.

In particular, if 0 ⊆ M is decomposable, the set D ⊆ A of zero-divisors of M is the union of the prime ideals
belonging to 0.

Since by [4.22], the set of primes associated to N ⊆ M is the same as that associated to 0 ⊆ M/N, and
for x ∈ A we have (N : x) 6= N ⊆ M just if (0 : x) 6= 0 ⊆ M/N, we can indeed assume N = 0.

Then the right-hand side D is the set of x such that there exists m 6= 0 ∈ M such that m ∈ (0 : x),
or xm = 0; with is to say D is the set of zero-divisors of M. Now if x ∈ r(D), then there is a nonzero
m ∈ M and a least n > 0 such that xnm = 0. Then m′ = xn−1m 6= 0 and xm = 0, so x ∈ D. Thus
D = r(D) = r

(⋃
m 6=0(0 : m)

)
=
⋃

m 6=0 r(0 : m). The proof of Theorem 4.5* ([4.22]) shows that each r(0 : m)

for m 6= 0 is the intersection of some of the pi, and each pi = r(0 : m) for some m. Thus D =
⋃
pi.

11 I owe this part of the argument to Multiplicative Theory of Ideals by Max D. Larsen and Paul Joseph McCarthy. I had initially
started reasoning about ideals of the form

(
(Q : M) : x

)
, and was trying to prove that if N =

⋂
Qi is an irredundant decomposition,

then (N : M) =
⋂
(Qi : M) was likewise.

12 Note that, on the other hand primary decomposition does not generally survive the quotient process. Indeed, Example 3) on
p. 51 shows that the primary ([4.8]) ideal (x, z)2 of k[x, y, z], where k is a field, has image no longer primary in the quotient ring
k[x, y, z]/(xy− z2).
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Proposition 4.8*. Let S be a multiplicative submonoid of A, and let Q ⊆ M be a p-primary module.
i) If S ∩ p 6= ∅, then S−1Q = S−1M.
ii) If S ∩ p = ∅, then S−1Q is a S−1p-primary submodule of S−1M, and its preimage (contraction) under the
canonical map M→ S−1M is Q. Hence primary S−1 A-submodules of S−1M correspond to primary A-submodules
of M.

i): Let s ∈ S ∩ p. Since p = rM(Q), there is n > 0 such that sn M ⊆ Q. Then any element m/t ∈ S−1M
can be written as snm/snt ∈ S−1Q.

ii): Suppose x/s ∈ S−1 A is a zero-divisor in S−1M/S−1Q. Then there is some non-zero m/t ∈
S−1M/S−1Q such that (x/s)m/t = xm/st = 0. Then xm/st ∈ S−1Q, so there is u ∈ S such that
uxm ∈ Q ⊆ M. Then since m/t was non-zero, m /∈ Q, so ux is a zero-divisor of M/Q, hence nilpotent since
Q is primary. Then there is n > 0 such that (ux)n M ⊆ Q. That means xnS−1M = xnunS−1M ⊆ S−1Q, so
x is nilpotent in S−1M/S−1Q, meaning S−1Q is primary.

If x ∈ p = rM(Q), let n > 0 be such that xn M ⊆ Q. Then for arbitrary s ∈ S we have (x/s)nS−1M ⊆
S−1Q, so x/s ∈ r(S−1Q : S−1M) = rS−1 M(S−1Q). On the other hand, if x/s ∈ rS−1 M(S−1Q) then
(xn/1)S−1M = (x/s)nS−1M ⊆ S−1Q for some n > 0. Thus for every m/t ∈ S−1M we have xnm/st ∈
S−1Q. This means there is u ∈ S such that uxnm ∈ Q. Then uxn is a zero-divisor of M/Q, so nilpotent in
M/Q, and so some power takes M into Q, and uxn ∈ rM(Q) = p. But then since p is prime and u /∈ p we
have xn ∈ p, so x ∈ r(p) = p, and finally x/s ∈ S−1p. Therefore S−1Q is S−1p-primary.

Now suppose m ∈ M is such that m/1 ∈ S−1Q. Then there is s ∈ S such that sm ∈ Q. By (4.7*) above,
p = {x ∈ A : Q 6= (Q : x)}, so m ∈ (Q : s) = Q as s /∈ p.

Finally, we show that every S−1 A-submodule N′ of S−1M is an extended module of the form S−1N for
some A-submodule N ⊆ M. Indeed, let N be the set of n ∈ M such that n/1 ∈ N′, (which we can also think
of as the contraction of N along the canonical map f: M → S−1M). If n/s ∈ N′, then n/1 = s(n/s) ∈ N′,
so n ∈ N and hence n/s ∈ S−1N. On the other hand f(N) = f

(
f−1(N′)

)
⊆ N′, so S−1N ⊆ N′.

Proposition 4.9*. Let S be a multiplicative submonoid of A and let N ⊆ M be a decomposable ideal. Let N =⋂n
i=1 Qi be a minimal primary decomposition of N. Let pi = rM(Qi) and suppose the Qi numbered so that S meets

pp+1, . . . , pn but not p1, . . . , pp. Write S(N) = {m ∈ M : m/1 ∈ S−1N}. Then

S−1N =
p⋂

i=1

S−1Qi, S(N) =
p⋂

i=1

Qi,

and these are minimal primary decompositions.
By (3.4.ii) we have S−1N =

⋂n
i=1 S−1Qi. By (4.8*.i) above, we have S−1Qi = S−1M for i > p, so

S−1N =
⋂p

i=1 S−1Qi, and by (4.8*.ii), S−1Qi is S−1pi-primary for i ≤ p. Since these pi don’t meet S, by
(3.11.iv), the S−1pi are distinct primes of S−1 A. If we had, for some j ≤ p, that S−1Qj ⊇

⋂p
j 6=i=1 S−1Qi, then

taking preimages under f : M→ S−1M we see that Qj ⊇
⋂

j 6=i Qi, contradicting the assumed irredundancy
of the Qi. Thus S−1N =

⋂p
i=1 S−1Qi is an irredundant primary decomposition of S−1N. Taking preimages

under f : M→ S−1M,

S(N) = f−1(S−1N) = f−1
( p⋂

i=1

S−1Qi

)
=

p⋂
i=1

f−1(S−1Qi) =
p⋂

i=1

Qi

by (4.8*.ii) again. This is an irredundant primary decomposition since the decomposition of N is.

Theorem 4.10*. Let N ⊆ M be a decomposable ideal, let N =
⋂n

i=1 Qi be a minimal primary decomposition of N,
let pi = rM(Qi), and let Σ = {pi1 , . . . , pim} be an isolated set of prime ideals of N. Then

⋂
pi∈Σ Qi is independent

of the decomposition.
Let S = A\⋃Σ. Then S is a multiplicative submonoid, and for p ∈ Σ we have p∩ S = ∅, while if p /∈ Σ,

then since p is not contained in an element of Σ by isolation, (1.11.i) shows p 6⊆ ⋃
Σ, so p ∩ S 6= ∅. Then⋂

pi∈Σ Qi = S(N) by (4.9*), so this intersection is actually independent of the Qi chosen.

Corollary 4.11*. The isolated primary components (i.e., the primary components Qi corresponding to minimal prime
ideals pi) are uniquely determined by N.

Let pi be an isolated prime of N. Taking Σ = {pi} and Spi = A\pi in (4.10*) above gives Spi (N) = Qi
independent of the choice of decomposition.
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EXERCISES
1. Let f: A → B be an integral homomorphism of rings. Show that f ∗ : Spec(B) → Spec(A) is a closed mapping,

i.e. that it maps closed sets to closed sets. (This is a geometrical equivalent of (5.10).)

Write C = f(A). That f is integral means that B is integral over C. Write f: A
p
−−� C i

↪→ B. f will be
closed if both p and i are closed.

But p∗ is a homeomorphism between Spec(C) and V
(

ker(p)
)
⊆ Spec(A) by [1.21.v]. For any closed

subset K ⊆ Spec(C), we have p∗(K) closed in the subspace topology on V
(

ker(p)
)
. Since this subset of

Spec(A) is closed as well, p∗(K) is closed in Spec(A). Thus all surjections induce closed maps on prime
spectra.

For closedness of i∗, any closed subset of Spec(B) is ([1.15.i]) the set V(b) of all primes containing
some radical ideal b� B. Let c = i∗(b) = b ∩ C, we claim i∗

(
V(b)

)
= V(c). If b ⊆ q ∈ Spec(B), then

intersecting both sides with C gives c ⊆ i∗(q) ∈ Spec(C), so i∗
(
V(b)

)
⊆ V(c). Surjectivity is a little less

obvious. Every prime p ⊇ c induces a quotient prime p̄ of C/c. (5.6.i) says j : C/c � B/b is integral, so by
(5.10), there is there is q̄ ∈ Spec(B/b) (the image of q ∈ Spec(B)) such that j∗(q̄) = p̄. Thus j∗ surjectively
maps Spec(B/b) ≈ V(b) to Spec(C/c) ≈ V(c), so using [3.21.iii], i∗

(
V(b)

)
= V(c) and i∗ is closed.1

2. Let A be a subring of a ring B such that B is integral over A, and let f: A → Ω be a homomorphism of A into an
algebraically closed field Ω. Show that f can be extended to a homomorphism of B into Ω.

Ω is an integral domain, so f(A) is as well. Thus p = ker( f ) is a prime ideal of A, and f(A) ∼= A/p. By
Theorem 5.10, there is a prime ideal q� B with q∩ A = p. Then B/q, by (5.6.i), is integral over A/p. Thus
it suffices to prove the result in the case A ⊆ B are integral domains with B integral over A and f: A � Ω
is an injection.

We use Zorn’s Lemma to construct an embedding B � Ω. Let Σ be the set of pairs (C, σ), where
A ⊆ C ⊆ B/ and σ : C → Ω is an embedding, and such that σ|A = f. Partially order Σ by (C, σ) ≤ (C′, σ′)
just if C ⊆ C′ and σ = σ′|C. Σ 6= ∅ since the inclusion (A, f ) is a minimal element. If

〈
(Cα, σα)

〉
α

is a
chain in Σ, then

⋃
Cα ⊆ C and σ =

⋃
σα is a well defined homomorphism, injective since each σα is, so

every chain has an upper bound. By Zorn’s Lemma, there is a maximal element (C, σ) ∈ Σ. We will be
done if C = B.

Suppose for a contradiction then there is b ∈ B\C, and b is integral over A, hence a fortiori over C. Say
b satisfies p(x) = ∑ cixi ∈ C[x], and write (σp)(x) = ∑ σ(ci)xi ∈ Ω[x] Then the expected composition

C[x]→ Ω[x]→ Ω[x]/
(
(σp)(x)

) ∼= Ω

has kernel
(

p(x)
)
, and so descends to an injection C[x]/

(
p(x)

)
� Ω restricting to σ on C. But C[x]/

(
p(x)

) ∼=
C[b], and by assumption C ( C[b] ⊆ B so the induced map C[b] � Ω contradicts maximality of σ.

3. Let f : B→ B′ be a homomorphism of A-algebras, and let C be an A-algebra. If f is integral, prove that f ⊗ 1 : B⊗AC →
B′⊗AC is integral. (This includes (5.6) ii) as a special case.)

Start with a decomposable element x⊗ c ∈ B′⊗AC. Since x is integral over B, it satisfies some poly-
nomial equation ∑n

i=0 f(bi)xi = 0 for bi ∈ B (with leading coefficient bn = 1). Then ∑ f(bi)xi ⊗ cn = 0 in
B′⊗AC. Rearranging, 0 = ∑

(
f(bi)⊗ cn−i)(x⊗ c)i. But each f(bi)⊗ cn−i ∈ im( f ⊗ idC), so x⊗ c is integral

over im( f ⊗ idC). But element of B′⊗AC is a finite sum of elements of the form x⊗ c, so (5.3) shows that
the whole ring B′⊗AC is integral over im( f ⊗ idC).

1 I went this quotient route because first applying (5.10) for p ∈ V(c) gives a prime q ∈ Spec(B), but it wasn’t completely obvious
to me that q ∈ V(b).
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The parenthetical comment follows from setting C = S−1 A and using (3.5), which states S−1 A⊗AB ∼=
S−1B.

4. Let A be a subring of B such that B is integral over A. Let n be a maximal ideal of B and let m = n ∩ A be the
corresponding maximal ideal of A (see (5.8)). Is Bn necessarily integral over Am?

Per the book’s suggestion, no. Let k be a field, of characteristic 6= 2 so that x + 1 6= x − 1, B = k[x],
and A = k[x2 − 1]. Then x ∈ B satisfies y2 − [1− (x2 − 1)] = 0 in A[y], so is integral over A. Then by
(5.3), B is integral over A. Now consider the ideal n := (x− 1) of B, and let m := n ∩ A = (x2 − 1). Then
Sm := A\m. As x + 1 /∈ n we have 1/(x + 1) ∈ Bn. If 1/(x + 1) were integral over Am, we would have
ai/si ∈ S−1

m A (in least terms) such that ∑n
i=0[ai/si][1/(x + 1)]i = 0 in Bn and an/sn = 1. We can rewrite

that as ∑ ai(x + 1)n−i/si(x + 1)n = 0, and, B being an integral domain, we can multiply through by
(x + 1)n ∏n

i=0 si to get ∑ aiti(x + 1)n−i = 0 in B, where ti = ∏j 6=i sj ∈ A\(x2 − 1) and an = 1. Then (x + 1)
divides each term but possibly antn(x + 1)0 = tn. Since 0 ∈ (x + 1), this forces tn ∈ (x + 1)∩ A = (x2− 1),
a contradiction.

5. Let A ⊆ B be rings, B integral over A.
i) If x ∈ A is a unit in B then it is a unit of A.

Let x ∈ A ∩ B×. Then x is not in any n ∈ Max(B). Let m ∈ Max(A). By (4.10), there is n ∈ Spec(B)
such that n ∩ A = m, and by (5.8), n is maximal. Thus x /∈ n, hence x /∈ m. As m was arbitrary, x is in no
maximal ideal of A, and hence x ∈ A×.2

ii) The Jacobson radical of A is the contraction of the Jacobson radical of B.
For a maximal ideal m of A, (5.10) and (5.8) give a unique maximal ideal n of B such that n ∩ A = m.

Write N ⊆ Max(B) for the set of these. Then

R(A) =
⋂

Max(A) =
⋂
n∈N

(A ∩ n) = A ∩
⋂

N ⊇ A ∩
⋂

Max(B) = A ∩R(B).

On the other hand, by (5.8) again, the set M = {n∩ A : n ∈ Max(B)} is a subset of Max(A). Thus

A ∩R(B) = A ∩
⋂

Max(B) =
⋂

n∈Max(B)

(A ∩ n) =
⋂

M ⊇ R(A).

6. Let B1, . . . , Bn be integral A-algebras. Show that ∏n
i=1 Bi is an integral A-algebra.

Use induction, and assume we have the n = 2 case. The base step n = 1 is trivial, so suppose we
have proved the proposition up to n and have B1, . . . , Bn+1 integral A-algebras. The inductive assumption
yields that ∏n

i=1 Bi is an integral A-algebra, and the n = 2 case shows ∏n+1
i=1 Bi

∼= ∏n
i=1 Bi × Bn+1 is an

integral A-algebra as well.
So it is now enough to prove the n = 2 case. Let B and C be integral A-algebras, and (b, c) ∈ B ×

C. Then3, 4there are p(x) ∈ A[x] such that p(b) = 0 in B and q(x) ∈ A[x] such that q(c) = 0 in C.
Therefore p

(
(b, c)

)
=
(
0, p(c)

)
and q

(
(b, c)

)
=
(
q(b), 0

)
in B× C, so multiplying these, (pq)

(
(b, c)

)
=

p
(
(b, c)

)
q
(
(b, c)

)
=
(
0, p(c)

)(
q(b), 0

)
= (0, 0), where (pq)(x) has leading coefficient 1, showing (b, c) is

integral over the image of A.

2 The proof from (5.7) also works without modification. Suppose x−1 ∈ B. By uniqueness of inverses in B, the only possible inverse
of x in A is x−1, so we need to show x−1 ∈ A. Since x−1 is integral over A, there are n > 0 and ai ∈ A such that x−n = ∑n−1

i=0 aix−i

holds in B. Multiplying through by xn−1 yields x−1 = ∑n−1
j=0 an−1−jxj, so x−1 ∈ A.

3 This good solution taken from .
4 Here is a terrible solution I came up with myself. First we show that f(A)× g(A) is integral over the subalgebra A′ = im( f, g) =

{( f(a), g(a) : a ∈ A} = A · (1, 1). Now f(A) × g(A) is generated over A′ by (1, 0) and (0, 1), so it is finitely generated, and
φ : (x, y) 7→ (bx, cy) is an A-module endomorphism of f(A)× g(A). (2.4) then gives us an equation of the form ∑i≤n aiφ

i = 0, where
an = 1; applying both sides to (1, 1) gives ∑i≤n ai(b, c)i = (0, 0), showing (b, c) is integral over A′.

Since A′′ = f(A) × g(A) is integral over A′ = im( f, g), by (5.4) if B × C is integral over A′′, it will also be integral over A′. It
suffices by (5.3) to show each of B× {0} and {0} × C is integral over A′′. We will prove it for B× {0}, the argument for {0} × C
being symmetric. So let (b, 0) ∈ B× C. As b is integral over im A ⊆ B, there are ai ∈ A such that ∑0≤i≤n aibi = 0. Then ∑ ai(b, 0)i =(
0, g(a0)

)
∈ A′′. Setting a′i = f(ai) for i 6= 0 and a′0 =

(
f(a0), 0

)
we have ∑ ai(b, 0)i = (0, 0), so (b, 0) is integral over A′′.
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7. Let A be a subring of a ring B, such that the set B\A is closed under multiplication. Show that A is integrally closed
in B.

Let b ∈ B be integral over A, and let n ≥ 2 be such that b satisfies an equation bn + an−1bn−1 + · · ·+
a1b + a0 = 0 for ai ∈ A. Since 0, a0 ∈ A, we have bn + · · ·+ a1b ∈ A. We can factor this as b(bn−1 + · · ·+
a1) ∈ A, and since B\A is multiplicatively closed, either b ∈ A or bn−1 + an−1bn−2 + · · ·+ a1 ∈ A. Iterating
this process, we eventually arrive at b + an−1 ∈ A, so b ∈ A.

8. i) Let A be a subring of an integral domain B, and let C be the integral closure of A in B. Let f, g be monic
polynomials in B[x] such that fg ∈ C[x]. Then f, g are in C[x].

(Note that A really plays no part: we could have started with C ⊆ B integrally closed in B, and let
A = C, with integral closure in B just C again, so without loss of generality we may take A = C.)

Let K be the field of fractions of B, let Ω be a splitting field of fg ∈ K[x]. Then in Ω[x] we have
fg = ∏i(x− ξi)∏j(x− ηj), where the ξi are roots of f and the ηj are roots of g. Since each ξi and ηj is a
root of fg ∈ C[x], we have each ξi and ηj integral over C in Ω. Recall from (5.3) that the set D of elements of
Ω integral over C is a ring. Since each coefficient of f = ∏i(x− ξi) (resp. g = ∏j(x− ηj)) is a polynomial
in the ξi (resp. ηj), we have f, g ∈ D[x] ∩ B[x] = (D ∩ B)[x]. But since D ∩ B consists of elements of B
integral over C, and C is integrally closed in B, we have D ∩ B = C, so f, g ∈ C[x].

ii) Prove the same result without assuming that B (or A) is an integral domain.
Note in particular that considering linear polynomials (x− b), (x− c), this gives us a near-converse to

[5.7]: b + c ∈ C & bc ∈ C ⇐⇒ b, c ∈ C
We need to see if we can alter our proof of part i) to avoid fields.5 The revised version would go as

follows: let B+ be a ring containing B and such that f and g split into linear factors x − ξi and y− ηj in
B+[x]. These linear factors also divide fg, so ξi, ηj are roots of fg, and so are integral over C. The coefficients
of f and g, being polynomials in the ξi and ηj, are then also integral over C by (3.8). But these coefficients
are in B, so by assumption also in C.

To create the extension ring B+ we need, let deg( f ) = n and deg(g) = m, and note that we can extend
B to B1 = B[x]/

(
f(x)

)
to get a larger field in which f has a root α1 = x̄. Then f(y) is in the kernel of the

canonical map B1[y] � B1[y]/(y− α1) since in the quotient ȳ = ᾱ1, and f(ᾱ1) = 0. Thus f(y) is an element
of the principal ideal (y− α1), so there is a monic polynomial f1(y) in B1[y] such that f(y) = f1(y)(y− α1)
in B1[y]. Since degree of monic polynomials is multiplicative, we have deg( f1) = n − 1. Repeating this
process, and because the degree of the non-linear factor decreases each time we make such an extension,
we eventually get a ring B′ = Bn over which f splits. We can then perform a similar process for g over B′

to get a ring (B′)m = B+ in which both f and g split completely.

9. Let A be a subring of a ring B and let C be the integral closure of A in B. Prove that C[x] is the integral closure of
A[x] in B[x].

Write C′ for the integral closure of A[x] in B[x]. Then x ∈ A[x] ⊆ C′ and C is integral over A, hence
over A[x], so by (5.3), A[x] ⊆ C[x] ⊆ C′.

It is now enough to show C[x] is integrally closed. Let f ∈ B[x] be such that there exist gi ∈ C[x]
with gn = 1 and f n + ∑n−1

i=1 gi f i + g0 = 0 ∈ C[x]. Since g0 ∈ C[x], we have C[x] 3 f n + ∑n−1
i=1 gi f i =

f( f n−1 + ∑n−1
i=1 gi f i−1) a product of monic polynomials in B[x]. Then [5.8.ii] says that f ∈ C[x].

10. A ring homomorphism f : A → B is said to have the going-up property (resp. the going-down property) if the
conclusion of the going-up theorem (5.11) (resp. the going-down theorem (5.16)) holds for B and its subring f(A).

Let f ∗ : Spec(B)→ Spec(A) be the mapping associated with f.
i) Consider the following three statements:

(a) f ∗ is a closed mapping.
(b) f has the going-up property.
(c) Let q be any prime ideal of B and let p = qc. Then f ∗ : Spec(B/q)→ Spec(A/p) is surjective.
Prove that (a) =⇒ (b) ⇐⇒ (c) (See also Chapter 6, Exercise 11.)
Factorize the map canonically as f = i ◦ p for p : A � f(A) and i : f(A) ↪→ B the expected maps. p∗

canonically homeomorphs Spec
(

f(A)
)

into the closed subset V
(

ker( f )
)
⊆ Spec(A) by [1.21.iv], and for

5 Expanded from http://pitt.edu/~yimuyin/research/AandM/exercises05.pdf
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each p ⊇ ker( f ), the third isomorphism theorem (2.1.i) gives p(A)/p(p) ∼= A/p, so f will satisfy any of
the three properties if and only if i does. Thus we might as well assume f: A ↪→ B is an inclusion.

As far as the going-up property is concerned, by induction, it is enough to show that if p ⊆ p′ ∈
Spec(A) and q ∈ Spec(B) is such that q∩ A = p, then there is q′ ⊇ q such that q′ ∩ A = p′. This is the same

as showing each restriction f ∗
∣∣V(p)

V(q)
: V(q)→ V(p) is surjective.

(a) =⇒ (b): Since V(q) ([1.15]) is closed, by assumption f ∗
(
V(q)

)
is a closed set containing f ∗(q) = p,

so {p} ⊆ f ∗
(
V(q)

)
. (In fact, they are equal, for if p 6⊆ q′ ∩ A, then q ⊇ p is not contained in q′.) But by

[1.18.ii], V(p) = {p}, so f ∗
∣∣V(p)

V(q)
is surjective.

(b) ⇐⇒ (c): The identifications of [3.21.iii] identify f ∗
∣∣V(p)

V(q)
with the map f̄ ∗ : Spec(B/q)→ Spec(A/p)

induced by f̄: A/p → B/q. Then (b) holds if each f ∗
∣∣V(p)

V(q)
is surjective and (c) if each f̄ ∗ is surjective, but

these are essentially the same maps.

Consider the following three statements:
(a ′) f ∗ is an open mapping.
(b ′) f ∗ has the going-down property.
(c ′) For any prime ideal q of B, if p = qc, then f ∗ : Spec(Bq)→ Spec(Ap) is surjective.
Prove that (a ′) =⇒ (b ′)⇐⇒ (c ′). (See also Chapter 7, Exercise 23).
(b ′)⇐⇒ (c ′): First we should show the map of (c ′) exists. f composed with the canonical map B→ Bq

yields a map f q : A → Bq. Since each element of Sq = B\q by definition becomes a unit in Bq, and since
f−1(Sq) = A\ f−1(q) = A\p = Sp, each element of Sp is sent to a unit in Bq, so by (3.1) there is a unique
induced map Ap → Bq, as hoped. Call this map f qp .

By induction, the going-down property requires only that if p′ ⊆ p ∈ Spec(A) and q ∈ Spec(B) is such
that f ∗(q) = p, then there is q′ ⊆ q such that f ∗(q′) = p′. This is the same as showing each restriction

f ∗
∣∣∣S−1

q Spec(A)

S−1
q Spec(B)

is surjective, where S−1 Spec(A) is the set of primes in A not meeting S. But composing

with the canonical inclusions Spec(Ap) ↪→ S−1
p Spec(A) and Spec(Bq) ↪→ S−1

q Spec(B) of [3.21.i], we can
identify ( f qp )∗ with this restriction.

(a ′) ⇐⇒ (b ′): We claim that open sets in the Zariski topology are “downward closed,” meaning
p′ ⊆ p ∈ U =⇒ p′ ∈ U. Indeed, write U = X\C, C closed. Then p′ /∈ U would imply {p} ⊆ C, so
{p} ⊆ C = C; but by [1.18.ii], {p} = V(p′) 3 p, so p ∈ C and hence p /∈ U. This may be obvious, but I
don’t recall having seen it proved.

Recall the notation S−1X = {p ∈ X : S ∩ p = ∅} from [3.21.i] and let X = Spec(A) and Y = Spec(B).
In the special cases Sp = A\p and Sg = {1, g, g2, . . .}, write Xp = S−1

p X and Xg = S−1
g X. Recall from [3.22]

that Yq ≈ Spec(Bq) is the intersection of all its basic open neighborhoods Yg (g /∈ q). Write f q : A → Bq

again for the composition of f with the canonical map φq : B→ Bq. Then

( f q)∗
(

Spec(Bq)
) [1.21.vi]

= f ∗(φ∗q
(

Spec(Bq)
) [3.21.i]

= f ∗(Yq) =
⋂
g/∈q

f ∗(Yg).

By [1.17], the Yg are open, so the Ug := f ∗(Yg) are open. Then since q ∈ Yg and p = f ∗(q), p ∈ Ug, so all
primes p′ ⊆ p are in Ug. Intersecting, Xp ⊆ f ∗q

(
Spec(Bq)

)
.

Now f q factors through φp : A → Ap as f q = f qp ◦ φp, so taking ∗’s, by [1.21.vi] we have Xp ⊆
im(φ∗p ◦ ( f qp )∗). But φ∗p is a homeomorphism between Spec(Ap) and the open subset Xp ⊆ X by [3.21.i], so
( f qp )∗ is surjective.

11. Let f: A→ B be a flat homomorphism of rings. Then f has the going-down property.
[3.18] states that f ∗ : Spec(Bq) � Spec(Ap) is surjective for each q ∈ Spec(B) and p = qc. Then (c ′)

=⇒ (b ′) in [5.10] shows f has the going-down property.
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12. Let G be a finite group of automorphisms of a ring A, and let AG denote the subring of G-invariants, that is of all
x ∈ A such that σ(x) = x for all σ ∈ G. Prove that A is integral over AG.

The first (rather trivial) thing to do is to show AG is a ring. But indeed, by the definition of a ring
homomorphism we have σ(1) = 1 for all σ ∈ G, and if a, b ∈ AG, then σ(a− b) = σ(a) + σ(−b) = a− b
and σ(ab) = σ(a)σ(b) = ab for all σ ∈ G. Thus AG, containing 1 and being closed under subtraction and
multiplication, is a subring of A.

To see AG ↪→ A is integral, let x ∈ A, and let t be an indeterminate. If p := ∏σ∈G
(
t− σ(x)

)
∈ A[t],

then each coefficient of p is a symmetric polynomial in the σ(x), so p ∈ AG[t]. As p is monic and 0 = x− x
divides p(x), we see x is a root of p, and so x is integral over AG.

Let S be a multiplicatively closed subset of A such that σ(S) ⊆ S for all σ ∈ G, and let SG = S ∩ AG. Show
that the action of G on A extends to an action on S−1 A, and that (SG)−1 AG ∼= (S−1 A)G.

Suppose a/s = b/t ∈ S−1 A. Then there is u ∈ S such that uta = usb in A. Applying σ ∈ G yields
σ(u)σ(t)σ(a) = σ(u)σ(s)σ(b) in A, meaning σ(a)/σ(s) = σ(b)/σ(t) in S−1 A. Thus if we define the action
of G on S−1 A by σ(a/s) := σ(a)/σ(s), this definition is independent of the choice of representatives, hence
well defined. It is obviously multiplicative, and only slightly less obviously additive:

σ

(
a
s
+

b
t

)
= σ

(
at + bs

st

)
=

σ(at + bs)
σ(st)

=
σ(a)σ(t) + σ(b)σ(s)

σ(s)σ(t)
=

σ(a)
σ(s)

+
σ(b)
σ(t)

= σ

(
a
s

)
+ σ

(
b
t

)
.

For each a ∈ AG, we have σ(a/1) = σ(a)/1 = a/1, so the natural map AG ↪→ A → S−1 A factors as
AG → (S−1 A)G ↪→ S−1 A. Each element s ∈ SG becomes a unit in S−1 A, hence a unit in (S−1 A)G since
σ(1/s) = σ(1)/σ(s) = 1/s for all σ ∈ G. Thus (3.1) gives a unique homomorphism χ : (SG)−1 AG →
(S−1 A)G taking a/s 7→ a/s.

χ is injective, for if a/s = 0 in (S−1 A)G ⊆ S−1 A, there is t ∈ S such that ta = 0. Then taking
t′ = ∏σ∈G σ(t), we also have t′a = 0, meaning a/s = 0 already in (SG)−1 AG.

On the other hand, let a/s ∈ (S−1 A)G Let s′ = ∏σ 6=idA
σ(s) ∈ SG. Then since a/s and ss′/1 are

invariant, so is their product as′/1. Thus for every σ ∈ G we have σ(as′)/1 = s(as′/1) = as′/1, so there
is tσ ∈ S such that tσas′ = tσ · σ(as′). Set t = ∏τ∈G τ

(
∏σ∈G tσ

)
∈ SG. Then since tσ divides t we have

σ(tas′) = t · σ(as′) = tas′, so tas′ ∈ AG. Then a/s = ts′a/ts′s with ts′a ∈ AG and ts′s ∈ SG, so χ is
surjective.

13. In the situation of Exercise 12, let p be a prime ideal of AG, and let P be the set of prime ideals of A whose contraction
is p. Show that G acts transitively on P. In particular, P is finite.

Let q, q′ ∈ P. For any x ∈ q, we have ∏σ∈G σ−1(x) ∈ AG ∩ q = p. But also p = AG ∩ q′, so
∏σ∈G σ−1(x) ∈ q′. Thus, since q is prime, for some σ ∈ G we have y = σ−1(x) ∈ q′. Then x = σ(y) ∈ σ(q′).
Since x ∈ q was arbitrary, we see q ⊆ ⋃

σ∈G σ(q′). By (1.11.i), q is contained in some σ(q′). Since both
q ∩ AG = p and σ(q′) ∩ AG = σ(q′) ∩ σ(AG) = σ(q′ ∩ AG) = σ(p) = p, (5.9) says we must have q = σ(q′).
As q and q′ ∈ P were arbitrary, it follows that G sends any element of P to any other element of P, so G
acts transitively. Since G is finite, and sends q to every element of P, we have |P| = |G|/| StabG(q)| ≤ |G|
finite.

14. Let A be an integrally closed domain, K its field of fractions and L a finite normal separable extension of K. Let G
be the Galois group of L over K and let B be the integral closure of A in L. Show that σ(B) = B for all σ ∈ G, and
that A = BG.

If b ∈ B, then there it satisfies a polynomial equation ∑ aibi = 0 for some ai ∈ A = AG. Applying a
σ ∈ G to this equation yields 0 = σ(0) = σ

(
∑ aibi) = ∑ σ(ai)σ(b)i = ∑ aiσ(b)i. Thus σ(b) satisfies a monic

polynomial (the same as b does) over A, and hence is in B. Thus σ(B) ⊆ B. On the other hand, replacing
σ by σ−1 in this reasoning yields σ−1(B) ⊆ B, and applying σ to both sides gives B = σ

(
σ−1(B)

)
⊆ σ(B).

Since σ ∈ G was arbitrary, B = σ(B) for all σ ∈ G.
BG = B ∩ LG = B ∩ K = A, since K is the fixed field of G and A is integrally closed in K.
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15. Let A, K be as in Exercise 14, let L be any finite extension field of K, and let B be the integral closure of A in L.
Show that, if p is any prime ideal of A, then the set of prime ideals q of B which contract to p is finite (in other words,
that Spec(B)→ Spec(A) has finite fibers).

Recall6 that any extension factors as a separable extension followed by a purely inseparable extension.
Since a product of two finite numbers is finite, it suffices to show the fibers are finite for either of these
kinds of extensions.

In the case of a separable extension L/K, let Ω/L/K be the least normal extension of K containing L.
Write C for the integral closure of A in Ω; it is clearly also integral over B. If B had infinitely many primes
lying over p, then (5.10) would give us at least one prime of C lying over each of those, hence infinitely
many primes of C lying over p. But Ω ⊇ K is a finite extension, so H = Gal(Ω/K) is finite. By [5.14],
A = CH , so by [5.13] there are only finitely many primes of C lying over p.

In the case of a finite, purely inseparable extension L/K of fields of characteristic p > 0, it is well
known7 that for each x ∈ L there is n ≥ 0 such that xpn ∈ K. If we let x1, . . . , xm generate L as a vector
space over K, and let ni ≥ 0 be the least exponents such that xi

pni ∈ K, then if n = maxi ni, we have for
all ci ∈ K that

(
∑m

i=1 cixi
)pn

= ∑m
i=1 cpn

i xpn

i ∈ K, (using the binomial theorem and the fact that p divides

(pn

l ) for 0 < l < pn), so that Lpn ⊆ K. Write B for the integral closure of A in L, and suppose P ∈ Spec(B)
lies over p ∈ Spec(A). If x ∈ B has xpn ∈ p ⊆ P, then as P is prime we have x ∈ P; and if x ∈ P,
then xpn ∈ P ∩ K = p. Thus P is determined uniquely by p, so the only possibility for a prime of B
lying over p is P := {x ∈ B : xpn ∈ p}. To see P really is an ideal, note that b ∈ B and x, y ∈ P imply
(bx)pn

= bpn
xpn ∈ Ap = p and (x − y)pn

= xpn
+ (−y)pn ∈ p. To see P is prime, suppose xy ∈ P but

x /∈ P; then xpn
ypn ∈ p but xpn

/∈ p, so ypn ∈ p and y ∈ P.

Noether’s normalization lemma
16. Let k be a field and let A 6= 0 be a finitely generated k-algebra. Then there exist elements y1, . . . , yr ∈ A which are

algebraically independent over k and such that A is integral over k[y1, . . . , yr].
We shall assume that k is infinite. (The result is still true if k is finite, but a different proof is needed.) Let

x1, . . . , xn generate A as a k-algebra. We can renumber the xi so that x1, . . . , xr are algebraically independent over
k and each of xr+1, . . . , xn is algebraic over k[x1, . . . , xr]. Now proceed by induction on n. If n = r there is nothing
to do, so suppose n > r and the result true for n− 1 generators. The generator xn is algebraic over k[x1, . . . , xn−1],
hence there exists a polynomial f 6= 0 in n variables such that f(x1, . . . , xn−1, xn) = 0. Let F be the homogeneous
part of highest degree in f. Since k is infinite, there exist λ1, . . . , λn−1 ∈ k such that F(λ1, . . . , λn−1, 1) 6= 0. Put
x′i = xi − λixn ( 1 ≤ i ≤ n− 1). Show that xn is integral over the ring A′ = k[x′1, . . . , x′n−1] and hence that A is
integral over A′. Then apply the inductive hypothesis to A′ to complete the proof.

First, if the λi didn’t exist, we would have F(x1, . . . , xn−1, xn) = xdeg F
n F(x1, . . . , xn−1, 1) = 0 by

homogeneity. But k being infinite, F is zero as a function kn → k if and only if F = 0 ∈ k[x1, . . . , xn].8

Let F = ∑I aI ∏n
j=1 xij

j = ∑I aI xin
n ∏n−1

j=1 (x′j + λjxn)
ij . The coefficient of xdeg F

n in F ∈ k[x′1, . . . , x′n−1, xn]

is c := ∑ aIλ
i1
1 · · · λ

in−1
n−1 = F(λ1, . . . , λn−1, 1) 6= 0, so that the equation c−1 f(x1, . . . , xn−1, xn) = 0 is

monic when written in A′[xn]. Thus xn is integral over A′, and so A = k[x1, . . . , xn] is integral over A′ by
(5.3). But by the induction hypothesis, A′ is integral over some k[y1, . . . , yr], with y1, . . . , yr algebraically
independent over k, and by the transitivity (5.4) of integral dependence, A is integral over k[y1, . . . , yr].9

6 http://planetmath.org/encyclopedia/PurelyInseparable.html
7 or sometimes the definition: http://planetmath.org/encyclopedia/PurelyInseparable.html
8 Proved by induction, e.g. in Theorem 5.18 in Fields and Galois Theory, J.S. Milne, http://jmilne.org/math/CourseNotes/ft.

html: if n = 1 and F 6= 0 then F has ≤ deg(F) roots, so is not identically zero since k is infinite. Assume the result has been proved
for n, let F ∈ k[x1, . . . , xn+1] be zero on kn+1, and write 0 = F = ∑ Gixi

n+1 for Gi ∈ k[x1, . . . , xn]. For any (a1, . . . , an) ∈ kn we have
F(a1, . . . , an, xn+1) ∈ k[xn+1] identically zero by assumption, so by the n = 1 case each Gi(a1, . . . , an) = 0. Then by the induction
step each Gi = 0, so F = 0.

9 We include as a bonus a proof (http://ericmalm.net/ac/projects/math210b-w08/math210b-transcendence.pdf) that
works when k is finite. Again, assume that xn is algebraic over k[x1, . . . , xn−1], and say that this is witnessed by f(x1, . . . , xn) = 0.
Let d > deg f, and x′i = xi − xdi

n for i = 1, . . . , n − 1. Write xi = x′i + xdi
n in f = 0. Expanding out each monomial term

aI xI := aI xi1
1 · · · x

in
n of f in terms of xn and the x′i , the monomial term aI xeI

n divisible only by xn will have have exponent
eI = in + i1d + i2d2 + · · ·+ in−1dn−1. By our choice of d, the exponents eI are all distinct as we range over different aI xI , so there
is no cancellation among them. One such exponent eM will be the greatest, and then we can divide through by the corresponding
coefficient aM to get aM f(x′1 + xd

n, . . . , x′n−1 + xdn−1
n , xn) = 0 monic in xn. This shows A is integral over A′, and we conclude as

before. Note that we no longer have that the xi are k-linear combinations of elements of A′, however.
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From the proof [of [5.16]] it follows that y1, . . . , yr may be chosen to be linear combinations of x1, . . . , xn. This
has the following geometrical interpretation: if k is algebraically closed and X is an affine algebraic variety in kn with
coordinate ring A 6= 0, then there exists a linear subspace L of dimension r in kn and a linear mapping of kn onto L
which maps X onto L.

X � � ι //

ρ     @@@@@@@@ kn

π
����

kr

A = k[x] k[t]ι#oooo

k[y]
OO
π#

OO

ddv

ddHHHHHHHHH

We want the commutative diagram of regular maps on the right, with π linear.
Letting the coordinate ring ([1.27]) of kn be k[t], that of the affine algebraic variety
X ⊆ kn be A = k[t]/I(X) = k[x], and that of kr be A0 := k[y], [1.28] says that
this is equivalent to demanding the diagram of k-algebra homomorphisms below
it. Here ι# is the projection tj 7→ xj : k[t1, . . . , tn] � A. The normalization proven
above gives us a candidate map v : A0 � A, namely the k-subalgebra inclusion
gotten by mapping the yi to algebraically independent elements x′i of A such that
A is integral over A′ = k[x′1, . . . , x′r]. In the course of the proof above, we found
that when k is infinite (which is true if k is algebraically closed), we can take
the x′i to be k-linear combinations of the xj. If x′i = ∑n

j=1 aijxj in A for aij ∈ k,
1 ≤ i ≤ r and 1 ≤ j ≤ n, and we want ι# ◦ π# = v, we may take π#(yi) := ∑n

j=1 aijtj. Since yi : kr � k
is the ith projection and π#(η) = η ◦ π by definition, it follows that π should be given by (v1, . . . , vn) 7→(

∑n
j=1 a1jvj, . . . , ∑n

j=1 arjvj,
)
. This is obviously linear, and by Eq. ?? of [1.28], v = ι# ◦ π# = (π ◦ ι)# = ρ#

as hoped. (This map is not, as defined, to a linear subspace L ⊆ kn, but we can if we like pick any r linearly
independent vectors wi ∈ kn and define a new map by v 7→ ∑(yi ◦ π)(v)wi.)

To see that ρ is surjective, let a point of kr be given. Write it as an inclusion p : {0} → kr. It corresponds
by [1.28] to a map ψp : A0 = k[y]→ k and hence to a map A′ = k[x′]→ k.10 Since A is integral over A′, by
[5.2] this extends to a map φb : A→ k, corresponding to an inclusion b : {0} → X. We have φb ◦v = ψp, so
by Eq. ?? of [1.28] again, ρ ◦ b = p.11 We show in [8.5] that the fibers of ρ are finite of bounded cardinality.

Nullstellensatz (weak form).
17. Let X be an affine algebraic variety in kn, where k is an algebraically closed field, and let I(X) be the ideal of X in the

polynomial ring k[t1, . . . , tn] Chapter 1, Exercise 27. If I(X) 6= (1) then X is not empty.

Write k[t] := k[t1, . . . , tn]. If I(X) 6= (1), then A = k[t]/I(X) 6= 0, so by [5.16], X is carried by a linear
projection onto a linear subspace L ⊆ kn. Since L is non-empty, so must be X. Let’s call this the weaker
Nullstellensatz.

The name “weak Nullstellensatz” usually refers to the following related result:

Weak Nullstellensatz . If k is an algebraically closed field and a� k[t1, . . . , tn] is not (1), then Z(a) 6= ∅.

This implies the weaker Nullstellensatz, for if X = Z(a) and I(X) 6= (1), then since a ⊆ IZ(a) 6= (1),
we have a 6= (1) and hence X = Z(a) 6= ∅. The weak Nullstellensatz would also follow from the weaker
Nullstellensatz if we could prove a 6= (1) =⇒ IZ(a) 6= (1). This is an easy consequence of the strong
Nullstellensatz of [7.14], but one wants to prove strong from weak, not vice versa.

Deduce that every maximal ideal in the ring k[t1, . . . , tn] is of the form (t1 − a1, . . . , tn − an) where ai ∈ k.

This is also the result of [1.27], and there is a proof there. It does not seem to obviously follow from
the weaker Nullstellensatz above, which we are supposed to use to prove it,12 but does from the weak
Nullstellensatz, which is in fact equivalent.

10 http://math.stackexchange.com/questions/24794/atiyah-macdonald-exercises-5-16-5-19
11 This can also be verified by evaluating both sides of φb ◦v = ψp at each yi :

yi(p) = φb
(
∑ aijxj

)
= ∑ aijbj = π#(yi)(b) = yi

(
π(b)

)
.

Note that kernels did not need to be mentioned here. One can also, however, prove ρ is surjective using the result of [1.27] that the
maximal ideals of P(X) are in bijection with the points of X. The regular map ρ : X → L induces by precomposition a homomorphism
v = ρ# : P(Y) → P(X), which in turn induces through contraction a map v∗ : Spec

(
P(X)

)
→ Spec

(
P(Y)

)
. Since A is integral over

A0, by (5.8) contractions of maximal ideals are maximal, so this restricts to a map ρ̃ : Max
(

P(X)
)
→ Max

(
P(Y)

)
. The identification

X ↔ Max
(

P(X)
)

conflates ρ̃ with the original ρ by [1.28], so it is enough to show ρ̃ is surjective. Since A is integral over A0, this
follows from (5.10) and (5.8).

12 This has caused me some consternation; see the discussion at http://math.stackexchange.com/questions/24794/
atiyah-macdonald-exercises-5-16-5-19.
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First assume the weak Nullstellensatz. If m� k[t] is a maximal ideal, then Z(m) 6= ∅, so there exists
an x ∈ Z(m), meaning m ⊆ IZ(m) ⊆ mx; as m is maximal, it follows m = mx. Now assume all maximal
ideals of k[t] come from points of kn. Any a 6= (1) is contained in some maximal ideal m by (1.4), and by
assumption m = mx for some x ∈ kn, so since mx vanishes at x by definition, x ∈ Z(a).

18. Let k be a field and let B be a finitely generated k-algebra. Suppose that B is a field. Then B is a finite algebraic
extension of k. (This is another version of Hilbert’s Nullstellensatz. The following proof is due to Zariski. For other
proofs, see (5.24), (7.9).)

This is called Zariski’s Lemma, and there are other proofs at (1.27.2*), (5.24), (7.9).13 Here is a simpler
proof than that suggested.14 Use Noether normalization ([5.16]) on the finitely generated k-algebra B: then
there exist (possibly zero) elements y1, . . . , yr ∈ B, algebraically independent over k, such that B is integral
over A = k[y1, . . . , yr]. By (5.7), B being a field implies A is a field, so there are zero y’s and thus A = k.
Then B is integral over k, hence a finite algebraic extension.

Now we proceed with the book’s intended proof.

Let x1, . . . , xn generate B as a k-algebra. The proof is by induction on n. If n = 1 the result is clearly true, so assume
n > 1.

If B = k[x1] is a field, it follows x−1
1 ∈ B, say x−1

1 = ∑n
i=0 cixi

1 for ci ∈ k. Multiplying both sides by
x1 and subtracting 1 gives 0 = ∑n

i=0 cixi+1
1 − 1, showing x1 is algebraic over k, so B = k(x1) is a finite

algebraic extension.

Let A = k[x1] and let K = k(x1) be the field of fractions of A. By the inductive hypothesis, B is a finite algebraic
extension of K, hence each of x2, . . . , xn satisfies a monic polynomial equation with coefficients in K, i.e. coefficients
of the form a/b where a and b are in A. If f is the product of the denominators of all these coefficients, then each of
x2, . . . , xn is integral over A f.

Write ai/bi for the coefficients, with ai, bi ∈ A. If f = ∏ bi, then ai/bi = ai
(

∏j 6=i bj
)
/ f ∈ A f .

Hence B and therefore K is integral over A f.

By (5.3), B = A[x2, . . . , xn] is integral over A f, so since K ⊆ B, we see K is also integral over A f.

Suppose x1 is transcendental over k. Then A is integrally closed, because it is a unique factorization domain.

First we show a UFD A is integrally closed. Suppose an element of its field of fractions is integral over
A. We can write it in least terms as a/b, since A has unique factorization. Then (a) + (b) = (1) in A, so
(an) + (b) = (1) for all n by (1.16). We have an equation 0 = (a/b)n + ∑n−1

i=0 ci(a/b)i, and multiplying by
bn gives an = −∑n−1

i=0 ciaibn−i ∈ (b). But then (1) = (an) + (b) = (b), so b is a unit and a/b ∈ A.
Now, if x1 is transcendental over k, then A = k[x1] has a division algorithm, so it is a PID and hence a

UFD.

Hence A f is integrally closed (5.12), and therefore A f = K, which is clearly absurd.

(5.12) says A f is the integral closure of A f in K f
∼= K. But in the previous paragraph we showed K was

integral over A f, so K = A f. To see this is impossible, see (5.18.1*) below.15

Hence x1 is algebraic over k, hence K (and therefore B) is a finite extension of k.

We take this opportunity to prove a more general result, the Zariski–Goldman–Krull theorem.16

13 The original proof, from Oscar Zariski, “A new proof of Hilbert’s Nullstellensatz”, Bull. Amer. Math. Soc. Volume 53, Number
4 (1947), 362–368, can be found online at http://projecteuclid.org/DPubS?verb=Display&version=1.0&service=UI&handle=
euclid.bams/1183510605.

14 http://www.math.lsa.umich.edu/~hochster/615W10/supNoeth.pdf
15 Alternately, find a non-zero proper ideal of A f. By (3.11.iv), any ideal of A not meeting S f = {1, f, f 2, . . .} yields a proper ideal

of A f. But, for example, (1− f ) does not meet S f, by unique factorization in k[ f ], so (1− f )� A f is a non-zero proper ideal.
16 This sequence of results is a mild reformulation of the proof given by Daniel J. Bernstein at http://cr.yp.to/zgk.html.
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Definition. A Goldman domain is a domain A containing some element a such that the localization Aa is a field.

Note that then Aa is the field of fractions of A. Note also that an iterated localization
(
(Aa)···

)
z = Aa···z,

so we can equivalently say a Goldman domain is a domain A whose field of fractions is a finitely generated
A-algebra.

Lemma 5.18.1*. No polynomial ring A[x] is a Goldman domain.

Proof. Assume A is a domain: if not, neither would A[x] be Let K be the field of fractions of A. If A[x]
were a Goldman domain, then so would K[x] be, since K[x] = K · A[x] and K(x) = K · A(x). Cribbing from
Euclid, note that given any finite list of irreducible polynomials pi ∈ K[x], none divides 1 + ∏ pi, so there
are infinitely many irreducibles in K[x]. Since K[x] is a UFD, there are then for any f ∈ A[x] irreducible p
not dividing any power f n, so that 1/p /∈ K[x] f .17

Corollary 5.18.2*. If a field L contains a subfield K and there exist elements β ∈ L and b ∈ K[β] such that
K[β]b = L, then β is integral over K; in this case, K[β] is a field, so b−1 ∈ K[β] as well and L = K[β].

Lemma 5.18.3*. Suppose A ⊆ A[β] = B ⊆ Bb = L, where L is a field. Then there exists a ∈ A such that Aa is a
field and L is a finite extension of Aa.

Proof. Write K for the field of fractions of A. Since L = Bb = A[β]b, we see L = K[β]b as well, so by
(5.18.2*), β is integral over K and L = K[β]. Thus [L : K] is finite and b ∈ L is integral over K. Multiplying
denominators in the equations witnessing integrality of b and β over K, we obtain an a ∈ A such that b
and β are integral over Aa and hence the field L = Aa[β]b is integral over Aa. But then, by (5.7) or [5.5.i],
Aa must be a field, and hence, being intermediate between A and its field of fractions, so must itself be
K.

Zariski–Goldman–Krull Theorem. If a field L is a finitely generated algebra over a subring A, then there exists
a ∈ A such that Aa is a field and L is a finite extension field of Aa.

Proof. The proof proceeds by induction on the number n of generators for L over A. For n = 0, the result
is trivial, since L = A = A1. Assume the result proved for n generators and let L′ = A[α1, . . . , αn+1] for
some αj ∈ L′. Write B = A[α1] and L for its field of fractions. The induction hypothesis, applied to the
extension B ⊆ L′, yields b ∈ B such that Bb (= L) is a field and [L′ : L] is finite; and (5.18.3*), applied to
A ⊆ L, yields a ∈ A such that Aa is a field and [L : Aa] is finite. Then [L′ : Aa] = [L′ : L][L : Aa] is finite,
concluding the induction.

Zariski’s Lemma is an immediate corollary. We will also meet Jacobson rings in [5.23], and show in
(5.23.5*) that a ring is Jacobson if and only if its every quotient Goldman domain is a field.

Corollary 5.18.4*. If a field L is a finitely generated algebra over a quotient domain B of a Jacobson ring A, then B
is a field and L is a finite extension of B.

Proof. By the Zariski–Goldman–Krull Theorem, B is a Goldman domain and L is a finite extension of its
field of fractions. Since A is Jacobson, B is a field by (5.23.5*).

Note that this is also the direction i) =⇒ ii) of [5.25].

Generalized Nullstellensatz.If A is a Jacobson ring and C a finitely generated A-algebra, then C is a Jacobson
ring. If m�C is a maximal ideal of C, then mc is a maximal ideal of A and C/m is a finite extension field of A/mc.18

Proof. The first statement is (ii) from [5.24]. For the second, write A′ = im A ⊆ C and p = m ∩ A′. Then
L = C/m is a field finitely generated over the domain B = A′/p, so by (5.18.4*), L is finite over B and B
is a field. This means p is maximal. By the correspondence (1.1) applied to A � A′, it follows mc � A is
maximal and A/mc ∼= A′/p = B.

17 This proof is from Proposition 12.5 of Pete L. Clark’s http://math.uga.edu/~pete/integral.pdf.
Here is an alternate proof taken from Richard G. Swan, “On Munshi’s proof of the Nullstellensatz,” at http://www.math.

uchicago.edu/~swan/nss.pdf. Suppose for a contradiction there exists f ∈ A[x] such that A[x] f is a field. Then f /∈ A, for oth-
erwise we would have A[x] f = A f [x] a polynomial ring, so deg f ≥ 1, and in particular 1− f 6= 0. Since (1− f )−1 = g/ f n for some
g ∈ A[x], clearing denominators yields f n = (1− f )g in A[x]. Modulo 1− f , we have 1 ≡ f , so 1 ≡ f n ≡ (1− f )g ≡ 0, meaning
1− f is a unit of A[x]; but deg(1− f ) ≥ 1 and A contains no nonzero nilpotents, so this is impossible by [1.2.i].

18 This shows up for instance as Theorem 4.19 in Eisenbud.
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Note how the second clause generalizes (1.27.3*): the codomain is now allowed to be any Jacobson ring
finitely generated over the domain.

19. Deduce the result of Exercise 17 from Exercise 18.

Let k be an algebraically closed field. We prove (1.27.4*) from [1.27], namely that all maximal ideals m
of k[t] := k[t1, . . . , tn] come from points; the other results then follow as explained in [5.17]. B = k[t]/m
is a field finitely generated as a k-algebra, so by [5.18] it is a finite extension of k. Since k is algebraically
closed, this gives a k-algebra isomorphism φ : B ∼−→ k. If ti 7→ xi under the composition k[t] � B ∼−→ k, then
ti − xi ∈ m, so mx ⊆ m. As mx is maximal, the two are equal.

20. Let A be a subring of an integral domain B such that B is finitely generated over A. Show that there exists s 6= 0
in A and elements y1, . . . , yn in B, algebraically independent over A and such that Bs is integral over B′s, where
B′ = A[y1, . . . , yn].

Can we invoke ZGK?
Since B is an integral domain, so must A be. Let S = A\{0}, so that k = S−1 A is a field. Since B is

finitely generated over A, S−1B is finitely generated over k. By Noether normalization ([5.16]), there exist
elements y1/s1, . . . , yn/sn of S−1B, with yi ∈ B and si ∈ S, which are algebraically independent over k
and such that S−1B is integral over C = k[y1/s1, . . . , yn/sn]. It follows that the yj are also algebraically
independent over A. Let x1, . . . , xr generate B over A; then the xi/1 generate S−1B over k, and a fortiori
over C. Since S−1B is integral over C, each xi/1 satisfies a monic polynomial pi(x) = ∑ ci, j(xi/1)j in C[x].
Let s ∈ S be so large that sci, j ∈ B′ for all i, j (multiply all the denominators). Then pi(x) ∈ B′s[x] for each
i, so each xi/1 is integral over B′s. Since Bs = B′s[x1/1, . . . , xr/1], we see from (5.3) that Bs is integral over
B′s.

21. Let A, B be as in Exercise 20. Show that there exists s 6= 0 in A such that, if Ω is an algebraically closed field and
f: A→ Ω is a homomorphism for which f(s) 6= 0, then f can be extended to a homomorphism B→ Ω.

Recall s ∈ A\{0} from the previous proof, and suppose f(s) 6= 0. Then by (3.1) f extends uniquely to a
map fs : As → Ω. Next, B′s = As[y1, . . . , yn] is a polynomial ring over As, so we may pick any ωi ∈ Ω and
extend fs to f ′s : B′s → Ω by yi 7→ ωi. As Bs is integral over B′s, by [5.2] we may extend f ′s to gs : Bs → Ω.
Recalling the canonical map φs : B→ Bs, define g = gs ◦ φs : B→ Ω. By our definitions, g|A = f.

22. Let A, B be as in Exercise 20. If the Jacobson radical of A is zero, then so is the Jacobson radical of B.

Let 0 6= b ∈ B. Since the Jacobson radical is defined as the intersection of the maximal ideals, we want
to find a maximal ideal n of B not containing b. This is the same as finding a map g: B � B/n to a field
with g(s) 6= 0. As every field has an algebraic closure ([1.13]), it will suffice (WHY IS THIS ENOUGH?
WHAT GUARANTEES THE KERNEL IS MAXIMAL?) to find an algebraically closed field Ω and a map
g: B → Ω such that g(b) 6= 0. If this map exists, by (3.1) it will have a unique extension gb : Bb → Ω.
Now Bb = B[1/b] is finitely generated as a B-algebra, and B is finitely generated as an A-algebra, so
Bb is finitely generated as an A-algebra. Let s ∈ A\{0}, as in the previous problems, correspond to the
extension Bb ⊇ A. Since the Jacobson radical of A is 0, there is a homomorphism f: A→ Ω with f(s) 6= 0,
and by [5.21] it extends to a homomorphism gb : Bb → Ω. Then the restriction g = gb|B has g(b) 6= 0 and
is the map we were after.

23. Let A be a ring. Show that the following are equivalent:
i) Every prime ideal in A is an intersection of maximal ideals.
ii) In every homomorphic image of A the nilradical is equal to the Jacobson radical.
iii) Every prime ideal in A which is not maximal is equal to the intersection of the prime ideals which contain it
strictly.

i) =⇒ ii): Let a� A and write M(a) = V(a) ∩Max(A) for the set of maximal ideals containing a.
The radical r(a) =

⋂
V(a), and since each p ∈ V(a) is by assumption i) equal to

⋂
M(p), we also have

r(a) =
⋂

M(a). In the quotient A/a we then have N = R by the correspondence (1.1).
ii) =⇒ iii): Let p ∈ Spec(A) not be maximal. Then (0)� A/p is not maximal by the correspondence

(1.1). Since A/p is an integral domain, (0) is the nilradical, which by assumption ii) equals the Jacobson
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radical, the intersection of Max(A/p). Then (0) is a fortiori the intersection of Spec(A/p)\
{
(0)
}

. That
means that upstairs in A, p is the intersection of V(p)\{p}, the set of primes that strictly contain p.

iii) =⇒ i): Two failed approaches are footnoted here.19 These failing, we follow the book’s hint.
Assume p � A is a prime ideal that is not an intersection of maximal ideals, so that in B = A/p, the
trivial ideal (0) is not an intersection of maximal ideals. In particular, the Jacobson radical R(B) 6= (0), so
there exists a non-zero f∈ R(B). Let Yf be the set of primes of B not meeting S f = {1, f, f 2, . . .}. Yf is not
empty, as it contains (0). By (1.3), B f contains a maximal ideal B f q, and by the correspondence (3.11.iv) its
contraction q is a prime ideal maximal with respect to not meeting S f, hence a maximal element of Yf. But
as assumption iii) continues to hold in B (whose prime and maximal ideals are by (1.1) images of those in
A), it follows that q is an intersection of prime ideals containing f. Then q contains f as well, which is a
contradiction.

A ring A with the three equivalent properties above is called a Jacobson ring.20

Lemma 5.23.1* A homomorphic image of a Jacobson ring is Jacobson.

Proof. Let φ : A � B be a ring surjection, and q ∈ Spec(B). If A is Jacobson, we can write qc =
⋂
mα for

some mα ∈ Max(A), and then q = qce =
⋂
me

α; but by (1.1), the me
α � B are maximal, so by condition i), B

is Jacobson.

A rephrasing of condition i) is that A is a Jacobson ring just if for every quotient domain B we have
R(B) = 0. We now relate Jacobson rings to the Goldman domains introduced in [5.18].

Definition. A prime ideal p ∈ Spec(A) is a Goldman ideal if A/p is a Goldman domain. For a� A, let G(a)
denote the set of Goldman ideals p containing a.

Lemma 5.23.2*. For any ring A and ideal a� A, we have r(a) =
⋂

G(a).21

Proof. Substituting A/a for a and using the correspondence (1.1), it is enough to show N =
⋂

G(0). The
containment N ⊆ ⋂ G(0) follows by (1.8). For the other direction, suppose a ∈ A\N. Then Aa 6= 0, and so
by (3.11.iv), a maximal ideal of Aa contracts to a prime ideal p� A maximal with respect to the property
of not containing a. Since every larger prime contains a, by (1.1), every nonzero prime of the domain A/p
contains ā. Therefore, by (3.11.iv) again, no nonzero prime survives in (A/p)ā, which then must be a field.
It follows that A/p is a Goldman domain, so that p is a Goldman ideal not containing a.

Lemma 5.23.3*. If a ring A is such that every Goldman ideal is maximal, then A is Jacobson.

Proof. Each prime p = r(p)
(5.23.2*)
=

⋂
G(p) =

⋂
M(p), by assumption, so satisfying condition i).

Lemma 5.23.4*. If a Goldman domain A has zero Jacobson radical, then it is a field.

Proof. Suppose a domain A is not a field, but there exists an element a ∈ A such that Aa is a field. Then for
every element b of every maximal ideal m of A, there exists an inverse c/an in Aa, so that b · (c/an) = 1,
or bc = an. Then an ∈ m, so a ∈ m, and hence a ∈ R(A).

Proposition 5.23.5*. A ring A is Jacobson if and only if every quotient which is a Goldman domain is a field.
19 One approach would use an induction argument on the length of chains of primes containing p ∈ Spec(A). Suppose that each

chain P ⊆ V(p)\{p} ([1.15]) of primes strictly containing p is well-ordered by ⊇. Then assign to each P an ordinal α(P) describing
its order-type, and define α(p) = sup α(P) as P ranges over chains in V(p)\{p}. If α(m) = 0, then m is maximal and trivially an
intersection of maximal ideals. Suppose α(q) = β and each p with α(p) < β is an intersection of maximal ideals. Then by iii) q is an
intersection of primes p with α(p) < β and so is itself an intersection of maximal ideals. This attempt fails because the relation ⊇
(resp. ⊆) on Spec(A) is not in general well-founded if A is not Noetherian (resp. Artinian). In the ring A = k[x1, xn, . . .] of example
6) on p. 75, if we take an = (x1, . . . , xn) and bn = (xn, xn+1, . . .), then an is an infinite ascending series of primes of A and bn an
infinite decreasing series of primes.

The other approach was to let Σ be the set of prime ideals that are not intersections of maximal ideals and show Σ = ∅. If p is
maximal in Σ, then all primes containing it are intersections of maximal ideals, so by iii), p is itself an intersection of maximal ideals;
thus Σ cannot have any maximal elements. If the assumption that Σ is non-empty leads to a proof Σ has a maximal element, then
we will have shown Σ = ∅. I wanted to assume Σ was nonempty and then use Zorn’s Lemma to show Σ has maximal elements; it’s
not clear, however, that a chain in Σ has an upper bound in Σ.

20 More on these rings can be found in Matthew Emerton’s notes http://www.math.uchicago.edu/~emerton/pdffiles/
jacobson.pdf and Pete L. Clark’s notes http://math.uga.edu/~pete/integral.pdf.
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Proof. =⇒: If p� A is a Goldman ideal, then A/p is a domain, so 0 = N(A/p) = R(A/p) by condition ii)
for Jacobson rings. By (5.23.4*), A/p is a field.
⇐=: This is (5.23.3*).

24. Let A be a Jacobson ring (Exercise 23) and B an A-algebra. Show that if B is either (i) integral over A or (ii) finitely
generated as an A-algebra, then B is Jacobson.

(ii): Let q ∈ Spec(B) and p = qc. Then B′ = B/q is an integral domain finitely generated over A′ = A/p.
Since A was Jacobson, R(A′) = N(A′) = (0), so by [5.22], the Jacobson radical R(B′) = (0). This shows
that in q is the intersection of the maximal ideals of B containing it.

(i): Let q ∈ Spec(B) and b ∈ b, the intersection of the maximal ideals containing q. Write f : A → B
for the homomorphism making B an A-algebra. Then B is integral over the subring f(A)[b]. By (5.23.1*),
f(A) is Jacobson, and by (ii) above, so is f(A)[b]. Thus we may assume A ⊆ B and a := b ∈ A ∩ b. Now
B′ = B/q is an integral domain, integral over A′ = A/qc by (5.6.i), and b/q = R(B′). Since A was Jacobson,
by (5.23.1*) again, A′ is Jacobson, so R(A′) = 0. But by [5.5.ii], R(B′) ∩ A′ = R(A′), so b̄ ∈ R(A′) = 0,
meaning b ∈ q.

In particular, every finitely generated ring, and every finitely generated algebra over a field, is a Jacobson ring

A ring is finitely generated if it is finitely generated as a Z-algebra, so by (ii) above it will suffice to
show that Z and all fields are Jacobson. But the prime ideals of Z are all either maximal themselves or
(0) = R, so Z is Jacobson by condition i) of [5.23], and similarly fields are Jacobson because their prime
ideal is (0).

25. Let A be a ring. Show that the following are equivalent:
i) A is a Jacobson ring;
ii) Every finitely generated A-algebra B which is a field is finite over A.

i) =⇒ ii): Write A′ for the image of the map A → B; as a quotient of A, it is Jacobson, and as a
subset of B, it is an integral domain; thus R(A′) = N(A′) = 0. Find an element s 6= 0 in A′ as in [5.20],
[5.21]. Then there is some maximal ideal m of A′ not containing s. If we let k = A′/m and Ω be the
algebraic closure of k, then the composition f: A′ � k ↪→ Ω doesn’t send s to 0, so by the assumption of
[5.21], f extends to a homomorphism g: B → Ω. As a map of fields, g is injective, so B ∼= g(B). Since B is
finitely generated over A′, say B = A′[y1, . . . , yn], the image g(B) is generated over k by the g(yi). But the
g(yi) are algebraic over k, so g(B) is a finitely generated k-module, thus a finitely generated A′-module,
and finally a finitely generated A-module. (Question: unless A′ is already a field, doesn’t the fact that
g : B→ Ω extends A′ → A′/m = k contradict g’s being an injection?)

ii) =⇒ i): Let p� A be a prime ideal, not maximal, and consider A′ = A/p. We want to show the
intersection of primes strictly containing p in A is p; downstairs in A′, we want to show the intersection of
the non-zero primes is 0. Equivalently, for every nonzero s ∈ A′, Ss = {1, s, s2, . . .} misses some non-zero
prime ideal. Now A′s is a finitely generated A′-algebra. If it is a field, then by assumption, it is finite over
A, hence integral over A′, and (5.7) says that A′ is a field, so p is maximal. So it is not a field, and it has a
nonzero maximal ideal qs, whose contraction to A′ is a prime q not meeting Ss by (3.11.iv).

Note that the direction i) =⇒ ii) shows that Jacobson rings A are the furthest generalization of fields
k for which Zariski’s Lemma ((1.27.2*), (5.24), [5.18], (7.9)) still holds.

26. Let X be a topological space. A subset of X is locally closed if it is the intersection of an open set and a closed set, or
equivalently if it is open in its closure.

We prove these conditions are equivalent. Supposing C is closed and U is open in X, we want to show
C ∩U is open in its closure. Let C be the collection of all closed sets of X containing U; then every closed
set of X containing C ∩U contains some member of C ′ = {K ∩ C : K ∈ C}, so C ∩U =

⋂ C ′ = C ∩U. Then
C ∩U = U ∩ (C ∩U) is indeed open in C ∩U.

On the other hand, if S ⊆ X be given such that S is open in its closure C = S, then there is by definition
an open U ⊆ X such that S = U ∩ C.

The following conditions on a subset X0 of X are equivalent:
(1) Every non-empty locally closed subset of X meets X0;
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(2) For every closed set E in X we have E ∩ X0 = E;
(3) The mapping U 7→ U ∩ X0 of the collection of open sets of X onto the collection of open sets of X0 is bijective.

(1) =⇒ (2): If E is closed, x ∈ E, and U is any neighborhood of x, then U ∩ E is locally closed, so by
(1), U ∩ E ∩ X0 6= ∅. Thus every neighborhood of x meets E ∩ X0, so x ∈ E ∩ X0. Thus E ⊆ E ∩ X0. On the
other hand, E ∩ X0 ⊆ E = E.

(2) =⇒ (3): By the definition of the subspace topology, the mapping U 7→ U ∩ X0 is surjective from
the topology of X to that of X0. To see injectivity, suppose U ∩ X0 = V ∩ X0; taking complements in X0,
we get (X\U)∩X0 = (X\V)∩X0. Taking closures gives (X\U) ∩ X0 = (X\V) ∩ X0. Since X\U and X\V
are closed in X, (2) gives X\U = X\V; and taking complements finally shows U = V.

(3) =⇒ (1): A locally closed subset of X is of the form C ∩U = U\V for C = X\V closed and U
open. If C ∩U doesn’t meet X0, then X0 ∩U ∩ C = ∅, so X0 ∩U ⊆ X\C = V. Intersecting both sides with
X0 ∩U gives X0 ∩U ⊆ X0 ∩U ∩ V, but on the other hand since U ∩ V ⊆ U, intersecting with X0 gives
X0 ∩U ∩ V ⊆ X0 ∩U. Thus U and U ∩ V have the same image under the map of (3), so by assumption,
U = U ∩V, or U ⊆ V. Then C ∩U = U\V = ∅.

A subset X0 satisfying these conditions is said to be very dense in X.
If A is a ring, show that the following are equivalent:

i) A is a Jacobson ring;
ii) The set of maximal ideals of A is very dense in Spec(A);
iii) Every locally closed subset of Spec(A) consisting of a single point is closed.

i) ⇐⇒ ii): Let a � A be an arbitrary ideal, so that V(a) ⊆ X = Spec(A) ([1.15]) is an arbitrary
closed subset, and let b =

⋂ (
V(a) ∩Max(A)

)
be the intersection of all maximal ideals containing a. Then

by Eq. ?? from [1.18.i], the closure of V(a) ∩Max(A) is V(b). Since a is a subset of each prime in the
set V(a) ∩Max(A), we have a ⊆ b, so V(b) ⊆ V(a). By (2) above, Max(A) is very dense in X just if
V(a) ⊆ V(b) for all a, so every prime containing a contains b. This happens just if in in every quotient
A/a, every prime contains the Jacobson radical, so the Jacobson radical and the nilradical are equal. By
[5.23.ii], this happens if and only if A is a Jacobson ring.

i) ⇐⇒ iii): A locally closed subset S ⊆ X can be written as S = V(a) ∩U with U open. If we write
U = X\V(b), then S = V(a)\V(b). If S is a singleton, there is exactly one prime ideal p containing a
that does not contain b. Write c = r(p+ b). By [1.15.i,iii], V(c) = V(p ∪ b) = V(p) ∩ V(b) ⊆ V(p). Then
S = {p} = V(a)\V(b) = V(p)\V(c), so all primes strictly containing p contain c, and c =

⋂
(V(p)\{p}) is

strictly bigger than p. Now [1.18.i] says that each locally closed singleton S = {p} is closed if and only if
each such p is maximal (and c = (1), V(c) = ∅) if and only if the only primes p that are not intersections
of larger primes are maximal; but this last condition says A is Jacobson, by [5.23.iii].

Valuation rings and valuations
27. Let A, B be two local rings. B is said to dominate A if A is a subring of B and the maximal ideal m of A is contained

in the maximal ideal n of B (or, equivalently, if m = n∩ A). Let K be a field and let Σ be the set of all local subrings
of K. If Σ is ordered by the relation of domination, show that Σ has maximal elements and that A ∈ Σ is maximal if
and only if A is a valuation ring of K.

Given a chain (Aα, mα) in this ordering, the union A =
⋃

Aα is a subring of K and m =
⋃
mα is an

ideal of A. If kα = Aα/mα are the residue fields, then we have a natural embedding kα ↪→ kβ for α ≤ β,
and if α ≤ β ≤ γ, then the canonical embedding kα ↪→ kγ is the composition kα ↪→ kβ ↪→ kγ. Thus the
chain defines a direct system of field homomorphisms with direct limit k. Since the diagrams of short
exact sequences

0 // mα
� � //

� _

��

Aα� _

��

// // kα
//

��
��

0

0 // mβ
� � // Aβ

// // kβ
// 0

are commutative, they give rise ([2.18,19]) to a short exact sequence 0→ m ↪→ A � k→ 0 of direct limits,
showing m is a maximal ideal of A. Thus each chain has an upper bound, so Zorn’s Lemma gives maximal
elements.22

22 My first inclination was to try to use the theorem as suggested, but the set Σ on p. 65 depends on choosing an algebraically
closed field Ω and it’s not immediate apparent what field to choose to be codomain for an entire chain. Moreover, depending what
valuation ring one chooses, the target field changes. For example, for each nonzero (p) ∈ Spec(Z), the residue field of Z(p) ( Q is
Fp.
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Let (A, m) be a maximal element and Ω the algebraic closure of A/m. Then if f : A � A/m ↪→ Ω is the
expected map, (A, f ) is an element of the set called Σ on p. 65. If we have (A, f ) ≤ (A, f ′) in this order,
then A ⊆ A′ and f ′|A = f, so ker( f ′) ∩ A = ker( f ) = m. By maximality of (A, m), this means A′ = A and
f ′ = f, so (A, f ) is a maximal element in its ordering, and (5.21) says that (A, m) is a valuation ring of K.

If on the other hand (A, m) is a valuation ring dominated by (B, n), we show they are equal. By (5.18.ii),
B is a valuation ring as well. Write m− = m\{0} =

(
K\A

)−1 and n− = n\{0} =
(
K\B

)−1. As (B, n)
dominates (A, m), we have m− ⊆ n− and m−1

− ⊆ n−1
− . By definition, B\A ⊆ B, but by what we’ve shown,

B\A ⊆ K\A = m−1
− ⊆ n−1

− = K\B, so we conclude B\A = ∅ and B = A.

28. Let A be an integral domain, K its field of fractions. Show that the following are equivalent:
(1) A is a valuation ring of K;
(2) If a, b are any two ideals of A, then either a ⊆ b or b ⊆ a.

(1) =⇒ (2): Suppose a 6⊆ b, so there is a ∈ a\b. Obviously a 6= 0. If b = 0, then b ⊆ a; otherwise there
is a nonzero b ∈ b. Then a/b 6= 0, so either a/b ∈ A or b/a ∈ A. It it were the former, we would have
a = (a/b)b ∈ Ab = b, contrary to assumption, so b/a ∈ A. Thus b = (b/a)a ∈ Aa = a. Since b ∈ b\{0}
was arbitrary, b ⊆ a.

(2) =⇒ (1): Let a/b ∈ K× for a, b ∈ A and b 6= 0. Then a ∈ (a) ⊆ (b) or b ∈ (b) ⊆ (a) in A. In the
former case, write a = xb with x ∈ A; then a/b = xb/b = x ∈ A. In the latter case, write b = ya with
y ∈ A; then a/b = a/ya = 1/y, so (a/b)−1 = y ∈ A.

Deduce that if A is a valuation ring and p is a prime ideal of A, then Ap and A/p are valuation rings of their
fields of fractions.

Since the containment relation on ideals of Ap or A/p is inherited from A, and both rings are still
integral domains, they are also valuation rings.

29. Let A be a valuation ring of a field K. Show that every subring of K which contains A is a local ring of A.
Let A ⊆ B ⊆ K be rings. By (5.18.ii), B is a valuation ring, so by (5.18.i) it is local with maximal ideal

p. If m is the maximal ideal of A, we have p ⊆ m, for if 0 6= x ∈ B with x−1 /∈ B, since A ⊆ B we have
x−1 /∈ A, and as A is a valuation ring, x ∈ A. Then p = p∩ A is a prime ideal of A. We claim B = Ap.

Slightly contrary to our usual notation, write S−1 = {x ∈ K : x−1 ∈ S} for S ⊆ K. Since for each x ∈ K×

we have that x ∈ A or x−1 ∈ A, or both, and similarly for B, we get decompositions K = m q A× q m−1

and K = p q B× q p−1, as in the figure below.
m A× m−1

p B× p−1

Since obviously A ⊆ Ap, it remains to show B\A ⊆ Ap, but it is evident from the figure that B\A ⊆ (m\
p)−1 (actually, they are equal). To prove it without reference to the figure, note that since A = A× ∪m ⊆ B,
the first decomposition implies B\A ⊆ m−1, and since B∩ p−1 = ∅, we have B\A ⊆ m−1\p−1 = (m\p)−1 ⊆
(A\p)−1 ⊆ Ap.

Note that this result does not contradict [5.27], since p ⊆ m and therefore B does not dominate A.

30. Let A be a valuation ring of a field K. The group U of units of A is a subgroup of the multiplicative group K× of K.
Let Γ = K×/U. If ξ, η ∈ Γ are represented by x, y ∈ K, define ξ ≥ η to mean xy−1 ∈ A. Show that this defines

a total ordering on Γ which is compatible with the group structure (i.e., ξ ≥ η =⇒ ξω ≥ ηω for all ω ∈ Γ). In
other words, Γ is a totally ordered abelian group. It is called the value group of A.

Well-definedness: Let x, x′ ∈ K× represent ξ ∈ Γ and y, y′ ∈ K× represent η ∈ Γ. We show that the
relation ξ ≥ η is independent of the representatives chosen. ξ = Ux = Ux′, so Ux′x−1 = U, meaning
x′x−1 ∈ U, and similarly y(y′)−1 ∈ U. The x, y version of ξ ≥ η gives xy−1 ∈ A. Then x′(y′)−1 =
[x′x−1][xy−1][y(y′)−1] ∈ U−1 AU = A, giving the x′, y′ version of ξ ≥ η.

Reflexivity: If x ∈ K× represents ξ ∈ Γ, then xx−1 = 1 ∈ A, showing ξ ≥ ξ.
Antisymmetry: Let x, y ∈ K× respectively represent ξ, η ∈ Γ. If ξ ≥ η and η ≥ ξ, then xy−1 ∈ A and

yx−1 ∈ A. Since (xy−1)(yx−1) = 1, this shows xy−1 ∈ U, so ξ = Ux = Uy = η.
Transitivity: Let x, y, z ∈ K× respectively represent ξ, η, ζ ∈ Γ. If ξ ≥ η and η ≥ ζ, then xy−1 ∈ A and

yz−1 ∈ A, so multiplying them, xz−1 = (xy−1)(yz−1) ∈ A, and ξ ≥ ζ.
Compatibility: Let x, y, w ∈ K× respectively represent ξ, η, ω ∈ Γ. If ξ ≥ η, then xy−1 ∈ A. But

xy−1 = x(ww−1)y−1 = (xw)(yw)−1, showing ξω ≥ ηω.
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Let v : K× → Γ be the canonical homomorphism. Show that v(x + y) ≥ min
(
v(x), v(y)

)
for all x, y ∈ K×.

Without loss of generality, let v(x) ≥ v(y), so that xy−1 ∈ A. Then A 3 xy−1 + 1 = (x + y)y−1, so
v(x + y) ≥ v(y). Note also that v(xy) = xyU = xU · yU = v(x)v(y), so v is a valuation with values in Γ , in
the terminology of the following exercise.

31. Conversely, let Γ be a totally ordered abelian group (written additively), and K a field. A valuation of K with
values in Γ is a mapping v : K× → Γ such that
(1) v(xy) = v(x) + v(y),
(2) v(x + y) ≥ min

(
v(x), v(y)

)
,

for all x, y ∈ K×. Show that the set of elements x ∈ K× such that v(x) ≥ 0 is a valuation ring of K. This ring is
called the valuation ring of v, and the subgroup v(K×) of Γ is the value group of v.

The book’s statement needs to be corrected mildly: the ring surely needs 0 ∈ K as well. The traditional
way to fix this is to add a new element ∞ to Γ, and let ∆ = Γ ∪ {∞} be a monoid with subgroup Γ such
that ξ + ∞ = ∞ for all ξ ∈ ∆.23 One extends the order on Γ by ∞ ≥ ξ for all ξ ∈ ∆ and defines v(0) := ∞.
This extended valuation v satisfies (1) since v(0 · x) = v(0) = ∞ = ∞ + v(x) = v(0) + v(x) and (2) since
v(0 + x) = v(x) = min

(
∞, v(x)

)
= min

(
v(0), v(x)

)
.

Now let A := {x ∈ K : v(x) ≥ 0}; we verify A is a valuation ring. We also verify m = {x ∈ K : v(x) > 0}
is the unique maximal ideal of A. Since associativity, commutativity, distributivity, and identities are
inherited from K, we have only to check closure properties of A.

• 0 ∈ A: Note v(0) = ∞ ≥ 0.

• 1 ∈ A: Note v(1) = v(1 · 1) = v(1) + v(1), so subtracting off v(1) gives v(1) = 0.

• −1 ∈ A: Note 0 = v(1) = v(−1 · −1) = v(−1) + v(−1) = 2v(−1). If v(−1) > 0, then 0 = 2v(−1) >
0, which is false; similarly, v(−1) < 0 would imply 0 = 2v(−1) < 0, which is false; so v(−1) = 0.

• x ∈ A =⇒ −x ∈ A: If x ∈ A, then v(−x) = v(−1 · x) = v(−1) + v(x) = 0 + v(x) = v(x) ≥ 0.

• x, y ∈ A =⇒ x + y ∈ A: If v(x), v(y) ≥ 0, then v(x + y) ≥ min
(
v(x), v(y)

)
≥ 0.

• x, y ∈ A =⇒ xy ∈ A: If v(x), v(y) ≥ 0, then v(xy) = v(x) + v(y) ≥ 0.

• v(x−1) = −v(x): 0 = v(1) = v(xx−1) = v(x) + v(x−1); subtract v(x) from both sides.

• x /∈ A =⇒ x−1 ∈ A: If x /∈ A, then v(x) < 0, so v(x−1) ≥ 0 and x−1 ∈ A.

• x ∈ A\m =⇒ x ∈ A×: If v(x) = 0, then v(x−1) = 0, so x−1 ∈ A and x ∈ A×.

Thus the concepts of valuation ring and valuation are essentially equivalent.
To prove this statement, we should verify that these correspondences are inverse. Let A be a valuation

ring of a field K, and let v : K× � K×/A× =: Γ be the canonical map. [5.30] shows it is a valuation.
Its valuation ring is A′ := {0} ∪ {x ∈ K× : v(x) ≥ 0}. Now by the definition of ≥ on Γ, we have
v(x) ≥ 0 = v(1) just if x = x1−1 ∈ A, so A′ = A.

Suppose on the other hand v : K× � Γ is a valuation, with valuation ring A = {0} ∪ {x ∈ K× : v(x) ≥
0} and value group Γ. Writing U = ker(v), and π : K× � K×/U for the natural map, there is a canonical
isomorphism φ : K×/U ∼−→ Γ such that v = φ ◦π. The field of fractions of A is K, so [5.30] gives a valuation
v′ : K× � K×/A×. Now A× =

{
x ∈ A\{0} : x−1 ∈ A

}
= {x ∈ K× : v(x) ≥ 0 & − v(x) = v(x−1) ≥ 0} =

{x ∈ K× : v(x) = 0} = U, so v′ = π. Thus v = φ ◦ π = φ ◦ v′, so v′ is canonically equivalent to v. Finally,
v(x) ≤ v(y) ⇐⇒ 0 = v(1) = v(xx−1) = v(x)− v(x) ≤ v(y)− v(x) = v(yx−1) ⇐⇒ yx−1 ∈ A\{0} ⇐⇒
v′(x) ≤ v′(y) by the definition of v′ in [5.30], so the order is preserved.

23 In multiplicative notation, this would be called a “group with zero,” with the absorbing element ∞ playing the role of “zero.”
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32. Let Γ be a totally ordered abelian group. A subgroup ∆ of Γ is isolated in Γ if, whenever 0 ≤ β ≤ α and α ∈ ∆, we
have β ∈ ∆. Let A be a valuation ring of a field K, with value group Γ (Exercise 31). If p is a prime ideal of A, show
that v(A\p) is the set of elements ≥ 0 of an isolated subgroup ∆ of Γ, and that the mapping so defined of Spec(A)
into the set of isolated subgroups of Γ is bijective.

Write ∆+ = v(A\p). Obviously 1 /∈ p, so v(1) = 0 ∈ ∆+. If α = v(a) and β = v(b) are in ∆+, with
a, b /∈ p, then since p is prime ab /∈ p, and so α + β = v(a) + v(b) = v(ab) ∈ ∆+. Thus ∆+ is a submonoid
of Γ and ∆ = ∆+ ∪ −∆+ is a subgroup whose elements ≥ 0 are ∆+

Suppose 0 ≤ β ≤ α in Γ with α ∈ ∆+. If β = 0 or α, then β ∈ ∆+, so assume not. Let α = v(a) for
a ∈ A\p and α − β = v(c) for c ∈ A. If c /∈ p, then α − β ∈ ∆+, so β − α ∈ ∆ and β ∈ ∆+, since ∆ is
a subgroup. If c ∈ p, consider b = ac−1. Now v(b) = α − (α − β) = β > 0, so b ∈ A, but b /∈ p, since
otherwise bc = a ∈ p, contrary to assumption. Thus β ∈ ∆+.

The correspondence is injective, for assume p, q in Spec(A) are such that ∆(p) = ∆(q). Then for every
x ∈ A\p there is y ∈ A\q with v(x) = v(y). Then 0 = v(x) − v(y) = v(xy−1), so xy−1 ∈ A× and
x = (xy−1)y ∈ A×(A\q) = A\q, so A\p ⊆ A\q. Symmetrically, A\q ⊆ A\p, so p = q.

For surjectivity, let an isolated subgroup ∆ be given. The natural candidate for ∆ = v(A\p) is p =
A\v−1(∆). Certainly it has the right image. Since ∞ /∈ ∆ we get 0 ∈ p. If x ∈ p, then v(−x) = v(x) /∈ ∆,
so −x ∈ p. If x, y ∈ p, then v(x + y) ≥ min

(
v(x), v(y)

)
> ∆, so x + y ∈ p. Finally, if x, y /∈ p, then

v(x), v(y) ∈ ∆, so v(xy) = v(x) + v(y) ∈ ∆, and xy /∈ p.

If p is a prime ideal of A, what are the value groups of the valuation rings A/p, Ap?

For A/p, define v̄ : A/p → Γ ∪ {∞} by v̄(x̄) =

{
v(x), x /∈ p,
∞, x ∈ p.

Assuming it is well defined, it inherits

axioms (1) and (2) of [5.31] from v. To see it is well defined, assume x− y ∈ p. Then

v̄(x̄) = min
(
v̄(x̄), ∞

)
= min

(
v̄(x̄), v̄(ȳ− x̄)

)
≤ v̄

(
x̄ + (ȳ− x̄)

)
= v̄(ȳ),

and similarly v̄(ȳ) ≤ v̄(x̄). Then we can extend v̄ to the fraction field k of A/p, and it gives a valuation
v̄ : k× → ∆. Since units of A/p are images of units of A (since in the quotient m 7→ m/p are the maximal
ideals) and only these are taken to 0 by v̄, we see A/p is the valuation ring of v̄, and ∆ is the valuation
group of A/p.

For Ap, the group K× is unchanged. Since A is local, p ⊆ m, meaning U = A\m ⊆ A\p ⊆ Ap\
pAp =: Up, the units of Ap. Thus the value group is a further quotient of Γ = K×/U. We can write an
element of Up as a/b for a, b ∈ A\p, so ∆ = v(A\p) = v(Up). By the third isomorphism theorem (2.1.i),
K×/Up

∼= (K×/U)/(Up/U) = Γ/v(Up) = Γ/∆.

33. Let Γ be a totally ordered abelian group. We shall show how to construct a field K and a valuation v of K with Γ as
value group. Let k be any field and let A = k[Γ] be the group algebra of Γ over k. By definition, A is freely generated
as a k-vector space by elements xα (α ∈ Γ) such that xαxβ = xα+β. Show that A is an integral domain.

This will follow from our proof of (1) in the next paragraph.

If u = λ1xα1 + · · ·+ λnxαn is any non-zero element of A, where the λi are all 6= 0 and α1 < · · · < αn, define
v0(u) to be α1. Show that the mapping v0 : A\{0} → Γ satisfies conditions (1) and (2) of Exercise 31.

(1) Let f = ∑ aαxα and g = ∑ bβxβ be non-zero elements of A, with v0( f ) = α0 and v0(g) = β0. Then in
fg, the non-zero coefficient of lowest index is that of xα0+β0 , which is aα0 bβ0 , since for all other pairs α, β
of indices we have α + β > α0 + β0. As k is a field, aα0 bβ0 6= 0, so fg 6= 0 and v( fg) = α0 + β0.

(2) Let f = ∑ aαxα and g = ∑ bβxβ be nonzero elements of A, with v0( f ) = α0 and v0(g) = β0; then the
lowest potentially nonzero coefficient index of f + g is α0 + β0. (Of course, there could be cancellation.)
Thus v0( f + g) ≥ min

(
v0( f ), v0(g)

)
.

Let K be the field of fractions of A. Show that v0 can be uniquely extended to a valuation v of K, and that the
value group of v is precisely Γ.

Axiom (1) requires that 0 = v( f / f ) = v0( f ) + v(1/ f ), so that v( f−1) = −v0( f ) for all nonzero f ∈ A.
Then for f /g ∈ K with f, g ∈ A we must have v( f /g) = v0( f )− v0(g), so the extension v is unique, if
the definition defines a valuation. Suppose f /g = f ′/g′ in K, for f, f ′, g, g′ ∈ A. Then by the definition of
localization, fg′ = f ′g, so v0( f ) + v0(g′) = v0( f ′) + v0(g), and v( f /g) = v0( f )− v0(g) = v0( f ′)− v0(g′) =
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v( f ′/g′), so v is well defined. Evidently v(K) = v(A)− v(A) = Γ− Γ = Γ. It remains to verify axiom (2).
Again let f /g, f ′/g′ ∈ K be given, for some f, f ′, g, g′ ∈ A. Then h := f

g + f ′
g′ =

fg′+ f ′g
gg′ , and

v(h) = v( fg′ + f ′g)− v(gg′) ≥ min
(
v( f ) + v(g′), v( f ′) + v(g)

)
−
(
v(g) + v(g′)

)
= min

(
v( f )− v(g), v( f ′)− v(g′)

)
= min

(
v( f /g), v( f ′/g′)

)
.

It should be pointed out that v(A) = v
(
k(Γ)

)
= Γ already, so A is not the valuation ring of K. Rather,

B = {0} ∪ {x ∈ K : v(x) ≥ 0} is, by [5.31].

34. Let A be a valuation ring and K its field of fractions. Let f: A→ B be a ring homomorphism such that f ∗ : Spec(B)→
Spec(A) is a closed mapping. Then if g: B → K is any A-algebra homomorphism (i.e., if g ◦ f is the embedding of
A in K) we have g(B) = A.

Since A = g
(

f(A)
)
⊆ K we have A ⊆ g(B) =: C. Then C is a valuation ring, by (5.18.ii). Let o be

a maximal ideal of C; since g|C : B � C is surjective, g∗(o) = n is a maximal ideal of B. By [1.18.i],
{n} ⊆ Spec(B) is closed; as f ∗ is a closed mapping, f ∗({n}) is closed, so by [1.18.i] again it must be a
singleton containing a maximal ideal. As A is local, that ideal is the unique maximal ideal m� A. Since
g ◦ f: A ↪→ K is the inclusion, this means that m = f ∗(n) = f ∗

(
g∗(o)

)
= (g ◦ f )∗(o) = o ∩ A, so o

dominates m. By [5.27] (valuation rings are domination-maximal), this shows A = C and m = o.

35. From Exercises 1 and 3 it follows that, if f: A → B is integral and C is any A-algebra, then the mapping
( f ⊗ 1)∗ : Spec(B⊗AC)→ Spec(C) is a closed map.

Conversely, suppose that f: A→ B has this property and that B is an integral domain. Then f is integral.
Write A′ = f(A) ⊆ B, and K for the field of fractions of B. To show B is integral over A′, it is enough

to show B is in the integral closure of A′ in K. By (5.22) it is enough to show B is in each valuation ring
of K containing A′. Let C be one such. Then A′ ⊆ B, C ⊆ K. Multiplication B × C → K is A-bilinear
(equivalently, A′-bilinear), so induces a map g: B⊗AC → K. Now f ⊗ idC : A⊗AC → B⊗AC, and (2.14)
gives an isomorphism φ : C ∼−→ A⊗AC. Write F = ( f ⊗ idC) ◦ φ, so that F∗ : Spec(B⊗AC) → Spec(C) is
closed, by assumption. The composition g ◦ F takes c 7→ 1A⊗ c 7→ 1B⊗ c 7→ c, and so is the inclusion
C ↪→ K. The preceding [5.34] then says that g(B⊗AC) = C. In particular, for each b ∈ B we have b =
g(b⊗ 1C) ∈ C, so B ⊆ C.

Show that the result just proved remains valid if B is a ring with only finitely many minimal prime ideals (e.g.,
if B is Noetherian).

First, if B is Noetherian, (7.13) says the (0) ideal has a primary decomposition, and (4.6) says the finitely
many isolated primes of this decomposition are precisely the minimal ideals of B.

Second, the statement needs some clarification. The hypothesis being replaced (by B only having
finitely many minimal prime ideals) is that B is integral, not the closed mapping assumption.

Now suppose f : A → B satisfies the assumption. and B has only finitely many minimal prime ideals
p1, . . . , pn. The surjections πi : B � B/pi give rise to compositions πi ◦ f: A → B � B/pi. Let an A-
algebra C be given. Since tensor is left exact and B � B/pi is a surjection, gi : B⊗AC → (B/pi)⊗AC is
a surjection. By [1.21.iv], g∗i : Spec

(
(B/pi)⊗AC

)
→ Spec(B⊗AC) is a closed map, and by assumption,

Spec(B⊗AC) → Spec(C) is a closed map, so composing, Spec
(
(B/pi)⊗AC

)
→ Spec(C) is closed. As C

was arbitrary, πi ◦ f has the property above, and since B/pi is an integral domain, πi ◦ f is integral. By
[5.6], the map (π1 ◦ f , . . . , πn ◦ f ) : A→ ∏ B/pi is integral; this map factors as (π1, . . . , πn) ◦ f: A→ B→
∏ B/pi. The kernel of the homomorphism (π1, . . . , πn) : B → ∏ B/pi is the nilradical N =

⋂
pi of B, so

we have a factorization A → B � B/N � ∏ B/pi. Since ∏ B/pi is integral over the image of A, so is the
embedded subring B/N. Now let x ∈ B; then its image x̄ ∈ B/N satisfies a monic polynomial equation
x̄m + ∑j<m b̄j x̄j = 0̄ for some bj ∈ f(A); lifting, this means p(x) = xm + ∑j<m bjxj ∈ N. Then there is an
integer l large enough that p(x)l = 0 in B; but p(x)l is a monic polynomial in f(A)[x], so x is integral over
f(A).
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Jordan–Hölder Theorem. Consider an A-module M of finite length. (6.7) says that every composition
series of M has the same length, and the book claims (p. 77) that the multiset of isomorphism classes of
quotients of successive terms is the same for any choice of composition series. The proof, it goes on, is the
same as for finite groups. We recall it here.1

The proof proceeds by induction on the length l(M) of M. If l(M) = 0 or 1, we are done. Assume
inductively that the result holds for all modules of length n, and let l(M) = n + 1. Assume M has the two
composition series

M = M0 ) M1 ) · · · ) Mn+1 = 0, M = N0 ) N1 ) · · · ) Nn+1 = 0.

If M1 = N1, then by the inductive hypotheses the multisets S = {Mi/Mi+1}n
i=1 and T = {Ni/Ni+1}n

i=1 of
quotients are equal so since M/M1 = M/N1, the quotient multisets of the two composition series for M
are equal.

If M1 6= N1, let P1 = M1 ∩ N1. Note that M1 ( M1 + N1 ⊆ M, so since M/M1 was assumed sim-
ple, M1 + N1 = M. Now M1/P1 = M1/(M1 ∩ N1) ∼= (M1 + N1)/N1 = M/N1 by the second isomor-
phism theorem (2.1.ii), and this quotient is simple. Symmetrically, N1/P1

∼= M/M1. By the proof of (6.7),
l(P1) ≤ l(M1) = n is finite, so P1 has a composition series P1 ) P2 ) · · · ) Pp = 0. Write U for
the quotient multiset. M1 ) P1 ) · · · ) Pp = 0 is a composition series for M1. Since l(M1) = n, we
have p = n, and by the induction hypothesis, the multiset {M1/P1} ∪ U = {M/N1} ∪ U is the same
as the multiset S = {Mi/Mi+1}n

i=1. Then the quotient multiset for the Mi composition series of M is
{M/M1} ∪ S = {M/M1, M/N1} ∪ U. Similarly N1 ) Pi is a composition series for N1 with quotient
multiset {N1/P1} ∪U = {M/M1} ∪U, by inductive assumption equal to the multiset T = {Ni/Ni+1}n

i=1.
Then the Ni composition series for M yields the quotient multiset {M/N1} ∪ T = {M/N1, M/M1} ∪U
as well.

EXERCISES
1. i) Let M be a Noetherian A-module and u : M → M a module homomorphism. If u is surjective, then u is an

isomorphism.
For all n ≥ 0, we have ker(un) a submodule of M and ker(un) ⊆ ker(un+1); as M is Noetherian,

we eventually have ker(un) = ker(un+1). Any element y ∈ im(un) is un(x) for some x ∈ M, and if
0 = u(y) = u

(
un(x)

)
= un+1(x), then x ∈ ker(un+1) = ker(un), so y = un(x) = 0 already. Thus u is

injective on im(un). But since u is surjective, im(un) = M, so u is injective, hence an isomorphism.

ii) If M is Artinian and u is injective, then again u is an isomorphism.
For all n ≥ 0, we have im(un) a submodule of M and im(un) ⊇ im(un+1); as M is Artinian, we

eventually have im(un) = im(un+1). For each element x ∈ M we have un(x) ∈ im(un) = im(un+1), so
there is y ∈ M with un(x) = un+1(y) = un(u(y)). As u is injective, un is also injective, so x = u(y). As x
was arbitrary, u is surjective, hence an isomorphism.

2. Let M be an A-module. If every non-empty set of finitely generated submodules of M has a maximal element, then
M is Noetherian.

By (6.2), it will suffice to show any submodule N of M is finitely generated. Let Σ be the set of finitely
generated submodules of N. By assumption, Σ has a maximal element N0. If N0 ( N, there is x ∈ N\N0,
and then N0 + Ax ) N0 is a finitely generated submodule of N, contradicting maximality of N0. Thus
N0 = N is finitely generated.

1 http://planetmath.org/encyclopedia/ProofOfTheJordanHolderDecompositionTheorem.html
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3. Let M be an A-module and let N1, N2 be submodules of M. If M/N1 and M/N2 are Noetherian, so is M/(N1∩N2).
Similarly with Artinian in place of Noetherian.

By the second isomorphism theorem (2.1.ii), N1/(N1 ∩ N2) ∼= (N1 + N2)/N2. Since (N1 + N2)/N2
is a submodule of the Noetherian (resp. Artinian) M/N2, (6.3.i) (resp. (6.3.ii)) shows N1/(N1 ∩ N2) is
Noetherian (resp. Artinian). Now the third isomorphism theorem (2.1.i) gives an exact sequence 0 →
N1/(N1 ∩ N2) → M/(N1 ∩ N2) → M/N1 → 0. The outside terms are Noetherian (resp. Artinian), so
another use of (6.3.i) (resp. (6.3.ii)) shows that M/(N1 ∩ N2) is Noetherian (resp. Artinian).

4. Let M be a Noetherian A-module and let a be the annihilator of M in A. Prove that A/a is a Noetherian ring.
M is finitely generated by (6.2), say by x1, . . . , xn. Then if ai = Ann(xi), we have A/ai

∼= Axi; as a
submodule of a Noetherian module, it is, by (6.3.i), also Noetherian. Since a =

⋂
ai, by [6.3] and induction,

A/a is a Noetherian A-module, hence a Noetherian A/a-module.

If we replace “Noetherian” by “Artinian” in this result, is it still true?
No. Let p ∈ N be a non-zero prime and consider Example 3) of p. 74, the p-quasicyclic group G =

Z/p∞Z.2 It is an abelian group, so a Z-module, and the book states that it is Artinian.3 It is generated
by the elements xn = Z + 1/pn, and AnnZ(xn) = (pn), so AnnZ(G) = (0). Now Z ∼= Z/(0) is not an
Artinian ring by Example 2) of p. 74.

Our proof for the Noetherian case above fails precisely because there are infinitely many xn; we do
have each Z/(pn) = Z/AnnZ(xn) Artinian, being isomorphic to the submodule Gn of G, but the result
of [6.3] does not extend to infinite intersections.

5. A topological space X is said to be Noetherian if the open subsets of X satisfy the ascending chain condition (or,
equivalently, the maximal condition). Since closed subsets are complements of open subsets, it comes to the same thing
to say that the closed subsets of X satisfy the descending chain condition (or, equivalently, the minimal condition).
Show that, if X is Noetherian, then every subspace of X is Noetherian, and that X is compact.

Let Y ⊆ X be a subspace; in the subspace topology, the open sets of Y are precisely the intersections
with Y of open sets of X. If 〈Vn〉 is an ascending chain of open subsets of Y, let Un ⊆ X be open and
such that Vn = Un ∩ Y. Then there is some n such that Un = Un+1 = · · · , so intersecting with Y, we get
Vn = Vn+1 = · · · . This shows Y is Noetherian.

Let U be an open cover of X, and let Σ be the collection of all finite unions of elements of U . By the
maximal condition on opens, Σ has a maximal element V. If there is x ∈ X\V, there is some U ∈ U
containing x since U is an open cover, and then U ∪ V ∈ Σ strictly contains V, contradicting maximality.
Thus X = V is a finite union of elements of U . This shows X is compact.

6. Prove that the following are equivalent:
i) X is Noetherian.
ii) Every open subspace of X is compact.
iii) Every subspace of X is compact.

i) =⇒ iii): This follows from [6.5]: each Y ⊆ X is itself Noetherian, and each Noetherian space is
compact.

iii) =⇒ ii): This is trivial: each open subspace is a subspace.
ii) =⇒ i): Let U1 ⊆ U2 ⊆ · · · be an ascending chain of open subsets of X, and U =

⋃
n∈N Un. Since U

is compact, U is a union of a finite set {Un1 , . . . , Unm}. But then if n = maxj nj, we see U = Un.

2 See http://planetmath.org/encyclopedia/QuasicyclicGroup.html. G is the group of elements of Q/Z with denominator
a p-power, or equivalently Z[1/p]/Z. Taking its image under x̄ 7→ e2πix gives an isomorphism to the subgroup {z : ∃n ≥ 0 (zpn

=

1)} of C×. Thus it is an increasing union of the groups of (pn)th roots of unity, or equivalently the direct limit of the system
(Z/pnZ, πmn), where for m ≤ n we have πmn : Z/pmZ→ Z/pnZ taking 1 7→ pn−m.

3 are its only proper subgroups. First, we claim that if x ∈ Gn\Gn−1, then 〈x〉 = Gn. Since x = Z + a/pn for some a ∈ Z\(p),
we have (a) + (p) = (1) in Z. By (1.16), (a) + (pn) = 1, so there are b, m ∈ Z such that ba + mpn = 1. Thus (ba/pn) = m + (1/pn)
in Z[1/p], so bx = xn and 〈x〉 = Gn. Now suppose H is a proper subgroup of G. Since G =

⋃
Gn, we see H fails to contain some

Gn+1. Let n + 1 be minimal such that this happens. Then H contains no element of Gn+1\Gn by the work above, but by assumption
contains all of Gn, so H = Gn. Now G is Artinian, for given a strictly descending chain of submodules starting with G, the second
module is some Gn, and Gn properly contains only n− 1 submodules.
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7. A Noetherian space is a finite union of irreducible closed subspaces. Hence the set of irreducible components of a
Noetherian space is finite.

Recall from [1.19] that a topological space C is irreducible if for every pair of nonempty open subsets
U1, U2, we have U1 ∩U2 6= ∅. Taking complements Fi = C\Ui, this means for every pair of closed subsets
F1, F2 ( C, we have C 6= C\(U1 ∩U2) = (C\U1) ∪ (C\U2) = F1 ∪ F2. That is, C is not a union of proper
closed subspaces.

Suppose, for a contradiction, that the result is false. Then there is a Noetherian space X such that X
is an element of the set Σ of closed subsets of X that are not unions of finitely many irreducible closed
subspaces. Since Σ is nonempty and X is Noetherian, Σ has a minimal element C. Since C is not a finite
union of irreducible sets, it is not itself an irreducible set. Thus it is reducible, and so a union of two proper
closed subspaces F1 and F2. But F1 and F2 are both finite unions of irreducible closed sets, so C is as well,
a contradiction.

Recall from [1.20.iii] that the irreducible components of a space X are the maximal irreducible subsets of
X, and that they are closed and cover X. Since a Noetherian space X is a union of finitely many irreducible
closed subspaces, it is a fortiori a union of finitely many maximal such, so it is a union of finitely many
irreducible components. Let n be the minimal possible number needed to cover X, and let C1, . . . , Cn
be irreducible components covering X. If F is any other irreducible closed set, then F =

⋃n
j=1(F ∩ Cj)

expresses F as a union of closed subsets; as F is irreducible, F ⊆ Cj for some j. Thus C1, . . . , Cn are the
only irreducible components of X.

8. If A is a Noetherian ring, then Spec(A) is a Noetherian topological space. Is the converse true?
Every closed subset of Spec(A) is ([1.15]) of the form V(a) for some radical ideal a� A. Let

(
V(aj)

)
j∈N

be an infinite descending chain collection of closed subsets of Spec(A). Since V(aj+1) ⊆ V(aj), taking
intersections of these sets of primes (recalling the aj are radical; see (1.14)) gives aj ⊆ aj+1. Since A is
Noetherian, eventually an = an+1 = · · · , and so V(an) = V(an+1) = · · · ; thus Spec(A) is Noetherian.

The converse is not true. Let k be a field, and A = k[x1, x2, . . .] a polynomial ring over k in countably
many indeterminates. Let any sequence (mn)∞

n=1 of integers > 1 be given. Let b be the ideal generated by
xm1

1 and xn − xmn+1
n+1 for all n ≥ 1. Write yn = x̄n in B = A/b. Then ym1

1 = 0 and yn = ymn+1
n+1 for all n ≥ 1. If

p = (y1, y2, . . .), we have B/p ∼= k, so p is maximal. Now yn+1 ∈ r(yn) and y1 ∈ r(0), so p ⊆ N(B) ⊆ p,
showing p is the unique minimal prime as well. Since all primes then contain p, which is maximal, p is the
only prime of B. Thus Spec(B) = {p} is obviously Noetherian. But (y1) ( (y2) ( (y3) ( · · · is an infinite
ascending chain of ideals, so B is not Noetherian.

Relatedly4, but using material from earlier in the book, let k be a field and Γ a non-zero totally ordered
group with only finitely many isolated subgroups and such that Γ>0 := {γ ∈ Γ : γ > 0} has no least
element (for example take Z[1/p] ⊆ Γ ⊆ R for p ≥ 2). Let K be the field of fractions of the group
algebra k[Γ]. Then [5.33] gives a surjective valuation v : K× → Γ, and A = {0} ∪ {x ∈ K : v(x) ≥ 0} is
the associated valuation ring. [5.32] shows that A has only finitely many prime ideals. For any γ ∈ Γ+,
there exists x ∈ k[Γ] with v(x) = γ. Elements y ∈ (x) have value v(y) ≥ v(x) by axiom (1) of [5.31], so if
x, y ∈ A have v(x) < v(y), it is impossible that x ∈ (y), and by [5.28] we have (y) ( (x). Now any infinite
decreasing sequence γ1 > γ2 > · · · > 0 in Γ gives rise to an infinite increasing sequence of ideals of A.

Simpler5, let k be a field, A = k[x1, x2, . . .] a polynomial ring over k in countably many indeterminates,
c = (x2

1, x2
2, · · · ), and C = A/c. Write zj = x̄j and q = (z1, z2, . . .). Then C/q ∼= k, so q is maximal, and

q ⊆ N(C) ⊆ q, so q is minimal, and thus Spec(C) = {q}. But (z1) ( (z1, z2) ( (z1, z2, z3) ( · · · is an
infinite ascending chain of ideals.

9. Deduce from Exercise 8 that the set of minimal prime ideals in a Noetherian ring is finite.
Let A be a Noetherian ring. By [6.8], X is a Noetherian space. By [6.7], X has only finitely many

irreducible components. By [1.20.iv], the irreducible components of X = Spec(A) are the closed sets V(p)
for p a minimal prime; thus there are only finitely many minimal primes of A.

4 http://pitt.edu/~yimuyin/research/AandM/exercises06.pdf
5 [?]
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10. If M is a Noetherian module (over an arbitrary ring A) then Supp(M) is a closed Noetherian subspace of Spec(A).
Recall ([3.19]) that Supp(M) is the set of prime ideals p� A such that Mp 6= 0. Write a = Ann(M).

By [3.19.v], Supp(M) = V(a) is closed. [1.21.iv] gives a homeomorphism V(a) ≈ Spec(A/a). But by [6.4],
A/a is a Noetherian ring, so [6.8] shows Spec(A/a) ≈ V(a) is a Noetherian space.

11. Let f: A → B be a ring homomorphism and suppose that Spec(B) is a Noetherian space (Exercise 5). Prove that
f ∗ : Spec(B)→ Spec(A) is a closed mapping if and only if f has the going-up property (Chapter 5, Exercise 10).

In [5.10.i] we showed that f ∗ being closed implies f has the going-up property. Now suppose Spec(B)
is Noetherian and f has the going-up property. Let V(b), for b� B radical, be an arbitrary closed set of
Spec(B). Then by [6.5], V(b) is itself Noetherian, By [1.21.iv], V(b) ≈ Spec(B/b), so by [6.7], Spec(B/b)
has only finitely many irreducible components. By [1.20.iv], these correspond to minimal primes of B/b,
and hence minimal elements qj of V(b). Let pj = qc

j . Now (1.18) shows a := bc =
(⋂

qj
)c

=
⋂
qc

j =
⋂
pj.

Now if p ∈ V(a) we have
⋂
pj ⊆ p, so by (1.10.ii), pj ⊆ p for some j. Thus V(a) =

⋃
V(pj). [5.10.i] shows

that f ∗
(
V(qj)

)
= V(pj), so f ∗

(
V(b)

)
= f ∗

(⋃
V(qj)

)
=
⋃

f ∗
(
V(qj)

)
=
⋃

V(pj) = V(a) is closed.

12. Let A be a ring such that Spec(A) is a Noetherian space. Show that the set of prime ideals of A satisfies the ascending
chain condition. Is the converse true?

Let p1 ⊆ p2 ⊆ · · · be an ascending chain of prime ideals of A. Then V(p1) ⊇ V(p2) ⊇ · · · is a descend-
ing chain of closed subsets of Spec(A). Since Spec(A) is Noetherian, the descending chain terminates in
some V(pn) = V(pn+1). Then pn ∈ V(pn) = V(pn+1), so pn+1 ⊆ pn ⊆ pn+1 and the chain stabilizes.

The converse is untrue. Let X be an infinite set; its power set P(X) with the partial order given by ⊆
is a Boolean algebra by the proof of [1.25]. Let A be the associated Boolean ring ([1.24]). (Note that in fact
A ∼= ∏X F2.) If a ∈ A, then the principal ideal (a)� A is the set of ba = b ∩ a for b ∈ P(X), which is the
set of subsets b ⊆ a. Let x1, x2, . . . be an infinite sequence of distinct elements of X, and for each n let pn be
the principal ideal generated by the element X\{xn} of A. Each pn is prime, for if a, b ∈ A\pn, then xn ∈ a
and xn ∈ b, so xn ∈ a∩ b = ab, meaning ab /∈ pn. If we let Sn = {s1, . . . , sn} for each n ≥ 1, then Sn ( Sn+1
for each n, so if an is the principal ideal (Sn), then an ( an+1 for each n, so any prime containing the latter
contains the former, and V(an) ⊇ V(an+1) in Spec(A). But xn+1 ∈ Sn+1 ∈ an+1, so an+1 6⊆ pn+1, while for
a ∈ an we have xn+1 /∈ Sn ⊇ a, so that an ⊆ pn+1. Thus we have a strict containment V(an) ) V(an+1) for
each n, so the V(an) are an infinite descending sequence of closed subsets of Spec(A), which is then not
Noetherian. But by [1.11.ii], every prime of A is maximal, so each chain of prime ideals of A has length
zero, and the set of prime ideals of A satisfies the ascending chain condition.

For another demonstration the converse is untrue,6 let k be a field, B = ∏∞
j=1 k the product of countably

many copies of k, and A = k · 1 +
⊕

k the subring of B consisting of all eventually constant sequences of
elements of k. Write ej ∈ A for the element with a 1 at the jth place and 0 elsewhere, and fn = 1−∑j≤n ej.
For each n ≥ 0 the subring An = ∑j<n kej + k fn ( A is the set of sequences of elements of k constant from
the (n + 1)th element on, and we have a natural isomorphism Bn

∼−→ kn+1 taking ej 7→ ej for j ≤ n and
fn 7→ en+1. If bj = ∑i 6=j(ei), the proof of [1.22], shows that Spec(kn+1) is a disjoint union of sets of ideals
bj + pej for p a prime of k; since k is a field, Spec(kn+1) = {b1, . . . , bn+1}. For the corresponding primes
of Bn write pn, j = ∑i 6=j(ei) + ( fn) for j = 1, . . . , n and qn = ∑j≤n(ej). Let p ∈ Spec(B). Then p ∩ An is a
prime. One possibility is that this prime is qn for each n. Since B =

⋃
Bn, then p0 := p =

⋃
qn =

⊕
k, and

B/p0 = B/
⊕

k ∼= k, so p0 is maximal.7 Otherwise there is some An with p ∩ An = pn, m, and it follows
p ∩ Aj = pj, m for all j ≥ n. Thus ej ∈ p for j > m and fm ∈ p, so p contains pj = ∑n 6=j(ej) + ( f j). As pj

is the kernel of the projection of A onto the jth coordinate, it follows again pj is maximal, so p = pj. All
primes of A being maximal, It follows any ascending sequence of prime ideals of A is constant. On the
other hand qn = ∑j≤n(ej) gives an infinite ascending sequence of ideals of A. Evidently V(qn) ⊇ V(qn+1),
and since qn ⊆ pn+1 but qn+1 6⊆ pn+1, the inclusion is strict. Thus Spec(A) is not Noetherian.

6 http://pitt.edu/~yimuyin/research/AandM/exercises06.pdf
7 In case this wasn’t clear, since the diagram

0 // qn
� � //
� _

��

An� _

��

// // k // 0

0 // qn+1
� � // An+1 // // k // 0

is commutative, [2.18] and [2.19] give a short exact sequence 0→ p0 ↪→ A � k→ 0 of direct limits.
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Theorem 7.5*. If A is Noetherian, then the formal power series ring A[[x]] is Noetherian.
If f = axm + (deg > m) is an element of A[[x]], define ord( f ) = m. Let a be an ideal of A[[x]], and let

l be the set of trailing coefficients of series in a. This is an ideal of A, for if a, b ∈ l and c ∈ A, there are
elements f = axm + (deg > m) and g = bxp + (deg > p) of a; without loss of generality, assume p ≥ m;
then the trailing coefficient of xp−m f − g ∈ a is a− b, and the trailing coefficient of cf ∈ a is ca. Since A is
Noetherian, l is finitely generated, say by a1, . . . , an. By the definition of l, for i = 1, . . . , n there is a series
fi ∈ A[[x]] of the form fi = aixri + (deg > ri). Let r = maxn

i=1 ri. The fi generate an ideal a′ ⊆ a in A[[x]].
Let f be an arbitrary element of a, with m = ord( f ) ≥ r. If gi, 0 = 0 for all i, we have f = f −∑ gi, 0 fi of

order m. Let p ≥ m, and assume inductively that there are polynomials gi, p ∈ A[x] with deg(gi, p) ≤ m− ri
such that f ′ = f −∑ gi fi has ord( f ′) = p. If f ′ = axp + (deg > p) write a = ∑n

i=1 uiai, where ui ∈ A; then
f ′ − ∑(uixp−ri ) fi = f − ∑(gi, p + uixp−ri ) fi is in a and has degree > p. Then gi, p+1 = gi, p + uixp−ri has
degree ≤ p− ri. Since any terms we might add in transforming gi, p to gi, p+1 are of strictly higher degree,
as p→ ∞, the polynomials gi, p ∈ A[x] converge to some gi ∈ A[[x]], and f −∑ gi fi = 0, so f ∈ a′.

If we write M = A + Ax + · · ·+ Axr−1, then this shows that for any f ∈ a, there is g ∈ a′ such that
f − g ∈ a ∩M. Now M is a finitely generated A-module, so it is Noetherian by (6.5), and thus a ∩M is a
finitely generated A-module by (6.2). Therefore a = (a∩M) + a′ is finitely generated.

EXERCISES
1. Let A be a non-Noetherian ring and let Σ be the set of ideals in A which are not finitely generated. Show that Σ has

maximal elements and that the maximal elements of Σ are prime ideals.
Hence a ring in which every prime ideal is finitely generated is Noetherian (I. S. Cohen).
This result has actually be vastly generalized: there is a metatheorem giving results of the form “any

ideal maximal with respect to not having property P is prime” for large natural classes of properties P of
ideals.1 For example, for any infinite cardinal κ, any ideal maximal with respect to not being generated by
< κ elements is prime (it is not however guaranteed that such ideals exist); the result we prove here is the
κ = ℵ0 case.

Since A is not Noetherian, Σ is not empty. Let 〈aα〉α be a chain in Σ, and a its union. If a was finitely
generated, say by xi ∈ aαi (1 ≤ i ≤ n) with α1 ≤ · · · ≤ αn, then we would have a = (x1, . . . , xn) ⊆ aαn ⊆ a,
showing aαn /∈ Σ, a contradiction. Then Zorn’s Lemma furnishes maximal elements of Σ.

It is not harder to prove the next part for ideals generated by < κ elements than < ℵ0 elements, so
redefine Σ to be the set of ideals not generated by < κ elements. Let p be a maximal element of Σ; by the
last paragraph, Σ has maximal elements if κ = ℵ0. Suppose a /∈ p and b ∈ A are such that ab ∈ p; we
show b ∈ p. Now (a) + p ∈ Σ. If it is generated by the elements (bα + xα) for bα ∈ A and xα ∈ p (α < κ),
then (a) + p = (a) + (xα). Write a = (xα). Now if y ∈ p\a, then y ∈ p ∩ (a), so there is z ∈ A, such that
az = y ∈ p. It follows that z ∈ (p : a), so y ∈ a(p : a). Thus a+ a(p : a) = p). If (p : a) /∈ Σ, we would have
a(p : a) /∈ Σ and hence p /∈ Σ, so it follows that (p : a) ∈ Σ. Now p ⊆ (p : a), and if the containment were
strict, we would have (p : a) /∈ Σ, so b ∈ (p : a) = p.

2. Let A be a Noetherian ring and let f = ∑∞
n=0 anxn ∈ A[[x]]. Prove that f is nilpotent if and only if each an is

nilpotent.
By [1.5.ii], if f is nilpotent, then all an are nilpotent. On the other hand, suppose all an are nilpotent.

By (7.15), the nilradical N of A is nilpotent, meaning there is m ≥ 1 such that Nm = 0. That means any
product aI = ∏m

i=1 ani = 0. In f m, each term is divisible by some aI , so f m = 0.

1 Tsit Yuen Lam and Manuel L. Reyes: http://bowdoin.edu/~reyes/oka1.pdf
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3. Let a be an irreducible ideal in a ring A. Then the following are equivalent:
i) a is primary;
ii) for every multiplicatively closed subset S of A we have (S−1a)c = (a : x) for some x ∈ S;
iii) the sequence (a : xn) is stationary, for every x ∈ A.

i) =⇒ ii): Let a be primary and a ∈ a. (4.8) says that either (S−1a)c = a = (a : 1) or (S−1 A)c = A =
(a : a).

ii) =⇒ iii): Let x ∈ A, and Sx = {1, x, x2, . . .}. Recall from [4.12] that Sx(a) := (S−1
x a)c = {y ∈ A :

Sxy ∩ a 6= ∅}. But this is
⋃

s∈Sx (a : s) =
⋃

n≥0(a : xn). By assumption, this is also equal to (a : s) for some
s = xn ∈ S. Then (a : xn) ⊆ (a : xn+m) ⊆ Sx(a) = (a : xn) for all m ≥ 0, so the chain of ideals (a : xn) is
stationary.

iii) =⇒ i): Since a is irreducible in A, we have (0) irreducible in A′ = A/a. Suppose x̃ỹ ∈ a with
x̃, ỹ ∈ A and y /∈ a. Let x, y be their images in A′. The increasing chain (a : x̃n) in A is stationary, and
its image in A′ is (0 : xn) = Ann(xn), so for some n we have Ann(xn) = Ann(xn+1). If a ∈ (y) ∩ (xn),
write a = by = cxn. Then 0 = bxy = cxn+1, so c ∈ Ann(xn+1) = Ann(xn), meaning a = cxn = 0. Thus
(0) = (y) ∩ (xn). Since (0) is irreducible, it follows that (xn) = (0), so x̃n ∈ a. Thus a is primary.

4. Which of the following rings are Noetherian? In all cases the coefficients are complex numbers.
i) The ring of rational functions of z having no pole on the circle |z| = 1.

This ring A is Noetherian. Any element of A can be written in least terms as p(z)/q(z) ∈ C(z), for
p(z), q(z) ∈ C[z] such that q(z) has no root on the circle |z| = 1. Put another way, q(z) can be any
polynomial in the multiplicatively closed set S = C[z]\⋃|a|=1(z − a). Thus A = S−1C[z]. Since C[z] is
Noetherian (for example by (7.5)), its localization A is Noetherian by (7.3).

ii) The ring of power series in zwith a positive radius of convergence.
This ring A is Noetherian. Let B be an arbitrary ring, and z an indeterminate. Recall ([1.5]) that f ∈ B[[z]]

is a unit just if f ∈ B× + (z), that is, the constant term of f is a unit. If B = k is a field, this just means the
constant term is nonzero. Each nonzero element f ∈ k[[z]] has some order ord( f ) (the least m such that the
coefficient of zm in f is non-zero), and thus f = zord( f )g for some g ∈ k× + (z). Since g is a unit, it follows
fg−1 = zord( f ) ∈ ( f ), and so ( f ) = (zord( f )). Thus the ideals of k[[z]] are (0) and (zn) for n ≥ 0. But the
non-trivial ideals of k[[z]] are well-ordered by ⊇, so we see (as in (7.5*)) that k[[z]] is Noetherian.

We show that each ideal of A is the contraction of an ideal of C[[z]], so A is Noetherian. Let f ∈ A (
C[[z]] be nonzero, and write f = zmg for g a unit of C[[z]]. The radius of convergence of g is the same as
that of f , so g ∈ A.2 The inverse g−1 of g in C[[z]] is also in A,3 so g−1 f = zm in A, showing ( f ) = (zm)
again.

iii) The ring of power series in zwith an infinite radius of convergence.
This ring A is not Noetherian. Let fn = ∏∞

j=n
(
1− z2

n2

)
for each n ≥ 1. It can be shown that fn ∈ A; in

fact πz f1 = sin πz. (If you like, replace the factors by 1− z2

22n , whose product more obviously converges.)

Note that the roots of 1− z2

n2 are z = ±n. Now each element of ( fn) vanishes at ±n, for limz→n | fn(z)| = 0,
and if we have g fn(n) 6= 0 for some g ∈ C[[z]], it follows limz→n |g(z)| = ∞, and hence g has radius of
convergence ≤ n and is not in A. Now since fn+1| fn for each n, we have ( fn) ⊆ ( fn+1), but fn+1 /∈ ( fn)
since fn+1 does not vanish at ±n. Thus ( fn) is an infinite ascending series of ideals in A.

iv) The ring of polynomials in z whose first n derivatives vanish at the origin (n being a fixed integer).
This ring A is Noetherian. We claim it is actually the subring A = C + (zn+1) ( C[z].4 Now C[zn+1] ∼=

2 Write f(z) = ∑ anzn+m and set c = lim supn→∞
n+m
√
|an| and R = 1/c. If |z| < R, then for some ε > 0, we have |z| < 1/(c + ε),

which implies that for all sufficiently large n we have |anzn+m| < |an|(c + ε)−(n+m) ≤ c
c+ε

n+m. It follows that |anzn| ≤ 1
|z|m

c
c+ε

n+m

for n large enough, so by comparison with the geometric series, g(z) converges.
3 See the footnote to [10.8].
4 Note first that the definition must be interpreted to involve the derivatives d

dz , . . . , dn

dzn ; the requirement specifically can’t include
that f = (d/dz)0( f )|z=0 = 0, because we want 1 in our ring. A really is a ring (actually a C-algebra), because derivatives are
linear, and because by the generalized Leibniz formula (see http://planetmath.org/encyclopedia/GeneralizedLeibnizRule.

html) dn

dzn ( fg) = ∑n
j=0 (

n
j)

dn−j

dzn−j f · dj

dzj g, so if the first n derivatives of f and g vanish at z = 0, then so do those of fg. Now dn

dzn (zm) =

m · · · (m− n + 1)zm−n, which is zero for m ≤ n. If f = ∑m
j=0 amzm, then dn

dzn

∣∣∣
z=0

( f ) = ∑m
j=n aj j · · · (j− n + 1)0j−n = n!an, which is

zero just when an = 0. Thus the first n derivatives of f vanish at 0 just if the coefficients a1, . . . , an are zero.
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C[z] is Noetherian by (7.5), and the inclusion C[zn+1] ↪→ A makes A a C[zn+1]-module, finitely generated
by {1, z, . . . , zn}. Then (7.2) says A is Noetherian as well.

v) The ring of polynomials in z, w all of whose partial derivatives with respect to w vanish for z = 0.
This ring A is not Noetherian. As in iv), the requirement must be on ∂n

∂wn

∣∣∣
z=0

for n strictly greater than 0
in order that 1 ∈ A. The linearity of partial derivatives and the generalized Leibniz formula again show A
really is a ring. Let f ∈ A, and write f = ∑m

j=0 pj(z)wj for pj ∈ C[z]. If aj = pj(0) is the constant term, then
∂n

∂wn f
∣∣∣
z=0

= ∑m
j=n aj j · · · (j − n + 1)wj−n, which vanishes identically in w just if all coefficients are zero.

Then aj j · · · (j− n + 1) = 0 for all n > 0 and j ≥ n, so aj = 0 for all j > 0. Thus A = C[z] + (z)C[w]. In
particular, wn /∈ A, so we do not have zwn|zwm for m > n. Now let an = (zw, zw2, . . . , zwn)� A. Then
an ( an+1 since zwn+1 /∈ an, so (an) is an infinite ascending chain of ideals of A.

5. Let A be a Noetherian ring, B a finitely generated A-algebra, G a finite group of automorphisms of B, and BG the
set of all elements of B which are left fixed by every element of G. Show that BG is a finitely generated A-algebra.

Recall from [5.12] that B is integral over BG. Then (7.8) applied to the chain A ⊆ BG ⊆ B says that BG

is finitely generated as an A-algebra.

6. If a finitely generated ring is a field, then it is a finite field.
CAN THIS BE IMPROVED BY USING DGK, etc.?
Let k be our finitely generated field. We can without loss of generality assume 1 is part of the finite

generating set; then k is finitely generated over the subring A = Z · 1. Since k is a field, A must be Z

or Fp. If A ∼= Fp, then A is a field, and Zariski’s Lemma ((1.27.2*), (5.24), [5.18], (7.9)) shows k is a finite
extension of Fp, so a finite field.

Otherwise A ∼= Z, and we will derive a contradiction. k being a field, there is a subfield of k isomorphic
to Q. As k is finitely generated over this subfield, Zariski’s Lemma shows k is a finite (hence integral)
extension of Q. Then (5.8) applied to the chain Z ( Q ⊆ k gives Q finitely generated over Z. But Q is not
finitely generated over Z.5

7. Let X be an affine algebraic variety given by a family of equations fα(t1, . . . , tn) = 0 (a ∈ I) (Chapter 1, Exercise
27). Show that there exists a finite subset I0 of I such that X is given by the equations fα(t1, . . . , tn) = 0 for a ∈ I0.

By (7.6) A = k[t1, . . . , tn] is Noetherian, so by (6.2) the ideal a� k[t1, . . . , tn] generated by { fα : α ∈ I}
is finitely generated. Say its generators are g1, . . . , gn ∈ a. Then each gi is an A-linear combination of
finitely many fαi, j . Now I0 = {αi, j : i = 1, . . . , n, j = 1, . . . , mi} ⊆ I is a finite set, and { fα : α ∈ I0}
generates a. A point x ∈ kn satisfies fα(x) = 0 for all α ∈ I0 just if f(x) = 0 for all f ∈ a just if fα(x) = 0
for all α ∈ I, so X is given by the vanishing of the finite subset { fα : α ∈ I0}.

8. If A[x] is Noetherian, is A necessarily Noetherian?
Yes. There is a canonical surjection A[x] � A, so by (7.1), the quotient A is Noetherian if A[x] is.

9. Let A be a ring such that
(1) for each maximal ideal m of A, the local ring Am is Noetherian;
(2) for each x 6= 0 in A, the set of maximal ideals of A which contain x is finite.
Show that A is Noetherian.

Let a� A be a non-zero ideal. By (2), for each x ∈ A the set Mx of maximal ideals m 3 x is finite, so
the set M =

⋂
x∈a Mx of maximal ideals containing a is finite. For each m ∈ M, the extension S−1

m a of a in
Am is finitely generated by (6.2) since (1) says Am is Noetherian. We may without loss of generality take
these generators to be of the form x/1 for x ∈ a. Let am ⊆ a be the ideal of A finitely generated by these
x. Now let z be an arbitrary non-zero element of a, and let Nz be the finite set Mz\M. No n ∈ Nz contains
a, so there is yn ∈ a\n. Now let b = ∑m∈M am + (z) + ∑n∈Nz(yn) ⊆ a. This ideal is finitely generated. For
m ∈ M, we have S−1

m a ⊆ S−1
m b by construction, so the two are equal. For maximal ideals m /∈ Mz, we have

z ∈ Sm, so S−1
m b = (1), and for n ∈ Nz we have yn ∈ Sn, so S−1

n b = (1). But if m /∈ M, then S−1
m a = (1),

5 Suppose it were, say by a1/b1, . . . , an/bn for aj, bj ∈ Z, or without loss of generality by 1/bj. Then if b = ∏n
j=1 bj, then

Q = Z[1/b]. But then if p ∈N is a prime not dividing b, we would have 1/p /∈ Q, a contradiction.
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and Max(A)\M = (Max(A)\Mz)∪Nz, so the localizations of a and b are equal at all maximal ideals. This
means the canonical injections (see (3.3)) Smb → Sma induced by b ↪→ a are all surjective. (3.9) then says
that the inclusion b ↪→ a is surjective, so that b = a is finitely generated.

10. Let M be a Noetherian A-module. Show that M[x] (Chapter 2, Exercise 6) is a Noetherian A[x]-module.
This should be possible to prove in a way that specializes into the proof of Hilbert Basis Theorem (7.5) in

the case M = A. Let N be a submodule of M[x]; by (6.2), it will be enough to show N is finitely generated
over A[x]. Let P ⊆ M be the A-module consisting of its leading coefficients. As M is a Noetherian A-
module, P is finitely generated, say by m1, . . . , mn. Let p1(x), . . . , pn(x) be elements of M[x] with leading
coefficients mi, and let N′ ⊆ N be the A[x]-submodule finitely generated by the pi(x). Say ri = deg(pi)
and r = maxn

i=1 ri.
Suppose f(x) ∈ N has deg( f ) = p ≥ r and leading coefficient m ∈ P. Then there are ai in A such

that m = ∑ aimi, so ∑ ai pi(x)xp−ri ∈ N′ is such that f ′(x) = f(x)− ∑ aigi(x)xp−ri has deg( f ′) < m. By
induction, there is g ∈ N′ such that deg( f − g) < r.

Write N′′ = M + Mx + · · · + Mxr−1; then we have just shown N = (N ∩ N′′) + N′. Now N′′ is a
finitely generated A-module, so it is a Noetherian A-module by (6.5). Thus its submodule N ∩ N′′ is
finitely generated over A by (6.2), and hence a fortiori finitely generated over A[x]. This shows N is
finitely generated.

11. Let A be a ring such that each local ring Ap is Noetherian. Is A necessarily Noetherian?
No. Let X be an infinite set and A = P(X) the power set, viewed as a Boolean ring. We showed in

[6.12] that A is not Noetherian. Let p ∈ Spec(A), and a/s ∈ Ap, for a ∈ A and s ∈ A\p. By the definition
of a Boolean ring, a2 = a and s2 = s, so (a/s)2 = a2/s2 = a/s is idempotent. But Ap is a local ring, so by
[1.12], a/s = 0 or 1. Thus Ap

∼= F2 is a field, hence surely Noetherian.
The other counterexample in [6.12] also works here. Recall that it is the subring A = k · 1 +⊕

k of the
countable direct product ∏∞

j=1 k, and it is not Noetherian. We claim that each localization at a prime is k,
and hence Noetherian (cf. [3.5]). Write kn for the nth direct summand of p0 :=

⊕
kn ( A, and k0 := k · 1 ⊆

A. Recall that we defined en ∈ kn ( B be the image of the 1 of kn and fn = 1− ∑j≤n en, and the prime
ideals of A are just p0 and pn := ( fn) +

⊕
j 6=n k j for n > 0. Their complements are Sn := A\pn = pn + k×n .

To find S−1
n A, recall that for each n ≥ 0, A is generated as an A-module by { fn} ∪ {ej : j ≥ 1}; thus there

is an A-module surjection Mn = A fn ×
⊕

j≥1 kej → A. Since localization is exact (3.3), S−1
n A is the image

of the localization of the left-hand side under the induced map. For n ≥ 0, write Dn = A fn ×
⊕

j 6=n kej for
the submodule of M mapping onto pn. It was shown in the course of proving [3.19.iv] that localization
distributes over arbitrary exact sums, so to compute S−1

n Mn, it will suffice to compute S−1
n kej for j 6= n,

S−1
n ken, and S−1

n A fn. Since S0 contains each fn, and fnej = 0 for j ≤ n, by [3.1] each S−1
0 ej = 0; on the other

hand, S−1
0 A f0 = (k×0 )

−1k0 ∼= k0. Thus S−1
0 M ∼= k0 ∼= k. For n > 0, since Sn contains each ej for j 6= n and

ejel = 0 for j 6= l, we have S−1
n kej = 0, by [3.1], for j 6= n; since Sn contains en and en fn = 0, S−1

n A fn = 0;
but S−1

n kn = (k×n )−1kn ∼= kn; so S−1
n M ∼= kn ∼= k. Now for all n ≥ 0, S−1

n A is a quotient of S−1
n A, so it is

also isomorphic to k.

12. Let A be a ring and B a faithfully flat A-algebra (Chapter 3, Exercise 16). If B is Noetherian, show that A is
Noetherian.

Since B is faithfully flat over A we have aec = a for all a� A, so a 7→ ae is injective. Thus any infinite
ascending chain 〈an〉n∈N of ideals of A would give rise to an infinite ascending chain 〈ae

n〉n∈N of ideals of
B.

13. Let f: A → B be a ring homomorphism of finite type and let f ∗ : Spec(B) → Spec(A) be the mapping associated
with f. Show that the fibers of f ∗ are Noetherian subspaces of B [Spec(B), rather].

Recall (p. 30) that the homomorphism being of finite type means that B is finitely generated as an A-
algebra (or equivalently, f(A)-algebra). Then B is a quotient of some polynomial ring C = A[t1, . . . , tm]
(in particular, a C-algebra). Now recall from [3.21.iv] that the fiber ( f ∗)−1({p}) ≈ Spec

(
k(p)⊗AB

)
, where
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k(p) is the field Ap/pAp. By (2.14.iv) and (2.15), k(p)⊗AB ∼= k(p)⊗AC⊗CB. But by [2.6] and induction,6

k(p)⊗AC = k(p)⊗A A[t1, . . . , tm] ∼= k(p)[t1, . . . , tm], so the fiber is Spec
(
k(p)[t1, . . . , tm]⊗CB

)
. But C � B

is surjective, and (2.18) says tensor is right exact, so k(p)[t1, . . . , tm] ∼= k(p)⊗AC → k(p)⊗AB is surjective.
(7.6) says k(p)[t1, . . . , tm] is Noetherian, so by (7.1), its quotient k(p)⊗AB is Noetherian, and by [6.8], this
then has Noetherian spectrum.

Nullstellensatz, strong form
14. Let k be an algebraically closed field, let A denote the polynomial ring k[t1, . . . , tn] and let a be an ideal in A. Let V

be the variety in kn defined by the ideal a, so that V is the set of all x = 〈x1, . . . , xn〉 ∈ kn such that f(x) = 0 for
all f ∈ a. Let I(V) be the ideal of V, i.e. the ideal of all polynomials g ∈ A such that g(x) = 0 for all x ∈ V. Then
I(V) = r(a).

Note that if we write V = Z(a), our goal is to show IZ(a) = r(a).
By item ?? of [1.29], a ⊆ IZ(a), and by item ??, IZ(a) = r

(
IZ(a)

)
, so r(a) ⊆ IZ(a).

On the other hand, suppose f /∈ r(a); we show f /∈ IZ(a). As f /∈ r(a), there is a prime p containing
a but not f, so g := f̄ 6= 0 in the integral domain B = A/p. If C = Bg = B[1/g], then by (1.3) C contains
a maximal ideal n, and C/n is a field. Now C/n is a k-algebra, finitely generated over k by 1/g and the
images of the ti. By Zariski’s Lemma ((1.27.2*), (5.24), [5.18], (7.9)) C/n is a finite algebraic extension of k,
and thus, since k is algebraically closed, isomorphic to k. Then the surjective k-algebra homomorphism

φ : A � A/a � A/p = B � Bg = C � C/n ∼−→ k

has kernel m a maximal ideal of A containing a. By [1.27], m is of the form mx = (t1 − x1, . . . , tn − xn)
for some x = 〈x1, . . . , xn〉 ∈ kn, so φ(tj) = xj and φ : A → k is the “evaluate at x” map h 7→ h(x). Since
φ(a) = 0, we have x ∈ Z(a). Since g = f̄ is a unit in C, its image remains a unit in k, so g(x) = φ(g) 6= 0.
It follows that g /∈ IZ(a).

Here is the classic proof of the Strong Nullstellensatz from the Weak ([5.17], cf. [5.18], [1.27], (5.24),
(7.9)) by what is called the “Rabinowitsch trick.”7

Let k, A, and a� A be as above, and suppose g ∈ IZ(a). If y now is a new indeterminate, consider the
polynomial ring A[y]. The polynomial 1− yg is 1 on the set Z(ae) ⊆ kn+1, so that ae + (1− yg) vanishes
nowhere and hence by the Weak Nullstellensatz is the ideal (1) of A[y]. Then there are finitely many fi ∈ a
and hi(y), h′(y) ∈ A[y] such that

1 = ∑ fihi(y) + (1− yg)h′(y).

Under the A-algebra homomorphism A[y]→ Ag ( k(t) taking y 7→ 1/g, this equation is mapped to

1 = ∑ fihi(1/g) +
(

1− g
g

)
h′(1/g) = ∑ fi

Hi
gm ,

for some Hi ∈ A and m = maxi{degy hi}. Multiplying through by gm shows g ∈ r(a).

To use the theory of Jacobson rings instead to prove the Strong Nullstellensatz, detouring past the
Weak Nullstellensatz but not Zariski’s Lemma, proceed as follows.

Recall from [5.24] that A = k[t] is a Jacobson ring and from [5.23] that a prime of A is an intersection
of maximal ideals. Since by [1.9] a radical ideal is an intersection of the primes containing it, it follows
that a radical ideal in A is the intersection of the maximal ideals containing it. Since IZ(a) is radical by
item ?? of [1.29], it follows it is the intersection of the maximal ideals containing it, so it only remains to
show each maximal ideal containing a also contains IZ(a). Taking X = {x} in item ?? of [1.27], we have

6 Assume M is an A-module, and inductively, M[x1, . . . , xn] ∼= A[x1, . . . , xn]⊗A M. Pretty clearly A[x1, . . . , xn][y] ∼=
A[x1, . . . , xn, y]. Then

M[x1, . . . , xn, y]
[2.6]∼= A[y]⊗A M[x1, . . . , xn]

(2.14)∼= A[y]⊗A A[x1, . . . , xn]⊗A M
[2.6]∼= A[x1, . . . , xn, y]⊗A M.

7 This originated in the influential one-page paper [?]. Just who Rabinowitsch was is an interesting question; it appears that he
later moved to the United States and became the influential mathematical physicist George Yuri Rainich. See also [?], [?, p. 154], [?,
p. 38].
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x ∈ Z(a) ⇐⇒ a ⊆ mx, and taking X = Z(a) in item ??, we have x ∈ Z(a) ⇐⇒ IZ(a) ⊆ mx. But by the
result of [1.27], these are the only maximal ideals of A, so r(a) = IZ(a).

For further proofs of the Nullstellensatz, see this discussion: http://mathoverflow.net/questions/
15226/elementary-interesting-proofs-of-the-nullstellensatz. For numerous relatives, see Chap-
ter 11 of Pete L. Clark’s notes http://math.uga.edu/~pete/integral.pdf.

15. Let A be a Noetherian local ring, m its maximal ideal and k its residue field, and let M be a finitely generated A-
module. Then the following are equivalent:
i) M is free;
ii) M is flat;
iii) the mapping of m⊗M into A⊗M is injective;
iv) TorA

1 (k, M) = 0.
i) =⇒ ii): By (2.14.iv), A is a flat A-module. By [2.4], a direct sum of flat modules is flat, so a free

A-module is flat.
ii) =⇒ iii): This follows from (2.19) defining flatness.
iii) =⇒ iv): We have a short exact sequence 0 → m⊗M → A⊗M → k⊗M → 0, implying

Tor1(k, M) = 0 by the Tor exact sequence.
iv) =⇒ i): Let x1, . . . , xn be such that their images form a basis of the finite-dimensional k-vector space

k⊗A M ∼= M/mM; by (2.8), they generate M. Then there is an A-linear surjection An � M taking ej 7→ xj,
say with kernel N, yielding a short exact sequence 0 → N → An → M → 0 of A-modules. Tensoring
with k we have a Tor sequence (using “ii) ⇐⇒ iv)”) Tor1(k, M) = 0 → k⊗N → kn → k⊗M → 0.
Since dimk kn = n = dimk(k⊗M), linear algebra (or (6.9)) gives dimk(k⊗N) = 0, so k⊗N = 0. As A
is Noetherian, An is a Noetherian A-module by (6.5), and since N ⊆ An, by (6.2) N is finitely generated.
k being finitely generated as well, [2.3] shows either k = 0 or N = 0. By assumption, A 6= m, so k 6= 0.
Therefore N = 0, and the map An → M is an isomorphism.8

16. Let A be a Noetherian ring, M a finitely generated A-module. Then the following are equivalent:
i) M is a flat A-module;
ii) Mp is a free Ap-module, for all prime ideals p;
iii) Mm is a free Am-module, for all maximal ideals m.

In other words, flat = locally free.
Since each Ap is local and each Mp finitely generated over Ap, [7.15] says Mp is free if and only if it is

flat. The equivalence then follows from (3.10).

17. Let A be a ring and M a Noetherian A-module. Show (by imitating the proofs of (7.11) and (7.12)) that every
submodule N of M has a primary decomposition.

Call a submodule M ⊆ N irreducible if it is not an intersection of two proper supermodules; that is, for
P1, P2 ⊆ M submodules, we have N = P1 ∩ P2 =⇒ P1 = N or P2 = N.

If a submodule N ⊆ M can be written as a finite intersection
⋂n

j=1 Pj of irreducible modules Pj ⊆ M,
we call this expression an irreducible decomposition of N.

Lemma 7.11*. In a Noetherian A-module M, every submodule has an irreducible decomposition.
Suppose Σ is the set of submodules of M not admitting an irreducible decomposition, and suppose

for a contradiction that Σ 6= ∅. Then as M is Noetherian, Σ contains a maximal element N. Then N =⋂{N} is not an irreducible decomposition, by assumption, so N is not irreducible, and we can write
it as N = P ∩ P′, where P, P′ ⊆ M are submodules strictly containing N. Then P and P′ do admit
irreducible decompositions P =

⋂
Qj and P′ =

⋂
Q′j, so N =

⋂
Qj ∩

⋂
Q′j is an irreducible decomposition,

contradicting N ∈ Σ. Thus Σ = ∅.

8 Here are two extra implications we don’t need.
iv) =⇒ iii): We have a short exact sequence 0 → m → A → k → 0, giving a Tor exact sequence containing the fragment

0 = Tor1(k, M)→ m⊗M→ A⊗M. This shows m⊗M→ A⊗M is injective.
iii) =⇒ ii): Let a be a finitely generated ideal of A. We have a short exact sequence 0 → a → m → m/a → 0 of A-modules,

whose Tor exact sequence includes Tor1(k, M) → a⊗M → m⊗M. Since iii) ⇐⇒ iv), the first term is zero; it follows that
a⊗M � m⊗M � A⊗M is injective. Now the short exact sequence 0 → a → A → A/a → 0 gives rise to a Tor exact sequence
containing Tor1(A/a, M) → a⊗M → A⊗M; but we’ve just seen the kernel of the second map is zero, so Tor1(A/a, M) = 0. By
[2.26], then, M is flat.
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Lemma 7.12*. In a Noetherian A-module M, every irreducible submodule is primary.
If Q ⊆ M is a submodule, then N = M/Q is also Noetherian by Prop. 6.3. If Q were irreducible, then

by the correspondence of p. 18, the zero submodule of N = M/Q would be irreducible. We will show that
if Q is not primary, then 0 ⊆ M/Q is reducible, so Q is reducible.

Let x ∈ A be a zero-divisor of N that is not nilpotent on N. The submodules 0 ⊆ (0 : x) ⊆ (0 : x2) ⊆
· · · ⊆ N form an increasing chain; since N is Noetherian, the chain stabilizes at some P = (0 : xp) =
(0 : xp+1). Since x is not nilpotent on N, we have P 6= N, so there is some n ∈ N\P. Then xpn 6= 0, so
(xp)n 6= 0. If n′ ∈ (xp)n∩ P, we have an expression n′ = axpn ∈ P, and multiplying by x gives 0 = axp+1n.
Then an ∈ (0 : xp+1) = (0 : xp), so n′ = axpn = 0. Thus (xp)n ∩ P = 0. Since x is a zero-divisor of N, we
have P 6= 0, showing 0 ⊆ N is reducible.

Thus in an Noetherian A-module M, every submodule has an irreducible decomposition, and this is a
primary decomposition.

18. Let A be a Noetherian ring, p a prime ideal of A, and M a finitely generated A-module. Show that the following are
equivalent:
i) p belongs to 0 in M;
ii) there exists x ∈ M such that Ann(x) = p;
iii) there exists a submodule of M isomorphic to A/p.

ii) ⇐⇒ iii): Let x ∈ M. Then the map A � Ax : a 7→ ax has kernel Ann(x), so induces an A-module
isomorphism A/ Ann(x) ∼−→ Ax ⊆ M. Then for any ideal a� A, there is a (cyclic) submodule isomorphic
to A/a if and only if a = Ann(x) for some x ∈ M.

ii) =⇒ i): By [7.17], 0 ⊆ M is decomposable. The primes belonging to 0 are those among the r(0 :
y) = r

(
Ann(y)

)
for y ∈ M by (4.5*) in [4.22]. Thus p = Ann(x) belongs to 0.

i) =⇒ ii):9 By [7.17], 0 ⊆ M is decomposable, so let N1 ∩ · · · ∩ Nn be an irredundant primary
decomposition. Let N be one of the Nj, and N′ the intersection of all the others. We will show will suffice
to show p = rM(N) = Ann(x) for some x ∈ M. Since the decomposition is irredundant, N′ 6⊆ N, so we
may find (and fix) a y ∈ N′\N. If a1, . . . , am generate pj (possible by (6.2) since A is Noetherian) then

there is for each aj some minimal pj ≥ 1 such that a
pj
j y ∈ N. If p = maxj pj, then we see ppy ⊆ N and

pp−1y 6⊆ N. Let x ∈ pp−1y\N then. Since y ∈ N′, we then have px ⊆ ppy ⊆ N ∩ N′ = 0, so p ⊆ Ann(x). On
the other hand, if a ∈ A is such that ax ∈ N (hence = 0), then a is a zero-divisor of M/N; as N is primary,
this means a is nilpotent on M/N. But this says exactly that a ∈ rM(N) = p. Thus p = Ann(x).10

Deduce that there exists a chain of submodules

0 = M0 ( M1 ( · · · ( Mr = M

such that each quotient Mi/Mi−1 is of the form A/pi, where pi is a prime ideal of A.
Since M is Noetherian, 0 is decomposable by [7.17], so some p1 ∈ Spec(A) belongs to 0, and the above

gives a submodule M1
∼= A/p1 of M. Assume inductively that we’ve found a chain 0 = M0 ( · · · (

Mn ⊆ M. If Mn = M, we are done; otherwise, M/Mn is Noetherian, so its submodule 0 is decomposable
by [7.17]. Let pn+1 belong to it; then there is a submodule Nn+1 ⊆ M/Mn such that Nn+1

∼= A/pn+1.
If Mn+1 ⊆ M is its pre-image under M � M/Mn, we have Mn+1/Mn ∼= Nn+1

∼= A/pn+1. Since M is
Noetherian, this process cannot create an infinite ascending chain, so there is some Mr such that we cannot
find an Mr+1. But we have shown that this only happens if Mr = M.

9 Stolen from http://math.uiuc.edu/~r-ash/ComAlg/ComAlg1.pdf
10 I worked for a while on another approach to this problem before turning to the experts, and this aborted effort went like this.

By (4.5*) from [4.22], p ∈ Spec(A) belongs to 0 just if {(0 : x) : x ∈ A & r(0 : x) = p} is nonempty. A being Noetherian, this set
contains some maximal element q = (0 : x) = Ann(x). We suppose q 6= p and contradict maximality. If there is a ∈ p\q, then there

is some minimal n ≥ 2 such that anx = 0, but ax 6= 0. Consider (q : a) =
(
(0 : x) : a

) (1.12.iii)
= (0 : ax). It contains (0 : x), properly

since an−1 ∈ (0 : ax)\(0 : x). The proof will be concluded if we can show r(0 : ax) = p. Unfortunately, I seem unable to do this. I
wanted to say “Since a /∈ q, (4.4) says r(q : a) = r(q) = p, contradicting maximality of q”; however, (4.4) requires as a hypothesis that
q is primary, and it’s not clear to me this must be the case.
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19. Let a be an ideal in a Noetherian ring A. Let

a =
r⋂

i=1

bi =
s⋂

j=1

cj

be two minimal decompositions of a as intersections of irreducible ideals. Prove that r = s and that (possibly after
re-indexing the cj) r(bi) = r(ci) for all i.

State and prove an analogous result for modules.
Since an ideal of A is just an A-submodule of A, a primary ideal of A is exactly a primary submodule of

A (p. 50), an irreducible ideal of A is an irreducible submodule of A, rA(a) = r(a), and A is a Noetherian
ring just if it is Noetherian as an A-module, it will be enough to prove the result in the more general case
of a submodule N of a Noetherian A-module M.

We first prove the book’s hint: if
⋂r

i=1 Pi =
⋂s

j=1 Qj are minimal irreducible decompositions of N ⊆ M,
and P′k :=

⋂
i 6=k Pi for each k ∈ {1, . . . , r}, then N equals one of the Nj := P′k ∩ Qj. Note that all these

modules contain N, so it will be enough to show some Nj ⊆ N.11 Surely since
⋂s

j=1 Qj = N in M, we
also have

⋂
j Nj = N. Write πi : M � M/Pi for the natural map, and φ = (π1, . . . , πr) : M → ⊕

i M/Pi
for the induced map to the product. Now ker(φ) =

⋂
i Pi = N. For each j and each i 6= k, we have

Nj ⊆ P′k ⊆ Pi, so πi(Nj) = 0. Thus the only potentially non-zero coordinate of an element of the module
φ(Nj) is the jth, and it follows that these jth coordinates make up a submodule Oj = πk(Nj) of M/Pk. Then
0 = φ

(⋂
Nj
)
=
⋂

Oj ×∏i 6=k{0}, so
⋂

Oj = 0 ⊆ M/Pk. As Pk ⊆ M is irreducible, 0 ⊆ M/Pk is irreducible,
meaning for some j = j(k) we have Oj = 0. Then πi(Nj(k)) = 0 for all i, including k, so Nj(k) ⊆ N.12

If we define 1Pi = Pi for i 6= k and 1Pk = Qj(k), we have another irreducible decomposition of N.
Applying the previous result to the 1Pi and the Qj, we can then replace another of the Pi by another Qj.
Repeating this process for k = 1, . . . , r, we eventually get an expression Qj(1) ∩ · · · ∩ Qj(r) = 0. Since we
postulated irredundancy for the Qj decomposition, it follows i 7→ j(i) is surjective and s ≤ r. A symmetric
argument switching the roles of Pi and Qj will then show r ≤ s, so we see r and s are equal.

Fact 7.A*. Any two minimal irreducible decompositions of a submodule have the same number of components.

It remains to show we may reorder the Qi so that rM(Qi) = rM(Pi) for all i ∈ {1, . . . , s}. Recall from
Lemma 7.12* of [7.17] that, since M is Noetherian, each irreducible module is primary, and from (4.3*)
of [4.21], that an intersection of p-primary modules is p-primary; thus by collecting terms with the same
radical, we obtain irredundant primary decompositions M1 ∩ · · · ∩ Mm = N1 ∩ · · · ∩ Nn of N ⊆ M. By
(4.5*) of [4.22], the sets {rM(M1), . . . , r(Mm)} and {rM(N1), . . . , r(Nm)} ⊆ Spec(A) are equal, and so we
may renumber them so that pi = r(Mi) = r(Ni). We may further reorder them, since there are only finitely
many, so that each set Sj := {p1, p2, . . . , pj} ⊆ Spec(A) is isolated. Suppose that Mi is the intersection of
mi different Pj, and Ni is the intersection of ni different Qj. It will then suffice to show that mi = ni for each
i. By Thm. 4.10* of [4.23], applied to the isolated set S1, we see M1 = N1. Irredundancy of the irreducible
decompositions of N show the relevant Pj and Qj each give a minimal irreducible decomposition of M1,
and then Fact 7.A above shows that m1 = n1. Assume inductively that we have shown mj = nj for all j < i.
Thm. 4.10* of [4.23], applied to the isolated set Si, shows that N′i :=

⋂i
j=1 Mj =

⋂i
j=1 Nj. Irredundancy

of the irreducible decompositions of N again show the relevant Pj and Qj give a minimal irreducible
decomposition of N′i , and Fact 7.A shows that ∑i

j=1 mj = ∑i
j=1 nj. By inductive assumption mj = nj for all

j < i, so subtracting these off, mi = ni, and we are done.

20. Let X be a topological space and let F be the smallest collection of subsets of X which contains all open subsets of X
and is closed with respect to the formation of finite intersections and complements.
i) Show that a subset E of Xbelongs to F if and only if E is a finite union of sets of the form U ∩C, where U is open
and C is closed.

Let G be the collection of finite unions of sets U ∩ C, for U open and C closed.

11 http://mathoverflow.net/questions/12322/atiyah-macdonald-exercise-7-19-decomposition-using-irreducible-ideals
12 I initially attempted a simpler argument as follows. Consider the projection π : M→ M/Pk . Since

⋂
Qj = N, we have π

(⋂
Qj
)
=

0. Since Pk ⊆ M is irreducible, 0 ⊆ M/Pk is irreducible, and one of the π(Qj) = Qj/Pk = 0. This doesn’t seem to work as stated,
because there’s no guarantee that Qj ⊇ Pk , so that π(Qj) is a submodule.

102

http://mathoverflow.net/questions/12322/atiyah-macdonald-exercise-7-19-decomposition-using-irreducible-ideals


Chapter 7: Noetherian Rings Ex. 7.21

First we show G ⊆ F . Each open set is in F , and taking complements, each closed set is in F .
Taking intersections, each U ∩ C ∈ G for U open and C closed. But F is closed under finite unions, for
by De Morgan’s laws,

⋃
Si = X\⋂(X\Si), and F is assumed to be closed under complement and finite

intersection.
Now we show F ⊆ G by showing G satisfies the properties (except “smallest”) postulated of F .

• Taking C = X, each open U ⊆ X is in G .

• Finite intersections: It suffices to prove this for binary intersections. Let S =
⋃
(Ui ∩ Ci) and S′ =⋃

(U′j ∩C′j) be in G . Then S∩ S′ =
⋃

i(Ui ∩Ci)∩
⋃

j(U′j ∩C′j) =
⋃

i, j Ui ∩U′j ∩Ci ∩C′j by distributivity;
since each Ui ∩U′j is open and each Ci ∩ C′j is closed, S ∩ S′ ∈ G .

• Complements: If S =
⋃n

i=1(Ui ∩ Ci) ∈ G , then De Morgan’s laws give X\S = X\⋃(Ui ∩ Ci) =⋂
X\(Ui ∩ Ci) =

⋂
[(X\Ui) ∪ (X\Ci)]. Now Si1 = X\Ci is open and Si2 = X\Ui is closed. Let F be

the set of all functions {1, . . . , n} → {1, 2}, and for f ∈ F write S f =
⋂n

i=1 Si, f(i). Then each S f is a
finite intersection of open and closed sets, hence an intersection of one closed set and one open set.
Distributivity then gives X\S =

⋂
[(X\Ui) ∪ (X\Ci)] =

⋃
f∈F S f ∈ G .

ii) Suppose that Xis irreducible and let E ∈ F . Show that E is dense in X(i.e., that E = X) if and only if E contains
a non-empty open set in X.

If E contains a non-empty open set U ⊆ X, then X = U ⊆ E by [1.19]. Now suppose E =
⋃
(Ui ∩ Ci) ∈

F is dense in X. Recalling that closure distributes over finite unions,13 we see X = E =
⋃

Ui ∩ Ci. Recalling
from [6.7] that an irreducible space is not a union of finitely many proper closed subspaces, for some i we
have Ui ∩ Ci = X. Now Ui ∩ Ci ⊆ Ui ∩ Ci so Ui = X = Ci = Ci. Then E contains the open set Ui = Ui ∩ Ci,
which is non-empty since it is dense.

21. Let X be a Noetherian topological space (Chapter 6, Exercise 5) and let E ⊆ X. Show that E ∈ F if and only if, for
each irreducible closed set X0 ⊆ X, either E ∩ X0 6= X0 or else E ∩ X0 contains a non-empty open subset of X0. The
sets belonging to F are called the constructible subsets of X.

If E ∈ F , then the previous [7.20] says that either E∩ X0 contains a non-empty open set of X0 or is not
dense. But it is not dense precisely if its closure in X0 is not all of X0.

We prove the other direction by contraposition. Suppose E /∈ F . Then trivially X ∩ E /∈ F , so the set
of closed C ⊆ X with C ∩ E /∈ F is non-empty. Since X is Noetherian, there are minimal such sets; let X0
be one. If C, C′ ( X0 are closed, then by minimality, C ∩ E and C′ ∩ E are in F , so F also contains their
union (C ∪ C′) ∩ E. Apparently, then, we cannot have C ∪ C′ = X0, showing X0 is irreducible. We will
show that E ∩ X0 is dense in X0, yet contains no nonempty open subset of X0.

Write F for the closure of E ∩ X0 in X0. If F is a proper subset of X0, then by minimality, E ∩ F ∈ F .
Now F = E ∩ X0,14 so E ∩ X0 = E ∩ E ∩ X0 = E ∩ F ∈ F , contrary to assumption. Therefore F = X0.

If E ∩ X0 contained a nonempty open subset U of X0, then either X0 = U = E ∩ X0, contradicting
E ∩ X0 /∈ F , or ∅ 6= C := X0\U ( X0. By the definition of the subspace topology, C is closed in X and
U = V ∩ X0 for some open V ⊆ X. Then E ∩U = U = V ∩ X0 ∈ F , and by minimality of X0 we have
C ∩ E ∈ F . Since U ∪ C = X0, we then have E ∩ X0 = (E ∩ C) ∪ (E ∩U) a union of elements of F , hence
in F itself, contrary to assumption. It follows that E ∩ X0 contains no nonempty open subset of X0.

22. Let X be a Noetherian topological space and let E be a subset of X. Show that E is open in X if and only if, for each
irreducible closed subset X0 in X, either E ∩ X0 = ∅ or else E ∩ X0 contains a non-empty open subset of X0.

Suppose first E ⊆ X is open. Then for any subspace X0 ⊆ X, by definition E ∩ X0 is an open subset of
X0; either it is empty, or it is not.

We prove the other direction by contraposition. Now suppose E ⊆ X is not open; then E ∩ X is trivially
not open, so the collection of closed subsets C ⊆ X with C ∩ E not open in C is non-empty. As X is
Noetherian, there are minimal elements of this collection; let X0 be one. If C, C′ ( X0, then by minimality

13 A ⊆ A ∪ B, so A ⊆ A ∪ B, and similarly B ⊆ A ∪ B, so A ∪ B ⊆ A ∪ B. On the other hand, A ∪ B ⊆ A ∪ B, and the latter is
closed, so A ∪ B ⊆ A ∪ B.

14 In general, if A ⊆ Y ⊆ X, the closure B of A in Y is equal to A ∩ Y. On the one hand, the latter is closed in Y and contains A,
so B ⊆ A ∩ Y. On the other hand, if x ∈ A ∩ Y, then x ∈ Y and every neighborhood U 3 x contains some point of A ⊆ Y, so every
neighborhood U ∩Y ⊆ Y of x meets A, and thus x ∈ B.
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C ∩ E and C′ ∩ E are open in X0, so their union (C ∪ C′) ∩ E is open in X0. It follows that C ∪ C′ 6= X0, so
X0 is irreducible. We will show E ∩ X0 is non-empty, yet contains no non-empty open subset of X0.

If E ∩ X0 were ∅, this intersection would be open, contrary to assumption, so the two sets do meet.
Suppose for a contradiction that we can find a non-empty open subset U ⊆ X0 ∩ E of X0. Write C = X0\U;
since U is nonempty, C ( X0, so by minimality of X0 we have C ∩ E open in C. By the definition of the
subspace topology, then, there is an open V ⊆ X with C∩ E = V ∩X0. Then X0 ∩ E = (U ∩ E)∪ (C∩ E) =
U ∪ (V ∩ X0) is a union of open subsets of X0, hence open in X0, contrary to assumption.

23. Let A be a Noetherian ring, f: A → B a ring homomorphism of finite type (so that B is Noetherian). Let X =
Spec(A), Y = Spec(B) and let f ∗ : Y → X be the mapping associated with f. Then the image under f ∗ of a
constructible subset E of Y is a constructible subset of X.

To see B is Noetherian, recall from p. 30 that being of finite type means that B is finitely generated as
an A-algebra, hence a quotient of a polynomial ring over A. Then (7.5) and (7.1) show B is Noetherian.

Since f ∗
(⋃

Si
)
=
⋃

f ∗(Si), it will suffice to consider E of the form U ∩ C for U ⊆ Y open and C ⊆ Y
closed. An open subset U ⊆ Y is a union of basic open sets Yg for g ∈ B ([1.17]). By [6.6], U is compact,
so it is a union of finitely many Ygi . Then U ∩ C =

⋃
(Ygi ∩ C), so it will suffice to verify the statement for

E = Yg ∩C. Since a closed subset C ⊆ Y is V(b) for some ideal b� B ([1.15]), we may assume E = Yg ∩V(b).
Now by [1.21.iv], V(b) ≈ Spec(B/b). Writing π : B � B/b and Spec(B/b) = Z, [1.21.i] says for q ∈

V(b) we have q = π∗(q/b) ∈ Yg ⇐⇒ π(q) = q/b ∈ (π∗)−1(Yg) = Zπ(g), so E = V(b) ∩ Yg = π∗(Zπ(g)).
Replacing f: A → B by A → B � B/b, B by B/b, and Yg by Zπ(g), and noting B/b is also of finite type
over A, we may assume that E ⊆ B is a basic open set.

If φg : B→ Bg is the canonical map, then E = Yg = φ∗g
(

Spec(Bg)
)
. Since we have a B-algebra surjection

B[t] � Bg taking t 7→ 1/g, it follows Bg is of finite type over A, and we may replace B by Bg, f by
φg ◦ f, and E by Spec(Bg). Now we have only to show that given a map f : A → B of finite type, with A
Noetherian, f ∗(Y) is constructible.15

We will attempt to use [7.21]. Let an irreducible closed set X0 ⊆ X be given. By the proof of [1.20.iv],
X0 is of the form V(p) for some prime p ∈ X.16 Write F = f ∗(Y) ∩ X0 for the set we want to prove

15 This following paragraph is an approach I once thought would work, but does not. I include it because I spent a good deal of
time on it and its failure, at least to me, seemed somewhat subtle.

Since f is of finite type, it can be factored as π ◦ ι, where ι : A ↪→ A[x1, . . . , xn] is the canonical inclusion into a polynomial ring
and π : A[x1, . . . , xn] � B is a quotient map. Now f ∗(Y) = ι∗

(
π∗(Y)

)
, where π∗(Y) = V

(
ker(π)

)
by [1.21.iv]. If we vary B and f,

this set varies over all closed subsets of Spec(A[x1, . . . , xn]); thus we may assume f: A ↪→ B = A[x1, . . . , xn] and E = V(b) for some
b� B.

By [1.21.iii], we have f ∗(E) = V(bc), so certainly f ∗(E) ⊆ V(bc). It would be nice if we could prove the reverse inclusion. (If that
were so, however, it would follow that Spec(A[x1, . . . , xn])→ Spec(A) is always a closed map, which we show below is not the case.
By [6.11], this is equivalent to f having the going-up property, which we also show is not so in general.) To attempt this, let p ∈ V(bc)
be given; we wish to find a prime q ∈ V(b) such that A ∩ q = p. By [3.21.iii], f ∗ “restricts” to a map Spec(B/pe) → Spec(A/p) that
we will also call f ∗. Since pe = p[x1, . . . , xn], the domain of the new f ∗ is the integral domain (A/p)[x1, . . . , xn]; what we now need
is a prime q of (A/p)[x1, . . . , xn] containing the extension

c := be � (A/p)[x1, . . . , xn]. (7.1)

Replacing A with A/p and b with c, we may assume A is a Noetherian integral domain, b is an ideal of B = A[x1, . . . , xn] such that
A ∩ b = 0, and we need a prime q ∈ V(b) such that A ∩ q = 0. Write S = A\{0} and K = S−1 A for the field of fractions of A. Then
S−1B = K[x1, . . . , xn], and [3.21.ii] gives a commutative diagram

{(0)} = Spec(K)
��
��

Spec
(
K[x1, . . . , xn]

)oooo
��
��

Spec(A) Spec
(

A[x1, . . . , xn]
)
.oooo

In K[x1, . . . , xn] there is certainly a maximal ideal n containing the extension S−1b = be, since b ∩ S = ∅ implies, by (3.11.ii), that
S−1b 6= (1). Then using (1.17.i), b ⊆ bec ⊆ nc =: q, and following n both ways around the diagram, we see q∩ A = n∩ A = (0).

Now we have a “proof” that never requires the Noetherian hypothesis on A (or the finite type, either, seemingly). The argument
breaks down at Eq. ??; it can easily happen that be = p, so there is no prime containing it. For an example, consider A = Z(p) and
the ideal q = (px − 1) in Z(p)[x] (http://bit.ly/S9wGoP). Then Z(p)[x]/q ∼= Z(p)[1/p] ∼= Q, so q is maximal, and hence {q} (
Spec

(
Z(p)[x]

)
is closed by [1.18.i]. But q∩Z(p) = (0), and {(0)} is not closed in Spec

(
Z(p)

)
, since its closure is V

(
(0)
)
= {(0), (p)}

([1.8.ii]). Also, the extension (c above) of q in Z(p)/(p)Z(p)
∼= Z/pZ is (−1) = (1), so no prime contains it.

16 The next thing I wanted to do is as follows. I leave it to posterity to rescue it, if possible. Eq. ??, (1.18), and (1.8) give f ∗(Y) =

V
(⋂

f ∗(Y)
)
= V

(
f
(⋂

Y)
)

= V
(
N(B)c). Then the closure of f ∗(Y) ∩ V(p) in V(p) is f ∗(Y) ∩ V(p) = V

(
N(B)c) ∩ V(p) by the

footnote to [7.21]. If it equals V(p); then each prime p′ � A containing p also contains N(B)c; in particular, p contains N(B)c. This
should hypothetically help us find a basic open subset Xh contained in f ∗(Y) ∩V(p), but I do not know how.
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constructible. We have p′ ∈ f ∗(Y) ∩ X0 if and only if there is q′ ∈ Y ∩ ( f ∗)−1(X0) = ( f ∗)−1(X0) such that
p′ = f ∗(q′); then p′ ∈ f ∗

(
( f ∗)−1(X0)

)
. Thus F = f ∗

(
( f ∗)−1(X0)

)
. By [1.21.ii], ( f ∗)−1(V(p)

)
= V(pB) is the

pre-image of F and by [3.21.iii], f ∗ “restricts” to a map (which we call f ∗ again) Spec(B/pB)→ Spec(A/p),
whose image we want to show is constructible; the rings are still Noetherian, with the map still of finite
type. So we may assume A is a Noetherian integral domain and f : A→ B is of finite type, and we want to
show f ∗(Y) is constructible. Since B is then Noetherian, Y is a Noetherian space, so by [6.7], it is a union
of finitely many irreducible components Y1, . . . , Yn. Now by [7.21], it is enough to show either f ∗(Y) is not
dense or contains a non-empty open set. If f ∗(Y) is dense, then X = f ∗(Y) =

⋃
f ∗(Yj), so by irreducibility

of X, we have some f ∗(Yj) dense17; we want to show this f ∗(Yj) contains a non-empty open set. Write
Yj = V(q) for a prime ideal q� B ([1.20.iv]); then f ∗(Yj) is the image of the map on spectra induced by the
composition A→ B � B/q. Replacing B with B/q and f with this composition, we may assume A and B
are Noetherian integral domains. Since f ∗(Y) is dense in X, by [1.21.v], we must have ker( f ) ⊆ N(A) = 0,
so f is injective. Now we are in the situation of [5.21]. There exists a nonzero s ∈ A such that given an
algebraically closed field Ω and homomorphism φ : A → Ω such that φ(s) 6= 0, we can extend φ to a
homomorphism B→ Ω. Since the images of these maps are subrings of a field, hence integral domains, it
follows that their kernels p, q are prime, with p = A ∩ q = f ∗(q). We have φ(s) 6= 0 ⇐⇒ s /∈ ker(φ) = p,
so for all p ∈ Xs we have p ∈ f ∗(Y), so that Xs ⊆ f ∗(Y) is an open subset. But since A is an integral
domain, s is not nilpotent, and thus by [1.17.ii], Xs 6= ∅.

The previous solution followed the book’s breadcrumb trail; the following one is adapted from another
solution set online.18 We want to prove f ∗(Y) is constructible, assuming only that f is of finite type and
A Noetherian. Given that Y is Noetherian, and by [6.7] a union of finitely many irreducible components
Y1, it will be enough to show each f ∗(Y1) is constructible. Let q1 be a minimal prime of B such that
V(q1) = Y1 ([1.20.iv]); then the image F = f ∗(Y1) is contained in V(qc) by [1.21.iii], so f ∗ restricts to a
map ([3.21.iii]) B1 = Spec(B/q1) → Spec(A/qc

1) = A1. If f ∗(Y1) is constructible in X1 = Spec(A/qc
1),

it will also be in X: if f ∗(Y) is a union of sets U′ ∩ C′ for U′ open and C′ closed in X1, then there are
U open and C closed in X such that U′ = X1 ∩U and C′ = X1 ∩ C, and then U′ ∩ C′ = U ∩ (C ∩ X1).
Note that A1 and B1 are integral domains and f1 : A1 → B1 is injective. As in the previous proof, by
[5.21] there is s1 ∈ A1 such that s1 /∈ p1 ∈ X1 implies p1 ∈ f ∗1 (Y1); thus Xs1 ⊆ f ∗1 (Y1) = F. Now s1 is
in each prime in V(s1) = X1\Xs1 , so we may consider ([3.21.iii] again) the restriction of f ∗1 to the map
( f ∗1 )

−1(V(s1B)
)
→ V(s1) as induced by the homomorphism A′1 = A1/(s1) → B1/(s1)B1 = B′1. By [6.5],

Y1 is Noetherian, so by [6.7], it has finitely many irreducible components. Let Y2 be one, and q2 such that
([1.20.iv]) V(q2) = Y2. The image ( f ′1)

∗(Y2) induced by f ′1 : A′1 → B′1 is the same as (making identifications)
the image f ∗2 (Y2) induced by f2 : A′1/qc

2 → B′1/q. Again this is an injection of integral domains, so we
can find an open subset Xs2 ⊆ X2 contained in f ∗2 (Y2). Iterating, we get a sequence of sets Xsj ⊆ F,
where each Xsj+1 is open in the closed set Xj\Xsj . That means that there is an open Uj+1 ⊆ Xj such
that Uj+1 ∩ (Xj\Xsj) = Xsj+1 . Thus Xsj+1 ∪ Xsj = Uj ∪ Xsj is open in Xj. Therefore Wn =

⋃n
j=1 Xsj is an

increasing chain of open sets in F; since X is Noetherian, so is F by [2.5], so this chain terminates in some
Wn.

At each point where we chose an irreducible component in the above process, we could have instead
chosen a different irreducible component, and obtained a different open subset W ⊆ F. If we do this for
each possible chain of irreducible components, and take the union, we have obtained F as an open set,
which is certainly constructible.

24. With the notation and hypotheses of Exercise 23, f ∗ is an open mapping ⇐⇒ f has the going-down-property
(Chapter 5, Exercise 10).

By [5.10.ii], if f : A → B is any ring homomorphism such that f ∗ is open, then f has the going-down
property.

Conversely, suppose f has the going-down property, and let Ys be a basic open set ([1.17]) in Y =
Spec(B); it is enough to show f ∗(Ys) is open. By (3.11.iv), the canonical map B → Bs has the going-down
property, and A → B → Bs is still of finite type, so replacing B with Bs and f with the composition, it is
enough to show f ∗(Y) is open. Let X0 be an arbitrary irreducible closed subset of X. By [7.22], to show
f ∗(Y) is open it will suffice to show that either it does not meet X0 or F = f ∗(Y)∩X0 contains a non-empty

17 This line from Yimu Yin’s solution: http://pitt.edu/~yimuyin/research/AandM/exercises07.pdf
18 http://pitt.edu/~yimuyin/research/AandM/exercises07.pdf
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open subset of X0. Assume that q ∈ F. Then if p′ ⊆ q is another prime, we also have p′ ∈ f ∗(Y), by going-
down. But [1.20.iv] tells us there is a prime p such that X0 = V(p), and thus p ∈ F. Since {p} = V(p) = X0
([1.18.ii]), we then have F dense in X0. By the previous problem, f ∗(Y) is constructible, and so F is as well.
[7.20.ii] then says that F contains a non-empty open set in X0.

25. Let A be Noetherian, f : A→ B of finite type and flat (i.e., B is flat as an A-module). Then f ∗ : Spec(B)→ Spec(A)
is an open mapping.

By [5.11], since f is flat, it has the going-down property. By [7.24], then, f ∗ is an open mapping.

Grothendieck groups
26. Let A be a Noetherian ring and let F(A) denote the set of all isomorphism classes of finitely generated A-modules.

Let C be the free abelian group generated by F(A). With each short exact sequence 0 → M′ → M → M′′ → 0 of
finitely generated A-modules we associate the element [M′]− [M] + [M′′] of C, where [M] is the isomorphism class
of M, etc. Let D be the subgroup of C generated by these elements, for all short exact sequences. The quotient group
C/D is called the Grothendieck group of A, and is denoted by K(A). If M is a finitely generated A-module, let
γ(M), or γA(M), denote the image of [M] in K(A).

Before proceeding, we establish some additional notation. Let F (A) be the class of all finitely generated
A-modules, [−]A : F (A) � F(A) the function taking a module to its isomorphism class, iA : F(A) ↪→
C(A) the canonical inclusion of generators, and πA : C(A) � K(A) = C(A)/D(A) the quotient map.
Note that γA = πA ◦ iA ◦ [−]A.

Since only one ring occurs in the discussion up to part iv), we will until then mostly suppress mention
of A.19

i) Show that K(A) has the following universal property: for each additive function λ on the (proper) class of finitely
generated A-modules, with values in an abelian group G, there exists a unique homomorphism λ0 : K(A) → G
such that λ(M) = λ0

(
γ(M)

)
for all M.

Since for any short exact sequence 0 → N → M → P → 0 of finitely generated A-modules we have
[N]− [M] + [P] ∈ D = ker(π), its image under π is 0 = π

(
[N]
)
− π

(
[M]

)
+ π

(
[P]
)
= γ(N)− γ(M) +

γ(P), so γ: F → K is itself an additive function (p. 23). We will show a little more than the claim: not
only is it the case that for each additive function λ : F → G is there a unique homomorphism λ0 : K → G
such that λ = λ0 ◦ γ, but to each homomorphism λ0 : K → G corresponds a unique additive function
λ = λ0 ◦ γ : F → G, so the correspondence λ ↔ λ0 is bijective. In other words, γ is a universal additive
function on F .

For the correspondence λ0 7→ λ, recall that γ is additive, so for any short exact sequence 0 → N →
M → P → 0 of finitely generated A-modules we have γ(N)− γ(M) + γ(P) = 0. It follows that for any
homomorphism λ0 : K → G, if we define λ = λ0 ◦ γ, then λ(N) − λ(M) + λ(P) = λ0

(
γ(N) − γ(M) +

γ(P)
)
= λ0(0) = 0, so that λ is additive.

For the correspondence λ 7→ λ0, given an additive map F → G, we find a ho-
momorphism λ0 : K → G such that λ0 ◦ γ = λ, then show it is unique. First, to see
λ descends (uniquely) to a well defined function on F, consider the very boring short
exact sequence 0 → 0 → 0 → 0 → 0. By additivity, λ(0) = λ(0) − λ(0) + λ(0) = 0.
If M ∼= N ∈ F , then there exists a short exact sequence 0 → M → N → 0 → 0,
so by additivity, λ(M)− λ(N) = λ(M)− λ(N) + λ(0) = 0, and λ(M) = λ(N). Thus
λ(M) depends only on the isomorphism class of M and λ descends to a well defined
function λF : F → G with λF ◦ [−] = λ. Second, as C is the free abelian group on F,
we have a unique homomorphism λC : C → G such that λC ◦ i = λF. Third, given
any short exact sequence 0 → N → M → P → 0, we have λC

(
[N] − [M] + [P]

)
=

λC
(
[N]
)
− λC

(
[M]

)
+ λC

(
[P]
)
= λ(N) − λ(M) + λ(P) = 0, so D ⊆ ker(λC) and λC

descends to a homomorphism λ0 : K = C/D → G, with λ0 ◦ π = λC. As requested,
λ0 ◦ γ = λ0 ◦ π ◦ i ◦ [−] = λC ◦ i ◦ [−] = λF ◦ [−] = λ.

F (A)

γ

��

[−]����

λ

��

F(A)� _

i
��

λF

��

C(A)

π
����

λC

!!
K(A)

λ0

// G

19 As an aside, note, although it’s not strictly necessary for us to do so, that if 0→ N → M → P → 0 is a short exact sequence of
A-modules and N and P are finitely generated, then so is M, by [2.9]. It’s also true that if M is finitely generated, then it is Noetherian
by (6.5), so N and P are finitely generated. Again, generators of D are defined to be linear combinations of finitely generated classes,
but these closure properties are somehow reassuring.
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To see uniqueness, note that the [M] ∈ C for M ∈ F are generators for C, so their images γ(M) =
π
(
[M]

)
generate K = C/D. Thus if a partially defined function l0 : K → G satisfies l0

(
γ(M)

)
= λ(M),

there is at most one way to extend l0 to a totally defined homomorphism λ0 : K → G.

ii) Show that K(A) is generated by the elements γ(A/p), where p is a prime ideal of A.
Let M ∈ F , and recall from [7.18] (this is the first time we use that A is Noetherian) that there exists

a chain 0 = M0 ( M1 ( · · · ( Mr = M of submodules with successive quotients of the form A/pj for
pj ∈ Spec(A). Thus we have for 1 ≤ j ≤ r short exact sequences 0 → Mj−1 → Mj → A/pj → 0, showing
that [Mj−1]− [Mj] + [A/pj] ∈ D, and so γ(Mj) = γ(Mj−1) + γ(A/pj). Since γ(M0) = γ(0) = 0, it follows
by induction that γ(Mn) = ∑j≤n γ(A/pj); in particular, γ(M) = ∑r

j=1 γ(A/pj).

iii) If A is a field, or more generally if A is a principal ideal domain, then K(A) ∼= Z.
First note that a field is a principal ideal domain (henceforth “PID”), with only the two ideals (0)

and (1). Second, note that a principal ideal domain A is Noetherian by (6.2), since every ideal is by
definition principal, so a fortiori finitely generated. By ii) above K is then generated by the elements
γ(A/p) with p ∈ Spec(A). Let (a) 6= (0) be any ideal of A; since A is an integral domain, x 7→ ax
is injective, so we have a short exact sequence 0 → A → A → A/(a) → 0 of A-modules, meaning
γ
(

A/(a)
)
= γ(A) − γ(A) + γ

(
A/(a)

)
= 0 in K. Since A is an integral domain, (0) is prime, and so

γ
(

A/(0)
)
= γ(A) generates K. Thus K is a quotient of Z, and it remains to show it isn’t a proper

quotient. To do this, it suffices to define a surjective homomorphism K � Z, and by i), it is enough to
produce an additive function F → Z with image N.20

Recall21 that any finitely generated module M over a PID A can be written as a finite direct sum
Ar ⊕ T(M) for some uniquely determined rank r = rkA M ∈ N, where T(M) is the torsion submodule
of M ([2.12]). λ := rkA has image N since λ(An) = n for all n ∈ N. Write L for the field of fractions of
A. For any nonzero m ∈ T(M), say with a ∈ Ann(m)\{0}, we have 1⊗m = (a/a)⊗m = (1/a)⊗ am =

(1/a)⊗ 0 = 0 in L⊗M, so L⊗M ∼= L⊗ Aλ(M) ∼= Lλ(M) by (2.14.iii,iv). Since by (3.6) L is a flat A-module,
tensoring a short exact sequence 0 → N → M → P → 0 of finitely generated A-modules with L gives
rise to a short exact sequence 0 → Lλ(N) → Lλ(M) → Lλ(P) → 0 of L-vector spaces. We know from linear
algebra that λ(N)− λ(M) + λ(P) = 0, so λ is additive.

iv) Let f : A → B be a finite ring homomorphism. Show that restriction of scalars gives rise to a homomorphism
f! : K(B) → K(A) such that f!

(
γB(N)

)
= γA(N) for a B-module N. If g : B → C is another finite ring

homomorphism, show that (g ◦ f )! = f! ◦ g!.
If N is a finitely generated B-module, write N| f for the A-module obtained therefrom by restriction

of scalars. (2.16) says that then N| f is a finitely generated A-module, so we have a function | f : F (B) →
F (A). An short exact sequence 0→ N → M→ P→ 0 of B-modules remains exact viewed as a sequence
of A-modules, so γA ◦ | f is an additive map F (B) → K(A). By the universal property of i), there is then
a unique homomorphism f! : K(B)→ K(A) such that f! ◦ γB = γA ◦ | f .

Let M be a C-module, a ∈ A, and x ∈ M. Note that M|g,
(

M|g
)∣∣

f , and M|g◦ f have the same underlying
abelian group, so the last two will be equal A-modules if they have the same A-action. The element a · x
of
(

M|g
)∣∣

f , by definition, is the element f(a) · x in M|g, which in turn is g
(

f(a)
)
· x = (g ◦ f )(a) · x in M,

which is a · x in M|g◦ f . Thus
(

M|g
)∣∣

f = M|g◦ f . Abstracting, we can write |g◦ f = |g ◦ | f : F (C) → F (A).
Now consider the diagram

F (A)

γA
��

F (B)
| f
oo

γB

��

F (C)
|g
oo

γC
��

K(A) K(B)
f!

oo K(C).g!
oo

Commutativity of the two squares implies commutativity of the outer rectangle: f! ◦ g! ◦ γC = f! ◦ γB ◦ |g =
γA ◦ | f ◦ |g = γA ◦ |g◦ f . Then f! ◦ g! is a homomorphism φ : K(C)→ K(A) satisfying φ ◦ γC = γA ◦ |g◦ f . As
(g ◦ f )! was defined to be the unique homomorphism with this property, it follows that (g ◦ f )! = f! ◦ g!.

20 I am not pleased with this proof; it seems intuitively obvious γ(A) is not torsion, so I think there should be a quicker argument.
21 http://planetmath.org/encyclopedia/FinitelyGeneratedModulesOverAPrincipalIdealDomain.html
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27. Let A be a Noetherian ring and let F1(A) be the set of all isomorphism classes of finitely generated flat A-modules.
Repeating the construction of Exercise 26 we obtain a group K1(A). Let γ1(M) denote the image of [M] in K1(A).

Two asides follow.2223

i) Show that tensor product of modules over A induces a commutative ring structure on K1(A), such that γ1(M) ·
γ1(N) = γ1(M⊗N). The identity element of this ring is γ1(A).
First recall the notation we introduced in the proof of [7.26]. Let F1 ⊆ F be the class of all finitely

generated flat A-modules. Note F1 ⊆ F, so the map [−] : F � F restricts to a map F1 � F1. Let C1 be the
free group on F1. Since F1 ⊆ F, there is a natural embedding C1 � C, which we view as an inclusion. Write
D1 ⊆ C1 for the subgroup generated by [N]− [M] + [P] for short exact sequences 0 → N → M → P → 0
of objects in F1, and π1 : C1 � K1 = C1/D1 for the quotient map.

A tensor product of finitely generated modules is finitely generated for if M, N are generated by
some finitely many xi ∈ M and yj ∈ N, then M⊗AN is generated by the finitely many xi ⊗ yj. Thus
−⊗− is a map F ×F → F . By [2.8.i], a tensor product of flat modules is flat, so −⊗− restricts to
a map F1 ×F1 → F1. Given isomorphisms φ : M ∼−→ M′ and ψ : N ∼−→ N′, we have an isomorphism
φ⊗ψ : M⊗N ∼−→ M′⊗N′ (see p. 27), so tensor descends to a function t : F× F → F taking

(
[M], [N]

)
7→

[M⊗N], which in turn restricts to a function t1 : F1 × F1 → F1. By (2.14.i,ii,iv), t and t1 are commutative,
associative binary operations on F, F1 with identity element [A], and so make F a monoid with submonoid
F1. Writing Z[F] and Z[F1] for the monoid rings ([5.33]), the bijections C ↔ Z[F] and C1 ↔ Z[F1] (hereafter
taken as identifications) define ring structures on these groups; write τ and τ1 for the multiplications.

If M ∈ F1 and 0 → N′ → N → N′′ → 0 is a a short exact sequence of A-modules, then by flatness of
M this induces a short exact sequence 0 → M⊗N′ → M⊗N → M⊗N′′ → 0, so τ1

(
[M], [N′]− [N] +

[N′′]
)
= [M⊗N′]− [M⊗N] + [N⊗N′′] ∈ D1 for any generator [N′]− [N] + [N′′] of D1, showing D1 is

an ideal, and thus giving a ring structure on K1 = C1/D1.24 Now γ1(M) · γ1(N) = (π1 ◦ τ1)(M, N) =
π1
(
[M⊗N]

)
= γ1(M⊗N). Since [A] is the neutral element of F1 (which shows A is flat, hence in F1), it

becomes a unity in the monoid ring C1, and its image γ1(A) ∈ K1 is the unity of K1.

ii) Show that tensor product induces a K1(A)-module structure on the group K(A), such that γ1(M) · γ(N) =
γ(M⊗N).
Note that the (restricted) multiplication τ : C1 × C → C makes the group C a C1-module. A slight

modification of the proof in the preceding paragraph that D1 � C1 is an ideal, assuming N′, N, N′′ ∈ F
and not necessarily in F1, shows that τ(C1 × D) ⊆ D, so K = C/D is naturally a C1-module. If D1 ⊆
AnnC1(K), then (p. 19) we may naturally regard K as a K1-module. Indeed, for any N ∈ F and short exact
sequence 0→ M′ → M→ M′′ → 0 in F1 we have a Tor exact sequence ([2.24]) Tor1(M′′, N)→ M′⊗N →
M⊗N → M′′⊗N → 0, and Tor1(M′′, N) = 0 by flatness of M′′ ([2.24]), so τ

(
[M′]− [M] + [M′′], [N]

)
∈

D; since these [M′] − [M] + [M′′] are generators for D1, it follows D1 · K = 0. Now γ1(M) · γ(N) =
(π ◦ τ)(M, N) = π

(
[M⊗N]

)
= γ(M⊗N).

iii) If A is a (Noetherian) local ring, then K1(A) ∼= Z.
Note that the proof of [7.26.i] transfers verbatim to show that K1 satisfies an analogous universal

property: namely for any abelian group G, there is a bijective correspondence between additive functions
λ : F1 → G and group homomorphisms λ0 : K1 → G given by λ = λ0 ◦ γ1. Then as in [7.26.iii], the
additive function rkA : F1 → Z, with range N, induces a surjective homomorphism K1 → Z, and so K1
contains an infinite cyclic additive subgroup. Recall from [7.15] that if A is Noetherian and local, then
M ∈ F1 if and only if M ∼= An for some n ∈N. Since the γ1(M) generate K1, it follows the additive group
of K1 is cyclic; hence K1

∼= Z.

22 If 0→ N → M→ P→ 0 is an exact sequence of finitely generated A-modules and N and P are flat, so is M by [2.25]. This isn’t
strictly necessary for the definition, which only requires those sequences such that all terms are flat, but it’s somehow comforting
anyway.

23 It is tempting, in order to do i) and ii), to consider K1 as a subset of K and argue the desired multiplication on K1 is a restriction of
the map µ : K1 ×K → K making K a K1-module. In general, it is not; the map ε : K1 → K defined in the remark by ε

(
γ1(M)

)
= γ(M)

is not in general injective. The problem is that, while C1 ⊆ C naturally, we don’t necessarily have D1 = C1 ∩ D. Indeed, D1 is
generated by [N]− [M] + [P] for short exact sequences 0 → N → M → P → 0 of objects in F1, but it is entirely possible that there
are elements of C1 ∩ D not generated by these sequences.

24 It’s worth noting that K generally fails to be a ring precisely because D is not generally an ideal, which is in turn the case
because modules are not flat in general.
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iv) Let f: A → B be a ring homomorphism, B being Noetherian. Show that extension of scalars gives rise to a
ring homomorphism f ! : K1(A) → K1(B) such that f !(γ1(M)

)
= γ1(B⊗A M). If g: B → C is another ring

homomorphism (with C Noetherian), then (g ◦ f )! = g! ◦ f !.
(2.20) states that for M a flat A-module, M| f := B⊗A M is a flat B-module, and (2.17) that if M is finitely

generated, so is M| f . Thus we have a map | f : F1(A) → F1(B). Set λ = γ1, B ◦ | f : F1(A) → F1(B) →
K1(B). If 0→ N → M→ P→ 0 is a short exact sequence in F1(A), then the proof of parts i,ii) shows that
0 → N| f → M| f → P| f → 0 is exact, so

[
N| f

]
−
[
M| f

]
+
[
P| f
]
∈ D1(B), showing λ is additive. By the

universal property in the proof of part iii), it follows there is a unique group homomorphism f! : K1(A)→
K1(B) such that f! ◦ γ1, A = γ1, B ◦ | f . Further, this is a ring homomorphism, for B⊗A A ∼= B by (2.14.iv),
and (B⊗A M)⊗B(B⊗AN) ∼= M⊗AB⊗BB⊗AN ∼= M⊗A(B⊗BB)⊗AN ∼= M⊗AB⊗AN ∼= B⊗A(M⊗AN)
by (2.14.i,ii,iv) and (2.15) (viewing B as a (B, A)-bimodule).

For M ∈ F1(A) we have
(

M| f
)∣∣g = C⊗B M| f = C⊗B(B⊗A M) ∼=

(C⊗BB)⊗A M ∼= C⊗A M = M|g◦ f by (2.15) (viewing B as a (B, A)-
bimodule) and (2.14.iv). If we write α f for the map F1(A) → F1(B) in-
duced by | f , and so on, then we’ve shown αg◦ f = αg ◦ α f : F1(A)→ F1(C).
Now (g ◦ f )! is the unique homomorphism ν : K1(A) → K1(C) such that
ν ◦ γ1, A = γ1, C ◦ |g◦ f , and so is unique such that ν ◦ π1, A = π1, C ◦ αg◦ f .
On the other hand, the diagram at right shows ν = g! ◦ f ! also satisfies
this equality, so (g ◦ f )! = g! ◦ f !

F1(A)

����

| f
// F1(B)

����

|g
// F1(C)

����
F1(A)

π1, A

��

α f
// F1(B)

π1, B

��

αg
// F1(C)

π1, C

��
K1(A)

f !
// K1(B)

g!
// K1(C).

v) If f: A→ B is a finite ring homomorphism then

f!
(

f !(x)y
)
= x f!(y)

for x ∈ K1(A), y ∈ K(B). In other words, regarding K(B) as a K1(A)-module by restriction of scalars, the
homomorphism f ! is a K1(A)-module homomorphism

By bi-additivity of the module multiplication, since f ! and f! are homomorphisms, and since elements
x = γ1, A(M) and y = γB(N) generate K1(A) and K(B), it will suffice to check the equality for these
elements:

f!

(
f !(γ1, A(M)

)
· γB(N)

) iv)
= f!

(
γ1, B(B⊗A M) · γB(N)

) ii)
= f!

(
γB
(
(M⊗AB)⊗BN

))
(2.15)
=

(2.14.iv)
f!
(
γB(M⊗AN)

) [7.26.iv]
= γA

(
(M⊗AN)| f

)
= γA(M⊗AN| f )

ii)
= γ1, A(M) · γA(N| f )

[7.26]
= γ1, A(M) · f!

(
γB(N)

)
.

It doesn’t make sense to consider f ! to be a K1(A)-module homomorphism K(A)→ K(B); we defined
f ! as a map K1(A) → K1(B) because a short exact sequence in F (A) has no reason to remain exact
under B⊗A− for arbitrary finite A-algebras B. So assume instead that the book actually meant to ask
about the homomorphism f! : K(B) → K(A).25 One can define a map t′ : F1(A) ×F (B) → F(B) by
t′(M, N) = M⊗AN| f , first restricting scalars along f and then regarding the result as a B-module by
b(m⊗ n) = m⊗ bn. This then induces a bilinear map τ′ : C1(A)× C(B) → C(B) making C(B) a C1(A)-
module. Thinking of B-modules as A-modules by restriction of scalars, our proof of part ii) above gives an
induced map µ′ : K1(A)× K(B)→ K(B) making K(B) a K1(A)-module. We claim µ′(x, y) = µB

(
f !(x), y);

it again suffices to check for generators x = γ1, A(M) and y = γB(N). Now

µB
(

f !(x), y) = µB
(
γ1, B(B⊗A M), γB(N)

)
= γB

(
(B⊗A M)⊗BN

)
= γB(M⊗AN) = µ′(x, y).

Remark. Since F1(A) is a subset of F(A) we have a group homomorphism ε : K1(A) → K(A) given by
ε
(
γ1(M)

)
= γ(M). If the ring A is finite-dimensional and regular, i.e., if all its local rings Ap are regular

(Chapter 11) it can be shown that ε is an isomorphism.

25 To regard K(B) as a K1(A)-module by restriction of scalars, one’s first inclination is to set x · y = x · f!(y), but the former is
supposed to be in K(B) and the latter is in K(A); apparently this is not what the book means by “restriction of scalars.”
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Example. (p. 91, top) If A = k[x1, x2, . . .] is a polynomial ring in countably many indeterminates over
a field k, the ideal a is (x1, x2

2, x3
3, . . .), and B = A/a, then writing yn = x̄n, the book claims that m =

(y1, y2, . . .) is the only prime ideal of B. Evidently m is maximal, since k[y1, y2, . . .]/(y1, y2, . . .) ∼= k.
Since each yn ∈ N(B) is nilpotent, we have m ⊆ N(B), so by (1.8) every prime of B contains m, which is
then minimal, hence the only prime. But (y1) ( (y1, y2) ( · · · is an infinite ascending sequence of ideals,
so B is not Noetherian. Three other examples can be found in the solution to [7.8].

EXERCISES
1. Let q1 ∩ · · · ∩ qn = 0 be a minimal primary decomposition of the zero ideal in a Noetherian ring [A], and let qi be

pi-primary. Let p(m)
i be the mth symbolic power of pi (Chapter 4, Exercise 13). Show that for each i = 1, . . . , n

there exists an integer mi such that p(mi)
i ⊆ qi.

Set q = qi, p = pi, and Sp = A\p. From (7.14), since the radical r(q) = p, it follows from (7.14) that
there is m ∈N such that pm ⊆ q. Then p(m) = Sp(pm) ⊆ Sp(q) = q by (4.12*.iv,iii).

Suppose qi is an isolated primary component. Then Api is an Artin local ring, hence if mi is its maximal ideal
we will have mr

i = 0 for all sufficiently large r, hence qi = p(r)i

Since p(r) ⊆ q for sufficiently large r, and p(r) is p-primary by [7.13.i], we have another primary decom-
position p(r) ∩⋂j 6=i qj = 0. By the uniqueness (4.11) of isolated primary components, it follows q = p(r).1

Now we claim Ap is a local Artinian ring with nilpotent maximal ideal m := pe. By (3.13), Ap is local
with maximal ideal m, and by (7.3) it is Noetherian. By (4.6), p is minimal in V(0) = Spec(A); it follows
from (3.13) that m is also minimal in Ap, hence the only prime, so dim(Ap) = 0 and Ap is Artinian by
(8.5). Further, m = N(Ap) by (1.8), so by (7.15) or (8.4) there is r ∈N such that mr = 0.2

If qi is an embedded primary component, then Api is not Artinian, hence the powers mr
i are all distinct, and so

the p(r)i are all distinct. Hence in the given primary decomposition we can replace qi by any of the infinite set of

pi-primary ideals p(r)i where r ≥ ri, and so there are infinitely many minimal primary decompositions of 0 which
differ only in the pi component.

If we have pj ( p with qj another primary component, then pe
j ( pe in Ai, so dim(Ai) ≥ 1 and Ai is not

Artinian by (8.5). It follows from (8.6) (using contraposition to exclude case ii)) that all the powers mr are
distinct. If pr = pr+1 for some r, then taking extensions and using (3.11.v) we have mr = (pe)r = (pr)e =
(pr+1)e = (pe)r+1 = mr+1, so it follows the pr are all distinct. Since A is Noetherian, pr has a primary
decomposition by (7.13); by our proof of [4.13.ii], p(r) is the smallest primary ideal containing pr. It follows
that since the pr are distinct, so are the p(r). Now if r ≥ ri, we have 0 6= p(r) ( p(ri), so any of these p(r) can
be substituted in the primary decomposition of (0).

1 Despite the utter triviality of this two-line argument, I had to poach it from
http://scribd.com/doc/47338424/atiyah-macdonald-solutions.

2 I was unable to prove the “hence” of the problem; while I’ve proven the nilpotence of m and that q = p(r) separately, I still don’t
know why the latter follows from the former.
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2. Let A be a Noetherian ring. Prove that the following are equivalent:
i) A is Artinian;

ii) Spec(A) is discrete and finite;
iii) Spec(A) is discrete.

ii) =⇒ iii): Trivial.
iii) =⇒ i): If Spec(A) is discrete, then in particular each point is closed. By [1.18.i], the closed points

correspond to maximal ideals, so every prime in A is maximal. Then dim(A) = 0, so by (8.5), A is Artinian.
i) =⇒ ii): If A is Artinian, every prime ideal of A is maximal by (8.1), so by [1.18.i] or [3.11], each

point of X = Spec(A) is closed. By (8.3) it only has a finite number of maximal (hence prime ideals), so it
is finite. But then every subset of X is a finite union of closed sets, hence closed, and X is discrete.

3. Let k be a field and A a finitely generated k-algebra. Prove that the following are equivalent:
i) A is Artinian;

ii) A is a finite k-algebra.
i) =⇒ ii): By (8.7), A is a finite direct product of local Artinian rings Aj, which are quotients of

A under the projection, and hence again finitely generated (by the images of the generators of A, for
instance). Thus if we can prove each of the finitely many Aj is a finite k-algebra, so will A be.

So without loss of generality assume A is local Artinian ring finitely generated over k, with lone prime
m. Then B = A/m is a field, again finitely generated over k, so by Zariski’s Lemma ((1.27.2*), (5.24), [5.18],
(7.9)), B is a finite algebraic extension of k, and hence a finite k-vector space. Since primary decompositions
exist in the Noetherian ring A and Spec(A) = {m}, we see m belongs to (0). Then as A is finitely generated
as an A-module, [7.18] gives us a chain 0 = M0 ( M1 ( · · · ( Mn = A of A-submodules whose successive
quotients are of the form A/pi for pi ∈ Spec(A) = {m}— that is to say, all isomorphic to B. Thus we have
a finite collection of short exact sequences 0 → Mi → Mi+1 → B → 0 of A-modules, which we may view
as k-modules. Since dimk is an additive function, this gives us dimk Mi+1 = dimk Mi + dimk B, and taking
i = 0 shows dimk M1 = dimk B is finite. By induction, dimk A = n dimk B is finite.

ii) =⇒ i): A finite k-algebra (p. 30) is finitely generated as a k-module. By (6.10), it follows A satisfies
the d.c.c. on k-submodules. Since each A-module is naturally also a k-module, it follows A satisfies the
d.c.c. on ideals as well, and so is an Artinian ring.

4. Let f: A→ B be a ring homomorphism of finite type. Consider the following statements:
i) f is finite;

ii) the fibres of f ∗ are discrete subspaces of Spec(B);
iii) for each prime ideal p of A, the ring B⊗Ak(p) is a finite k(p)-algebra ( k(p) is the residue field of Ap);
iv) the fibres of f ∗ are finite.

Prove that i) =⇒ ii) ⇐⇒ iii) =⇒ iv).
If f is integral and the fibres of f ∗ are finite, is fnecessarily finite?
For the last question, it is important to realize we are not assuming finite type; otherwise, (5.2) and

the Remark on p. 60 show the answer is yes. Consider the algebraic closure K of a field K, constructed for
example in [1.13].3 The fibers of the inclusion K ↪→ K will be finite, for both spectra are one-point spaces.
However, this extension will not be finite unless dimK K is finite, which is not the case, for example, if K is
a finite algebraic extension of any member of {Fp, Q, Qp, k(S)}, where k is any field and S 6= ∅ any set
of indeterminates.

For the implications, fix p ∈ Spec(A) and let k = k(p) = Ap/pAp be the residue field of the localization
Ap. Recall from (2.14.i) that C := B⊗Ak ∼= k⊗AB and from [3.21.iv] that Spec(C) ≈ ( f ∗)−1(p). Note
further, using (2.14.iv) and (2.15), that

C := B⊗Ak ∼= B⊗A(Ap⊗Ap
k) ∼= (B⊗A Ap)⊗Ap

k. (8.1)

i) =⇒ iii): Assume B is generated as an A-module by n elements. It follows from the proof of (2.17)
that B⊗A Ap is generated by n elements as an Ap-module and by (2.17) again and Eq. ?? that C is a
≤ n-dimensional k-vector space. Since C is a k-algebra, it is then a finite k-algebra.

3 We defined K as the subset of elements of L =
⋃ ∞

n=0 Kn algebraic over K = K0, where each Kn+1 is the smallest algebraic
extension of Kn in which each irreducible monic polynomial p(x) ∈ Kn[x] has a root. But it turns out K1 = K = L. By (5.4) and
induction, each Kn is integral over K, and each α ∈ K ⊆ L is in some Kn, so K is integral over K. Since, each Kn is integral over K,
each member thereof satisfies a polynomial equation p(x) ∈ K[x]; but that shows that p(x) already has a root in K1, which then must
be itself algebraically closed.
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iii) =⇒ ii): By the assumption and [8.3], C is an Artinian ring. Then by [8.2], its spectrum ( f ∗)−1(p) is
discrete.

ii) =⇒ iii): We first show C is a finitely generated k-algebra (and hence, by (7.7), Noetherian).4 Since
f is of finite type, there is a surjective ring homomorphism A[x1, . . . , xn] → B. Recalling from (2.18) that
tensor is right exact, we apply Ap⊗A− to both sides and use [2.6] (see the footnote to [7.13]) to get
a surjective ring homomorphism Ap[x1, . . . , xn] → Ap⊗ AB. Applying k⊗Ap

− to both sides, the same
argument, followed by (2.15), (2.14.i), and Eq. ??, yields a surjective ring homomorphism k[x1, . . . , xn] →
k⊗Ap

(
Ap⊗AB

) ∼= C, so C is a finitely generated k-algebra. By (7.7), C is a Noetherian ring, and by
assumption, ( f ∗)−1(p) ≈ Spec(C) is discrete, so [8.2] shows C is Artinian. Because of this and because C
is a finitely generated k-algebra, [8.3] shows C is a finite k-algebra.

ii) & iii) =⇒ iv): By iii), C is a finite k-algebra, hence a fortiori finitely generated, and hence by (7.7) a
Noetherian ring; and by ii), ( f ∗)−1(p) ≈ Spec(C) is discrete; so from [7.2] it follows Spec(C) = ( f ∗)−1(p)
is also finite.

5. In Chapter 5, Exercise 16, show that X is a finite covering of L (i.e., the number of points of X lying over a given
point of L is finite and bounded.)

Refer back to our solution to [5.16] for notation. In summary, we were given an affine subvariety
X ⊆ kn and from it constructed a linear surjection π : kn � kr = L such that π|X is already surjective.
The coordinate rings ([1.27]) of X and L were written, respectively, as A and A′, and r and π were chosen
in such a way that the injection v = (π|X)# : A′ � A was integral of finite type. View it as an inclusion.
Recalling from [1.27] and [5.16] that we may identify X with Max(A) and the map X → L with its
induced map Max(A)→ Max(A′), we now want to show only finitely many maximal ideals of A lie over
any maximal ideal of A′. Using (5.2) again, v is finite, so by [8.4] it follows the fibers of v∗ are finite.

However, we still want to uniformly bound the size of these fibers. Since v is integral of finite type, by
the Remark on p. 60, v is finite; say A is generated as an A′-module by n elements. Then n is a uniform
bound on the k-dimension of B = A⊗A′k(p) for p ∈ Spec(A′), and by [3.21.iv] it is enough to show
Spec(B) has ≤ n points. Let p1, . . . , pm be distinct primes of B. Since they are coprime, the canonical map
B → ∏ B/pi is surjective. Since B is a k(p)-algebra, the pi and hence the B/pi are k(p)-vector spaces as
well. We have n ≥ dimk B ≥ ∑m

i=1 dimk(B/pi) ≥ m, so Spec(B) is finite.5

6. Let A be a Noetherian ring and q a p-primary ideal in A. Consider chains of primary ideals from q to p. Show that
all such chains are of finite bounded length, and that all maximal chains have the same length.

We have a bijection, by (1.1) and (3.9), between the set Σ = {a � A : q ⊆ a ⊆ p} and the ideals
(a/q)p/q of B = (A/q)p/q, which we claim preserves and reflects being (p-)primary. By (4.8), extension
along A/q → B preserves being primary (for ā ⊆ p/q), and by p. 50, contraction along A → B preserves
being primary, so it remains to see extension a 7→ a/q along A � A/q does, for a ⊇ q. But for x, y ∈ A,
x̄ȳ ∈ a/q implies xy ∈ a, so that x ∈ a or some yn ∈ q, meaning x̄ ∈ a/q or yn = ȳn ∈ a/q.

Note that as a localization of a quotient of a Noetherian ring, B is also Noetherian, by (7.1) and (7.4).
Since A is Noetherian and r(q) = p, (7.14) gives an n ≥ 1 such that pn ⊆ q, so the maximal ideal m of the
local ring B satisfies mn = 0. By (8.6), B is Artinian. Also, for any b� B we have mn ⊆ b ⊆ m, so by (7.16),
b is m-primary.6

Thus our question boils down to arbitrary chains of ideals in an Artinian ring B. By the definition of
the word, these must all have finite length. A maximal chain is a composition series (p. 76), and by (6.7),
these all have the same length.

4 It feels like this should have been proven in the book somewhere already, but I don’t see where, so I’m doing it here.
5 A slightly different proof, from [?, Prop. 8.5], is as follows. Let m′ ∈ Max(A′) and K = A′/m′; then by (1.17.i), each m ∈ Max(A)

with mc = m′ has (m′)e = mce ⊆ m, so m descends to a maximal ideal of A/(m′)e. Since A is a finite A′-module, with n generators
for some n, by (2.8) C = A/(m′)e is a ≤ n-dimensional K-algebra. If Spec(C) contains m primes, then the same proof as above, with
C replacing B, shows n ≥ m, and this limits the number of maximal m lying over m′.

6 Amusingly, this seems to show the ideals of Σ were all p-primary. Can that be right?
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Domains

EXERCISES
1. Let A be a Dedekind domain, S a multiplicatively closed subset of A. Show that S−1 A is either a Dedekind domain

or the field of fractions of A.
By (9.3), A is an integrally closed Noetherian domain of dimension one. (5.12) implies that S−1 A is

also integrally closed and (7.3) that it is Noetherian. S−1 A is a domain since it is contained in the field of
fractions K of A. By (3.11.iv), the longest possible chain of prime ideals in S−1 A is (0) = S−1(0) ⊆ S−1p
for a prime p� A not meeting S. Since p 6= 0 and S−1 are contained in a field, S−1p 6= (0). It follows from
the definition (9.3) that S−1 A is a Dedekind domain if there is some prime p disjoint from S. If there is
none, then (0) is maximal in S−1 A, which is then a field. Since it contains A, it then is K.

Suppose that S 6= A\{0}, and let H, H′ be the ideal class groups of A and S−1 A respectively. Show that
extension of ideals induces a surjective homomorphism H → H′.

First we show a 7→ S−1a is a homomorphism of fractional ideal groups I(A) → I(S−1 A). Since A
is Noetherian, each fractional ideal a of A is finitely generated; it follows from (3.15) then that S−1(A :
a) = (S−1 A : S−1a), so S−1a−1 = (S−1a)−1. For multiplication, S−1S−1 = S−1 since 1 ∈ S, so S−1(ab) =
S−1S−1ab = (S−1a)(S−1b).

This map is surjective because a 7→ S−1a is surjective on integral ideals (3.11.i) and fractional ideals
of a Noetherian ring are of the form x−1a for x ∈ A and a � A (p. 96). For x ∈ K, we have xA 7→
S−1(xA) = x(S−1 A), so principal fractional ideals are mapped to principal fractional ideals, and the
surjective homomorphism I(A)→ I(S−1 A) descends to a surjective homomorphism H → H′.

2. Let A be a Dedekind domain. If f = a0 + a1x + · · ·+ anxn is a polynomial with coefficients in A, the content of f
is the ideal c( f ) = (a0, . . . , an) in A. Prove Gauss’s lemma that c( fg) = c( f )c(g).

Let f = ∑ aixi, g = ∑ bjxj, and fg = ∑ ckxk, where ck = ∑i+j=k aibj. We will have c( fg) ⊆ c( f )c(g) just
if for each prime p� A, c( fg)p =

(
c( f )c(g)

)
p

.1 But
(
c( f )c(g)

)
p
= c( f )pc(g)p by (3.11.v), and c( f )p is the

content of the image of f in Ap. Thus, by the definition (9.3), we may assume A is a discrete valuation
ring (henceforth “DVR”).

Finitely generated ideals of A are principal2, so we can write c( f ) = (a′) and c(g) = (b′) and we know
a′b′ divides fg in A[x]. Note that if d is a divisor of each coefficient of h ∈ A[x], so that h/d ∈ A[x], we

1 Let N, P ⊆ M be A- modules. To show N = P it is enough to show that the inclusions N ↪→ N + P and P ↪→ N + P are
surjective. By (3.9) and (3.4.i), this happens if and only if for all primes p� A, Np ↪→ (N + P)p = Np + Pp and Pp ↪→ Np + Pp are
surjective; but this happens just when Np = Pp.

2 Such a ring is called a Bézout domain because it satisfies Bézout’s lemma that if d is a common divisor of a, b ∈ A, there exist
y, z ∈ A such that d = ay + bz; see http://en.wikipedia.org/wiki/Bézout_domain and http://planetmath.org/encyclopedia/
BezoutDomain.html.

A ring satisfying Gauß’s lemma is called a Gaussian ring, and the Gaussian rings that are domains turn out (see e.g. http://arxiv.
org/abs/1107.0440) to be exactly the Prüfer domains (see http://en.wikipedia.org/wiki/Prüfer_domain). These rings have many
characterizations, one of which is that all their localizations at primes are valuation rings, others being that the nonzero finitely
generated ideals are all invertible and that all their ideals are flat. Cf. also http://planetmath.org/encyclopedia/PruferRing.
html.

If one instead defines the content of a polynomial as the greatest common divisor of its coefficients (which will generate the ideal
we called the content before, in the event this ideal is principal) one can extend the result to integral domains such that any two
elements have greatest common divisors, and in particular to unique factorization domains. This is easily proved, e.g., at http://
en.wikipedia.org/wiki/Gauss%27s_lemma_(polynomial)#A_proof_valid_over_any_GCD_domain. See also http://planetmath.
org/GcdDomain.html and http://planetmath.org/encyclopedia/PropertiesOfAGcdDomain.html.
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have c(h) = d · c(h/d). Thus (a′) = c( f ) = a′ · c( f/a′), so c( f/a′) = (1), and similarly c(g/b′) = (1). In
the terminology of [1.2.iv], f/a′ and g/b′ are primitive, by the result of that exercise, the same holds of
fg/a′b′, which then has content (1). It follows that c( f )c(g) = (a′b′) = a′b′ · c( fg/a′b′) = c( fg).

3. A valuation ring (other than a field) is Noetherian if and only if it is a discrete valuation ring.
The argument on p. 94 shows a DVR is a Noetherian valuation ring (and not a field).
For the other direction, by (5.18), a Noetherian valuation ring A is local. It is an integral domain by

the definition on p. 65. It now will be enough, by (9.7), to show the non-zero fractional ideals of A are
invertible, or by (9.2), to show the maximal ideal m is principal and A has dimension one. First we show
A is a PID. Any ideal a of A is finitely generated as (x1, . . . , xn) for some xj ∈ A since A is Noetherian.
By [5.28], the ideals (xj) are totally ordered, so one contains all the others, and hence a is principal.

To use (9.7), just note that since A is a Noetherian PID, any fractional ideal of A is of of the form x−1(y)
for some x, y ∈ A (p. 96) and so has an inverse y−1(x).

To use (9.2), set m = (m). Any prime ideal (p) satisfies (p) ⊆ (m), so for some a ∈ A we have am = p
and hence, since (p) is prime, either m ∈ (p) or a ∈ (p). If the former holds, p = m. If the latter holds,
we have b ∈ A such that p = am = bpm, or (1− bm)p = 0. As m is not a unit 1− bm 6= 0, so since A is
an integral domain, p = 0. It follows that the only chain of prime ideals in A is (0) ( m, meaning A has
dimension one.

4. Let A be a local domain which is not a field and in which the maximal ideal m is principal and
⋂∞

n=1 m
n = 0. Prove

that A is a discrete valuation ring.
Let p be a generator for m, so for each n ≥ 0 we have mn = (pn). Since

⋂∞
n=1 m

n = 0, it follows there is
no n with mn = mn+1, and every x ∈ A\{0} fails to be in some mn, so there is a greatest number v(x) ∈N

such that pv(x) divides x (taking p0 = 1). If v(x) = n, we can write x = upn for some u ∈ A; since pn+16 | x,
it follows that u ∈ A\m = A×. Thus A\{0} ∼= A× × pN as a multiplicative monoid. It follows that for
every pair x, y ∈ A we have v(x) ≤ v(y) ⇐⇒ x|y. Therefore any ideal a is generated by an element x ∈ a
with v(x) minimal, so that the ideals of A are (0) and the (pn). This shows A is Noetherian of dimension
one. By any of the implications iii), v), vi) =⇒ i) of (9.2), A is a DVR.

5. Let M be a finitely-generated module over a Dedekind domain. Prove that M is flat ⇐⇒ M is torsion-free.
Let the Dedekind domain be A. Since A is an integral domain, by [3.13], M is torsion-free just if for

each prime p� A we have Mp torsion-free over the DVR Ap. Now each Mp is finitely generated over a
PID, and so3 can be written as the direct sum of the torsion submodule and a free module. Thus each Mp

is torsion-free if and only if it is free. Since A is Noetherian and M is finitely generated, by [7.16], M is flat
just if each of the Mp is free. It follows that M is flat if and only if it is torsion-free.

6. Let M be a finitely generated torsion module ( T(M) = M) over a Dedekind domain A. Prove that M is uniquely
representable as a finite direct sum of modules A/pni

i , where pi are nonzero prime ideals of A.
For each prime ideal p of A we have Ap a DVR. Since Mp is finitely generated and torsion, and Ap

a PID (p. 94), the structure theorem for finitely generated modules shows4 Mp is isomorphic to a direct
sum of modules Ap/(dj) for dj ∈ Ap, where the (dj) are primary and unique up to order. But since Ap

is a DVR, each (dj) = (pAp)
nj for some nj ≥ 1. So Mp

∼=
⊕

j Ap/pnj Ap. By exactness of localization (3.3)
and [1.21.iv], since p is the only prime ideal of A containing pnj we have Ap/pnj Ap

∼= (A/pnj)p ∼= A/pnj ,
so each Mp is of the form we desire for M. It will now suffice to show M is isomorphic to the direct sum
of finitely many Mp.

Since M is finitely generated, [3.19.v] shows Supp(M) = V
(
Ann(M)

)
. As A is a Dedekind domain,

the prime-power factorization of Ann(M) shows that Supp(M) is finite. Now the canonical maps m 7→
m/1 : M → Mp for each p ∈ Supp(M) naturally compile into a map φ : M → ⊕

Mp. Note that since
each pair p 6= q of primes is coprime, there are x ∈ pn\q for arbitrarily high n, which then annihilate the
(finitely generated) summands A/pn of Mp, so by [3.1], (Mp)q = 0 for distinct primes p and q. On the

3 http://planetmath.org/encyclopedia/FinitelyGeneratedModulesOverAPrincipalIdealDomain.html
4 See http://en.wikipedia.org/wiki/Structure_theorem_for_finitely_generated_modules_over_a_principal_ideal_

domain#Primary_decomposition.
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other hand, (Mp)p ∼= Mp.5 Therefore, since localization distributes over direct sums (Eq. ??) localizing
φ at q shows φq : Mq →

(⊕
Mp

)
q
∼= (Mq)q ∼= Mq is an isomorphism for q ∈ Supp(M); and similarly

φq : Mq →
(⊕

Mp

)
q
∼=
⊕

0 is an isomorphism 0→ 0 for q /∈ Supp(M). By (3.9), φ is an isomorphism.

7. Let A be a Dedekind domain and a 6= 0 an ideal in A. Show that every ideal in A/a is principal.
First, let p be a prime and n ≥ 1. As in the previous exercise, A/pn ∼= Ap/pn Ap, and Ap is a DVR,

hence (p. 94) a PID, so each ideal of A/pn is principal.
Given any a� A, use (9.1) to produce a prime factorization a = ∏ p

ni
i and consider the standard map

A→ ∏ A/pni
i . Since the p

ni
i are coprime, (1.10) says that a =

⋂
p

ni
i and the map is surjective with kernel a.

Thus we can write A/a ∼= ∏ A/pni
i as a product of rings Bi each of whose ideals is principal. As in [1.22],

each ideal b of A/a is a sum of ideals of the Bi. If ei is the element of A/a whose i-component is 1 and
whose other components are zero, and b has bei = (biei) for bi ∈ Bi, then b = ∑ bei is generated by the
single element b = 〈bi〉 ∈ A/a whose i-component is bi, since b ∈ b and each biei = bei ∈ (b). Thus A/a is
principal.

Deduce that every ideal in A can be generated by at most 2 elements.
Suppose c� A is not principal, and let a nonzero a ∈ c be given. Then the ideal c/(a) of A/(a) is

principal, generated by b + (a) for some b ∈ c. It follows that c = (a, b) in A.6

8. Let a, b, c be three ideals in a Dedekind domain. Prove that

a∩ (b+ c) = (a∩ b) + (a∩ c),
a+ (b∩ c) = (a+ b) ∩ (a+ c).

Writing I for the set of nonzero ideals of our Dedekind domain, the problem is asking us to prove the
lattice (I, +, ∩) is distributive. Since all the ideals in question are submodules of A, by the first footnote
to [9.2], to prove an equation it suffices to show the localizations of the sides at each prime agree. By
(3.4), localization distributes over sum and intersection, so we now only have to prove the equations
for A a DVR. But pm + pn = pmin{m, n} and pm ∩ pn = pmax{m, n}, so pn 7→ n is a lattice isomorphism
(I, +, ∩)→ (N, min, max). Since the latter is distributive,7 the equations hold, and we are done.8

5 For a multiplicative submonoid S of A, the map a 7→ (a/1)/1 : A → S−1(S−1 A) satisfies the conditions (3.2), so that S−1 A ∼=
S−1(S−1 A), Using (3.5), we can rewrite this as S−1 A ∼= S−1 A⊗AS−1 A, so for any A-module M, using (3.5) again and (2.14.ii),
S−1 M ∼= S−1 A⊗A M ∼= S−1 A⊗AS−1 A⊗A M ∼= S−1(S−1 M).

6 A converse also holds: if A is a domain such that for every a� A and nonzero a ∈ a there exists b such that (a, b) = a, then A
is a Dedekind domain.

To see this, note that A is Noetherian, and all its localizations Ap at primes p must also be Noetherian by (7.3) and satisfy the same
two-generator property. Let 0 6= a� Ap. Picking a nonzero element a ∈ ma ⊆ a and applying the two-generator property to a, we
see there must be b ∈ a such that a = (a, b) = ma+ (b) in Ap. Now a is finitely generated and m = R(Ap), so by the corollary (2.7)
to Nakayama’s Lemma, a = (b). Thus Ap is a local, Noetherian PID, and so by (9.2) is a DVR. Since this holds for all p, by (9.3) A is
a Dedekind domain.

This result can apparently be attributed to a C.-H. Sah; see Theorem 20.11 of Pete L. Clark’s notes http://math.uga.edu/~pete/
integral.pdf.

7 To be thorough about this, we show that the lattice given by a totally ordered set (like N), when equipped with the operations
x ∨ y = max{x, y} and x ∧ y = min{x, y}, satisfies the equations x ∨ (y ∧ z) = (x ∨ y) ∧ (x ∨ z) and x ∧ (y ∨ z) = (x ∧ y) ∨ (x ∧ z)
for all x, y, z. Since ∨ and ∧ are symmetric in their arguments, we may assume without loss of generality that y ≤ z. To prove the
equations, using a bit more brute force than we would like, we tabulate the values of the relevant terms and check that the sides are
equal given any of the three possible orderings of x, y, z.

x ∨ (y ∧ z) (x ∨ y) ∧ (x ∨ z) x ∧ (y ∨ z) (x ∧ y) ∨ (x ∧ z)
x y x z

x ≤ y ≤ z y z x x
y y x x

y ≤ x ≤ z x z y x
x x x x

y ≤ z ≤ x x x y z
x x z z

8 It is not strictly necessary to localize. For A a Dedekind domain again, the prime factorization (9.1) shows that to prove an
equation it will be enough to show vp-values of the sides agree for all primes p, where vp is given by a = ∏p∈P pvp(a). To do this,
we show vp is a lattice homomorphism (I, +, ∩) → (N, min, max). Since A has dimension one, its primes are maximal and hence
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9. (Chinese Remainder Theorem). Let a1, . . . , an be ideals and let x1, . . . , xn be elements in a Dedekind domain A.
Then the system of congruences x ≡ xi (mod ai) (1 ≤ i ≤ n) has a solution x in A ⇐⇒ xi ≡ xj (mod ai + aj)

whenever i 6= j.
Following the book’s hint, define φ : A → ⊕n

i=1 A/ai by φ(x)i = x + ai, and ψ :
⊕n

i=1 A/ai →⊕
i<j A/(ai + aj) by ψ

(
〈xi + ai〉

)
〈i, j〉 = xi − xj + ai + aj. The system of congruences x ≡ xi (mod ai)

has a solution x just if 〈xi + ai〉 ∈ im(φ), and the conditions xi ≡ xj (mod ai + aj) are satisfied just if
〈xi + ai〉 ∈ ker(ψ). Then the statement in question is true just if the sequence

A
φ→
⊕

A/ai
ψ→
⊕

A/(ai + aj)

is exact. But this means just to show im(φ) = ker(ψ), and thus by the first footnote to [9.3] it is enough to
show it is true after localizing at each prime p. By (3.4), localization distributes over quotients and sums,
so it is enough to prove the results for ideals ai = pki of a DVR A. Without loss of generality, assume
ki ≤ k j for i < j.

If 〈xi + pki 〉 ∈ ker(ψ), it follows that for i < j we have xi − xj ∈ pki + pkj = pki . Then φ(xn) = 〈xi + pki 〉,
showing ker(ψ) ⊆ im(φ). That ψ ◦ φ = 0 holds in any ring:

(
(ψ ◦ φ)(x)

)
〈i, j〉 = ψ

(
〈x + ai〉

)
〈i, j〉 = x− x +

ai + aj = ai + aj.

pairwise coprime. This allows us to conclude products of disjoint sets of prime ideals are coprime, as follows: if ideals ai and bj are

such that ai + bj = (1) for all i and j, then ∏ ai + ∏ bj = (1), for (1) = ∏i(ai + bj) ⊆
(

∏ ai
)
+ bj, so (1) = ∏j

(
∏i
(
ai
)
+ bj

)
⊆

∏i ai + ∏j bj. Thus by (1.10.i), each intersection of powers of distinct primes is actually a product, and vice versa. Products of
ideals do distribute over sums (p. 6), and for m ≤ n we have am + an = am and am ∩ an = an. Write np = min{vp(a), vp(b)} and
Np = max{vp(a), vp(b)}. Then

a+ b = ∏ pnp ∏ pvp(a)−np + ∏ pnp ∏ pvp(b)−np = ∏ pnp ·
(
∏ pvp(a)−np + ∏ pvp(b)−np

)
= ∏ pnp

since the two terms in the parentheses share no prime factors in common. Similarly,

a∩ b = ∏ pvp(a) ∩∏ pvp(b) =
⋂

pvp(a) ∩
⋂

pvp(b) =
⋂ (

pvp(a) ∩ pvp(b)
)
=
⋂

pNp = ∏ pNp .

We now have vp(a + b) = min{vp(a), vp(b)} and vp(a ∩ b) = max{vp(a), vp(b)} as hoped.
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More than any other chapter, this one leaves small, eminently believable statements unproved. Before
tackling the exercises, we prove some of these assertions. Doing so takes a surprisingly long time.

Lemma 10.1. Let H be the intersection of all neighborhoods of 0 in [a topological abelian group] G. Then
i) H is a subgroup.

The book notes that “i) follows from the continuity of the group operations.” This is true, as far as it
goes, but is actually longer, in its details, than the rest of the proof.

Write NG(0) for the set of neighborhoods of 0 (N (0) when G is understood). Note that since x 7→ −x
is a homeomorphism, for each neighborhood U ∈ N (0) we also have −U ∈ N (0). Then V = U ∩ −U ∈
N (0) and V = −V. If x ∈ H and U ∈ N (0), find a subset V ∈ N (0) with V = −V. Then x ∈ V = −V, so
−x ∈ V ⊆ U. Since U was arbitrary, −x ∈ H.

Since + : G× G → G is continuous and sends 〈0, 0〉 7→ 0, for any U ∈ N (0) there is a neighborhood
W of 〈0, 0〉 in G× G that addition maps into U. By the definition of the product topology, then, there are
V1, V2 ∈ N (0) such that V1×V2 ⊆W. If we set V = V1 ∩V2, then V +V ⊆ U. Now suppose x, y ∈ H, and
let U ∈ N (0). There is V ∈ N (0) such that V + V ⊆ U, and x, y ∈ V, so x + y ∈ U. As U was arbitrary,
x + y ∈ H.

Finally, note 0 ∈ H, so H is nonempty.

Equivalence of Cauchy sequences is an equivalence relation.* (p. 102)
〈xν〉 is equivalent to 〈xν〉 since the differences xν − xν are identically zero.
If 〈xν〉 is equivalent to 〈yν〉, then by definition xν − yν → 0, which we take to mean that for every

U ∈ N (0) there is t(U) ∈ N such that for all ν ≥ t(U) we have xν − yν ∈ U. To show that 〈yν〉 is also
equivalent to 〈xν〉, let U ∈ N (U) be given and find a subset V ∈ N (0) with V = −V. For ν ≥ t(V) we
have xν − yν ∈ V = −V, so yν − xν ∈ V ⊆ U.

Now suppose 〈xν〉 is equivalent to 〈yν〉 and 〈yν〉 is equivalent to 〈zν〉. To show 〈xν〉 is equivalent to
〈yν〉, let U ∈ N (0) be given, and let V ∈ N (0) be such that V +V ⊆ U. By assumption, there are numbers
t(V), t′(V) ∈ N such that for ν ≥ t(V) we have xν − yν ∈ V and for ν ≥ t′(V) we have yν − zν ∈ V. For
ν ≥ max{t(V), t′(V)} we have xν − zν = (xν − yν) + (yν − zν) ∈ V + V ⊆ U.

If 〈xν〉, 〈yν〉 are Cauchy sequences, so is 〈xν + yν〉, and its class in Ĝ depends only on the classes of 〈xν〉 and 〈yν〉.
Let U ∈ N (0), and let V ∈ N (0) be such that V + V ⊆ U. Since 〈xν〉 and 〈yν〉 are Cauchy, there are

numbers s(V) and s′(V) such that xµ − xν ∈ V for all µ, ν ≥ s(V) and yµ − yν ∈ V for all µ, ν ≥ s′(V).
Then for all µ, ν ≥ max{s(V), s′(V)} we have (xµ + yµ)− (xν + yν) = (xµ− xν) + (yµ− yν) ∈ V +V ⊆ U.
As U was arbitrary, 〈xν + yν〉 is Cauchy.

If 〈x′ν〉 represents the same class as 〈xν〉, so that xν− x′ν → 0, then 〈xν + yν〉 and 〈x′ν + yν〉 are equivalent,
since (xν + yν)− (x′ν + yν) = (xν − x′ν) + (yν − yν) = xν − x′ν → 0. Similarly, if 〈y′ν〉 represents the same
class as 〈yν〉, then 〈x′ν + yν〉 and 〈x′ν + y′ν〉 are equivalent, so by transitivity 〈xν + yν〉 and 〈x′ν + y′ν〉 are
equivalent.

Similarly, if 〈xν〉 is a Cauchy sequence, then 〈−xν〉 is a Cauchy sequence whose class in Ĝ depends only on that of
〈xν〉.*

This and the next are very easy, but necessary to show Ĝ is a group. Let U ∈ N (0) be given; since
〈xν〉 is Cauchy, there is s(U) ∈ N such that µ, ν ≥ s(U) implies xµ − xν ∈ U. But (−xν) − (−xµ) =
−(xν − xµ) = xµ − xν ∈ U then, for all ν, µ ≥ s(U). As U was arbitrary, 〈−xν〉 is Cauchy.
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If 〈x′ν〉 represents the same class as 〈xν〉, so that xν − x′ν → 0, then (−xν) − (−x′ν) → 0 as well; for
given any U ∈ N (0) we may find a smaller V = −V ∈ N (0) and some t(V) such that for all ν ≥ t(V) we
have xν − x′ν ∈ V = −V, so (−xν)− (−x′ν) = −(xν − x′ν) ∈ V ⊆ U as well.

〈0〉 is a Cauchy sequence.*
This is trivial, since all differences are zero.

Hence we have an addition in Ĝ with respect to which Ĝ is an abelian group.
By the last two facts on independence of representatives, it will be enough to show the set of Cauchy

sequences in G forms an Abelian group. But this easily follows from the facts that this group is defined as
a subgroup of the product group GN and that the abelian group identities hold componentwise:(
〈xν〉+ 〈yν〉

)
+ 〈zν〉 = 〈xν + yν〉+ 〈zν〉 =

〈
(xν + yν)+ zν

〉
=
〈

xν +(yν + zν)
〉
= 〈xν〉+ 〈yν + zν〉 = 〈xν〉+

(
〈yν〉+ 〈zν〉

)
;

〈xν〉+ 〈0〉 = 〈xν + 0〉 = 〈xν〉;

〈xν〉+ 〈−xν〉 =
〈

xν + (−xν)
〉
= 〈0〉;

〈xν〉+ 〈yν〉 = 〈xν + yν〉 = 〈yν + xν〉 = 〈yν〉+ 〈xν〉.

For each x ∈ G the class of the constant sequence 〈x〉 is an element φ(x) of Ĝ, and φ : G → Ĝ is a homomorphism
of abelian groups. [The kernel of φ is the subgroup

⋂N (0) of (10.1).]
This may be too obvious to bother with, but we do it anyway. Constant sequences are Cauchy be-

cause the differences x − x = 0 of 〈x〉 approach (are) 0. φ is obviously a homomorphism: φ(0) is the
equivalence class of 〈0〉, which is the zero of Ĝ; 〈−x〉 = −〈x〉, so taking classes, φ(−x) = −φ(x); and
〈x + y〉 = 〈x〉+ 〈y〉, so taking classes, φ(x + y) = φ(x) + φ(y). We have x ∈ ker(φ) just if 〈x〉 is in the class
of 〈0〉, so that x = x− 0→ 0 as the indices increase. But this means that for each U ∈ N (0) there is t(U)
such that for ν ≥ t(U) we have x ∈ U. Since x is independent of ν, that just means x ∈ U, so x ∈ ⋂N (0).

There is a natural topology making Ĝ a topological group.*

For each U ∈ NG(0), define Û ⊆ Ĝ to be the set of all elements x̂ ∈ Ĝ such that all representatives 〈xν〉
of x̂ are “eventually in” U:

Û :=
{

x̂ ∈ Ĝ : ∀〈xν〉 ∈ x̂ ∃N ∈N ∀ν ≥ N (xν ∈ U)
}

.1

Note that for all U, V ∈ NG(0) we have 0̂ ∈ Û ∩V = Û ∩ V̂. Then if we write let N̂ = {Û : U ∈
NG(0)} and take all translates in Ĝ, these sets together generate a unique topology on Ĝ for which N̂ is a
neighborhood basis of 0̂.2

Suppose x̂, ŷ ∈ Ĝ are such that their sum lies in an open set W ⊆ Ĝ. By our definition of the topology,
there is a Û ∈ N̂ such that (x̂ + ŷ) + Û ⊆ W. By our proof of (10.1.i), there is V ∈ NG(0) such that
V +V ⊆ U. If 〈xν〉 〈yν〉 are Cauchy sequences representing elements of V̂, then there is N ∈N sufficiently
large that for all ν ≥ N we have xν, yν ∈ V, and hence xν + yν ∈ U. Thus V̂ + V̂ ⊆ Û, so addition takes(

x̂ + V̂
)
×
(
ŷ + V̂

)
into (x̂ + ŷ) + Û ⊆W and hence is continuous.

Similarly, any open set about −x̂, contains a basic open set −x̂ + Û. By our proof of (10.1.i) again,
there is a V = −V ∈ NG(0) such that V ⊆ U. Then the opposite of any sequence eventually in V is also
eventually in V, so −V̂ = V̂, and −

(
x̂ + V̂

)
= −x̂ + V̂ ⊆ −x̂ + Û, so inversion is also continuous.

φ : G → Ĝ is continuous.*

1 We do have to stipulate eventual containment for all sequences in a class: in 〈Q, +〉, for instance, the Cauchy sequences 〈 n−1
n 〉

and 〈1〉 are equivalent, but the former is always in the open ball of radius 1 about 0, while the latter never is.
It took me a while to decide between this definition and several other less fruitful possibilities, and I eventu-

ally settled on this one as a result of Gerald A. Edgar’s answer at http://math.stackexchange.com/questions/192808/
topology-induced-by-the-completion-of-a-topological-group.

2 Brian M. Scott’s answer at http://math.stackexchange.com/questions/67259/inquiry-regarding-neighborhood-bases
elaborates how this works. But there is a question as to how to prove that in the topology generated by
the translates of N̂ , these sets are actually neighborhoods: http://math.stackexchange.com/questions/234803/
translating-a-neighborhood-basis-of-a-topological-group.
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Let x ∈ G and consider a basic open neighborhood φ(x) + Û. If u ∈ U ∈ NG(0), there is some
V ∈ NG(0) such that u +V ⊆ U. Thus, if 〈yν〉 is a Cauchy sequence equivalent to 〈u〉, we must eventually
have yν − u ∈ V, so that yν is eventually in u + V ⊆ U. This shows φ(u) ∈ Û. It follows that φ(x + U) ⊆
φ(x) + Û, showing φ is continuous.

If G is first countable or Hausdorff, then Ĝ is first countable or Hausdorff, respectively.*

If 〈Ui〉i∈N is a countable neighborhood basis of 0 in G, we claim 〈Ûi〉 will be a countable neighborhood
basis of 0̂ in Ĝ. Indeed, for any V ∈ NG(0) there is Ui ⊆ V, so for any V̂ ∈ N̂ there is Ûi ⊆ V̂. By
translation, we have countable neighborhood bases at every point of Ĝ.

Given two distinct points of Ĝ, ginding disjoint neighborhoods of the two is equivalent, by translation,
to finding disjoint neighborhoods of 0̂ and their difference x̂. Let 〈0〉 and 〈xν〉 be representatives. Since
they are assumed inequivalent, it follows there is some U ∈ NG(0) such that the differences xν are not
eventually in U, so that x̂ /∈ Û. Using the proof of (10.1.i), find V ∈ NG(0) such that V + V ⊆ U. Now
we claim the basic neighborhoods V̂ 3 0̂ and x̂ + V̂ 3 x̂ are disjoint. If not, there would be ŷ in their
intersection, so that ŷ ∈ V̂ and ŷ ∈ x̂ + V̂, or equivalently ŷ − x̂ ∈ V̂. But then from our proof Ĝ is a
topological group we would have x̂ = ŷ + (ŷ− x̂) ∈ V̂ + V̂ ⊆ Û, after all.

If G is first countable and Hausdorff, then Ĝ is complete in the sense that all Cauchy sequences in Ĝ converge to
points of Ĝ.*3

Let 〈Ui〉i∈N be a countable neighborhood basis of 0 in G. By the proof of (10.1.i), we may assume
Ui = −Ui and Ui+1 + Ui+1 ⊆ Ui for all n, so that the same will hold of 〈Ûi〉.

Let 〈x̂n〉 be a Cauchy sequence in Ĝ, and select a representative 〈xn, ν〉 for each x̂n. For each n, since the
sequence 〈xn, ν〉 is Cauchy, there is a number Λn such that when ν, µ ≥ Λn, we have xn, ν − xn, µ ∈ Un+2.
Since the sequence 〈x̂n〉 is Cauchy, there is for each i ∈ N an Ni ∈ N such that for all n, m ≥ Ni we have
x̂n − x̂m ∈ Ûi+2. That in turn implies we have xn, ν − xm, ν ∈ Ui+2 for all sufficiently large ν.

Now for each ν ∈N, let yν = xν, Λν
∈ G. We claim that 〈yν〉 is a Cauchy sequence. Indeed, if n, m ≥ Ni,

there are arbitrarily large ν such that xn, ν − xm, ν ∈ Ui+2, in particular such that ν ≥ max{Λn, Λm}, and
then

yn − ym = xn, Λn − xm, Λm = (xn, Λn − xn, ν)︸ ︷︷ ︸
ν ≥ Λn

+ (xn, ν − xm, ν) + (xm, ν − xm, Λm)︸ ︷︷ ︸
ν ≥ Λm

∈ Ui+2 +Ui+2 +Ui+2 ⊆ Ui.

(10.1)Let ŷ ∈ Ĝ be the equivalence class of 〈yν〉. Our goal is to show x̂n → ŷ, or in other words that for
each Ûi, we have ŷ− x̂n ∈ Ûi for all sufficiently large n. In other words, we want to show that if n is big
enough then each representative 〈zn, ν〉 of ŷ− x̂n is in Ui for all high enough ν. It will actually be enough
to find Mi such that for each n ≥ Mi, the representative 〈wn, ν〉 = 〈yν − xn, ν〉 is eventually in Ui+1; for
then, given n ≥ Mi and any other representative 〈zn, ν〉, we will have zn, ν − wn, ν eventually in Ui+1, so
that zn, ν = (zn, ν − wn, ν) + wn, ν is eventually in Ui+1 + Ui+1 ⊆ Ui.

Mi = Ni+2 from above will work, for if m ≥ Ni+1 and ν ≥ Ξm := max{Λm, Ni+1}, then we indeed have

yν − xm, ν = (yν − ym) + (ym − xm, ν) = (yν − ym)︸ ︷︷ ︸
Eq. ??: m, ν ≥ Ni+1

+ (xm, Λm − xm, ν)︸ ︷︷ ︸
ν ≥ Ξm ≥ Λm

∈ Ui+1 + Ui+2 ⊆ Ui.

If H is another abelian group and f: G → H a continuous homomorphism, then the image under f of a Cauchy
sequence in G is a Cauchy sequence in H, and therefore f induces a homomorphism f̂: Ĝ → Ĥ, which is continuous.

Let 〈xν〉 be a Cauchy sequence in G and let U ∈ NH(0) be given. Since f(0) = 0, by continuity, there
is V ∈ NG(0) such that f(V) ⊆ U. By assumption there is s(V) ∈ N such that xµ − xν ∈ V for all
µ, ν ≥ s(V). Then f(xµ)− f(xν) = f(xµ − xν) ∈ f(V) ⊆ U. Thus

〈
f(xν)

〉
is Cauchy.

3 This is also a special case of a general result in Bourbaki’s General Topology Part 1 (Chapter III, §3.5, Theorem I) regarding
completions (in terms of Cauchy filters) with respect to the right uniformity, but I have not attempted to translate that proof into our
language.

Our case could also be proved using the theorem that a first-countable, Hausdorff topological group is metrizable; see http:
//u.math.biu.ac.il/~megereli/mickey25.pdf.
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To show f̂ is well defined, we must show it preserves equivalence. But if 〈xν〉 and 〈x′ν〉 are equivalent,
then there is t(V) ∈ N such that xν − x′ν ∈ V for ν ≥ t(V), so f(xν)− f(x′ν) = f(xν − x′ν) ∈ f(V) ⊆ U,
showing

〈
f(xν)

〉
and

〈
f(x′ν)

〉
are equivalent.

It is obvious f̂ is a homomorphism because operations on Cauchy sequence are defined componentwise
and f̂ is induced by applying f componentwise to Cauchy sequences.

To prove continuity we use the topology on the completion we defined above. Let a basic neighborhood
f̂(x̂)+ V̂ in Ĥ be given, where V ∈ NH(0) Since f is continuous and f(0) = 0, there is U ∈ NG(0) such that
f(U) ⊆ V. Then for each Cauchy sequence 〈uν〉 eventually in U, the image sequence 〈 f(uν)〉 is eventually
in V, so that f̂(Û) ⊆ V̂ and therefore f̂(x̂ + Û) ⊆ f̂(x̂) + V̂, showing f̂ is continuous.

Thus we have a sequence of subgroups

G = G0 ⊇ G1 ⊇ · · · ⊇ Gn ⊇ · · ·

and U ⊆ G is a neighborhood of 0 if and only if it contains some Gn.
...

In fact if g ∈ Gn then g + Gn is a neighborhood of g; since g + Gn ⊆ Gn this shows Gn is open. [Prove that taking
the x + Gn as a neighborhood basis of x defines a topology on G making G a topological group.*] (pp. 102–3)

The fact that the authors prove the Gn are open shows they are using the Bourbaki definition of
neighborhoods:4 to wit, given a topology on X, a set N ⊆ X is defined to be a neighborhood of x just if
there is an open set U ⊆ X with x ∈ U ⊆ N. A fundamental system of neighborhoods (neighborhood basis)
of a point x ∈ X is then a collection B of subsets of X such that the neighborhoods of x are precisely the
sets containing a member of B. On the other hand, given collections B(x) of subsets of X, one for each
x ∈ X, the following axioms guarantee that they define a unique topology under which each B(x) is a
neighborhood basis for x:

1. if N, N′ ∈ B(x), there there is N′′ ∈ B(x) with N′′ ⊆ N ∩ N′;

2. x is in each member of B(x);

3. if N ∈ B(x), there is N′ ∈ B(x) such that for all y ∈ N′ there exists N′′ ∈ B(y) with N′′ ⊆ N

(“any neighborhood of x is also a neighborhood of all points sufficiently near x”).

It is not hard to see that that the set of translates x + Gn satisfies these axioms: 1. for m ≤ n, evidently
x + Gn ⊆ (x + Gm) ∩ (x + Gn); 2. obviously x ∈ x + Gn; 3. for all y ∈ x + Gn we have y + Gn = x + Gn +
Gn = x + Gn. Thus
we have a well-defined topology on G. Inversion is continuous, since it sends x + Gn ↔ −x + Gn, and
addition is continuous since, given a basic neighborhood x + y + Gn, addition sends the neighborhood
(x + Gn)× (y + Gn) ⊆ G× G of 〈x, y〉 into it.

If 0→ G′
i
↪→ G

p→ G′′ → 0 is an exact sequence of groups and Gn ⊆ G is a subgroup, then

0→ G′

G′ ∩ Gn

ι→ G
Gn

π→ G′′

p(Gn)
→ 0

is an exact sequence.* (pp. 104–5)

The kernel of G′ ↪→ G � G/Gn is G′ ∩ Gn, so ι is defined and injective. The composition G
p
� G′′ �

G′′/p(Gn) is surjective and takes the same value on any member of a class g + Gn, so π is defined and
surjective. Since p ◦ i = 0, so also π ◦ ι = 0. Now suppose g + Gn ∈ ker(π). Then p(g) ∈ p(Gn), so there is
h ∈ Gn with p(g− h) = 0. By exactness of the original sequence, g− h ∈ G′. Now ι

(
g− h + (G′ ∩ Gn)

)
=

g + Gn, so the sequence is exact at G/Gn.

[W]e can apply (10.3) with G′ = Gn[;] then G′′ = G/Gn has the discrete topology so that Ĝ′′ = G′′.
From p. 103 recall that Gn is open, so its translates g + Gn are open. Since these become points in G′′, it

follows G′′ is discrete. Using the neighborhood {0} of 0 in G′′, it follows that for every Cauchy sequence

4 Nicolas Bourbaki, General Topology Part 1, Definitions 4 and 5, pp. 18–21.
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〈x̄ν〉 in G′′, there is some s({0}) such that for all µ, ν ≥ s({0}) we have x̄µ − x̄ν = 0; that is, every Cauchy
sequence is eventually constant. But a sequence that is eventually x̄ is equivalent to the constant sequence
〈x̄〉, so the canonical map G′′ → Ĝ′′ is an isomorphism.

Since the an are ideals it is not hard to check that with [the a-topology] A is a topological ring, i.e., that the ring
operations are continuous.

We have shown above that A is a topological group under addition; it remains to show multiplication
is continuous. But multiplication maps the product neighborhood (x + an)× (y + an) of 〈x, y〉 into xy +
xan + yan + a2n ⊆ xy + an.

The completion Â of A is again a topological ring[.]
In the light of (10.4), the unspecified topology in question should be given by letting the x + ân be a

neighborhood basis for each x ∈ Â. Because 〈ân〉 is a decreasing sequence of subgroups, Â a topological
group under addition. Each ân is an ideal, since it is the contraction of the ideal ∏∞

j=1 a
n/(aj ∩ an) in the

product ring ∏∞
j=1 A/aj. Thus, as with A, multiplication Â× Â → Â takes the neighborhood (x + ân)×

(y + ân) of 〈x, y〉 into xy + xân + yân + â2n ⊆ xy + ân, so that Â is a topological ring.

φ : A→ Â is a continuous ring homomorphism, whose kernel is
⋂
an.

By p. 102, φ is a group homomorphism with kernel as stated; multiplicativity follows because 〈x〉〈y〉 =
〈xy〉, and taking classes gives φ(x)φ(y) = φ(xy). As for continuity, for x ∈ an we have φ(x) represented
in ∏∞

j=1 A/aj by 〈x + aj〉 ∈ ∏∞
j=1 a

n/(aj ∩ an), so that φ(an) ⊆ ân; thus for any y ∈ A and any basic
neighborhood φ(y) + ân of φ(y) ∈ Â we have φ(y + an) ⊆ φ(y) + ân.

Likewise for an A-module M: take G = M, Gn = an M. This defines the a-topology on M, [making M a continuous
A-module.]

Because Gn is a decreasing sequence of additive subgroups, this does indeed define a topology on M. To
see continuity, note that given a basic neighborhood xm+ an M of xm ∈ M, the map A×M→ M takes the
open neighborhood (x+ an)× (m+ an M) of 〈x, m〉 into (x+ an)(m+ an M) = xm+ anm+ xan M+ a2n M ⊆
xm + an M.

[T]he completion M̂ of M is a topological Â-module.
The topology on M̂ is defined, as before by the basic neighborhoods ân M of 0. Here we note that the

module multiplication Â× M̂ → M̂ is left undefined. For elements 〈xj + aj〉 ∈ Â and 〈mj + aj M〉 ∈ M̂,
define their product as 〈xj + aj〉 · 〈mj + aj M〉 = 〈xjmj + aj M〉. To see this works, first note that xj+1mj+1 −
xjmj = xj+1(mj+1 − mj) + (xj+1 − xj)mj ∈ xj+1a

j+1M + aj+1mj ⊆ aj+1M, so the resulting sequence is in
M̂. Second, if we replaced xj with x′j ∈ xj + aj, then we would have (x′j − xj)mj ∈ aj M, and similarly if we

replaced mj with m′j ∈ mj + aj M, so that this multiplication is well defined.

Now, observe âkân M ⊆ âk+n M. Indeed, if xj ∈ ak and mj ∈ an M for all j, then xjmj ∈ ak+n M for all
j, so that the sequence elements xjmj + aj M are in ak+n M/(aj M + ak+n M). For continuity, taking x ∈ Â

and m ∈ M̂, and considering the basic neighborhood xm + ân M of their product, note that multiplication
takes (x + ân)× (m + ân M) to xm + ânm + xân M + ânân M ⊆ xm + ân M.

If f: M→ N is any A-module homomorphism, [... f] defines f̂: M̂→ N̂.
Let f̂

(
〈mj + aj M〉

)
= 〈 f(mj) + ajN〉. This is an element of N̂ since f(mj+1)− f(mj) = f(mj+1 − mj) ∈

f(aj+1M) ⊆ aj+1N. To see the map is well defined, note that if m′j −mj ∈ aj M, then f(m′j) ∈ f(mj) + ajN.

f̂ is a group homomorphism because it is defined in terms of the homomorphisms f̄ : M/aj M →
N/ajN given by f̄(m + aj M) = f(m) + ajN. It is a module homomorphism because f̂

(
〈xjmj + aj M〉

)
=

〈xj f(mj) + ajN〉 = 〈xj + aj〉 f̂
(
〈mj + aj M〉

)
whenever 〈xj + aj〉 ∈ Â and 〈mj + aj M〉 ∈ M̂.

f̂ is also continuous, because f̂
(
ân M

)
⊆ ÂnN, as f̂ takes sequences of elements of an M/(aj M + an M)

to sequences of elements of anN/(ajN + anN).
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If C is a ring, and A = C[x1, . . . , xn] a polynomial ring, and a = (x1, . . . , xn) the ideal of polynomials with no
constant term, then Â = C[[x1, . . . , xn]], the ring of formal power series.*

This generalizes Example 1) on this page.
am � A is the set of polynomials with no terms of degree < m. If we let b = (x1, . . . , xn) in B :=

C[[x1, . . . , xn]], then bm is the set of power series of order ≥ m. Since every class modulo bm is represented
by the (polynomial) class of its truncation below degree m, we have isomorphisms B/bm ∼= A/am com-
patible with the maps m + 1 7→ m, and so B̂ ∼= Â. But the natural map B → B̂ is an isomorphism: it is
injective since

⋂
bm = 0, and surjective because if pm is the sum of terms of bm+1 of total degree n and

〈bm + bm〉 ∈ B̂, then ∑ pj + bm = ∑j<m pm + bm = bm + bm for each m.

[A]ll stable a-filtrations on M determine the same topology on M, namely the a-topology. (p. 106)
The proof of (10.6) shows any stable a-filtrations 〈Mn〉 and 〈M′n〉 have bounded difference, so we may

fix n0 such that for all n ∈ N we have Mn+n0 ⊆ M′n and M′n+n0
⊆ Mn. Let x ∈ M. For any 〈Mn〉-basic

neighborhood x + Mn each point y ∈ x + Mn has a 〈M′n〉-basic neighborhood y + M′n+n0
⊆ y + Mn =

x + Mn, so x + Mn is open in the 〈M′n〉-topology, and thus the 〈M′n〉-topology contains the 〈Mn〉-topology.
The converse holds by symmetry. Thus all stable a-filtrations on M induce the same topology the stable
filtration 〈an M〉 does, namely the a-topology.

Let A be a ring (not graded), a an ideal of A. Then we can form a graded ring A∗ =
⊕∞

n=0 a
n. Similarly, if M is an

A-module and Mn is an a-filtration of M, then M∗ =
⊕

n Mn is a graded A∗-module, since am Mn ⊆ Mm+n. (p.
107)

We can afford some clarification of what is going on here. Writing An = an, we have A∗ =
⊕

An,
and our multiplication takes Am × An → Am+n. The slightly confusing thing is that there also is an
am ⊆ A = A0, for instance, and if we multiply that by An, we get a subset of am+n ⊆ An. So what the
book is saying is that if we multiply Am by the nth summand Mn of M∗, we get a subset of the (m + n)th

summand Mm+n; we are not considering, say, Mn ⊆ M in the zeroth summand of M∗.

Proposition 10.3 1
2 *. Using (10.3) or otherwise it is clear that a-adic completion commutes with finite direct sums.

(p. 108)
By induction it will suffice to show a-adic completion distributes over binary direct sums. It is pos-

sible to use (10.3) and the diagrammatic definition of direct sums to do this, but easier to just give
an explicit isomorphism. The a-adic filtration on M⊕N is 〈an M⊕ anN〉. It is clear

〈
〈xn + an M〉, 〈yn +

anN〉
〉
7→

〈
〈xn, yn〉 + an(M⊕N)

〉
gives a well-defined, homomorphic bijection φ : M̂⊕ N̂ ↔ M̂⊕N

since we have natural isomorphisms (M/an M)⊕ (N/anN)
∼−→ (M⊕N)/an(M⊕N) and 〈xn+1, yn+1〉 ≡

〈xn, yn〉
(
mod an(M⊕N)

)
if and only if xn+1 ≡ xn (mod an M) and yn+1 ≡ yn (mod anN).

[I]f F ∼= An we have Â⊗AF ∼= F̂.

Â⊗AF ∼= Â⊗A An = Â⊗A

n⊕
j=1

A
(2.14.iii)∼=

n⊕
j=1

(Â⊗A A)
(2.14.iv)∼=

n⊕
j=1

Â
(10.3 1

2 *)
∼=

n̂⊕
j=1

A = F̂

Â⊗AN //

��

Â⊗AF

��
N̂ // F̂.*

Given an A-module homomorphism φ : N → F, the following square commutes:
The map around the upper-right is the composition

Â⊗AN → Â⊗AF → Â⊗A F̂ → Â⊗Â F̂ → F̂ taking

〈an + an〉 ⊗ x 7→ 〈an + an〉 ⊗ φ(x) 7→ 〈an + an〉 ⊗
〈
φ(x)+ anF

〉
7→ 〈an + an〉 ⊗

〈
φ(x)+ anF

〉
7→
〈

anφ(x)+ anF
〉
,

and the map around the lower-left is the composition Â⊗AN → Â⊗AN̂ → Â⊗ÂN̂ → N̂ → F̂ given by

〈an + an〉 ⊗ x 7→ 〈an + an〉 ⊗ 〈x + anN〉 7→ 〈an + an〉 ⊗ 〈x + anN〉 7→ 〈anx + anN〉 7→
〈
φ(anx) + anF

〉
.

[In the following diagram, if the rows are exact, γ is surjective, and β is injective, then a] little diagram chasing
proves that α is injective:
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N̄
ζ //

γ
����

F̄
η //

��
β
��

M̄ //

α
����

0

N̂
ε
// F̂

δ
// M̂.

Suppose m̄ ∈ ker(α). There is f̄ ∈ η−1(m̄), and δβ f̄ = αη f̄ = 0. Since the bottom row is exact, there is
n̂ ∈ N̂ with εn̂ = β f̄, and since γ is surjective, there is n̄ ∈ γ−1(n̂). Now εγn̄ = βζn̄ = β f̄, so by injectivity
of β we get f̄ = ζn̄, and thus m̄ = η f̄ = ηζn̄ = 0, showing α is injective.

[C]heck that x̄m x̄n does not depend on the particular representatives chosen. [Here we have a ring A with ideal a and
are given xm ∈ am, xn ∈ an. We write x̄m ∈ am/am+1, x̄n ∈ an/an+1, x̄m x̄n := xmxn ∈ am+n/am+n+1]* (p. 111)

As sets we have (xm + am+1)(xn + an+1) = xmxn + xna
m+1 + xma

n+1 + am+n+2 ⊆ xmxn + am+n+1.

Similarly, if M is an A-module and 〈Mn〉 is an a-filtration of M, . . .

G(M) =
∞⊕

n=0
Mn/Mn+1

. . . is a graded G(A)-module in a natural way.
Let ak ∈ ak and xn ∈ Mn; since 〈Mn〉 is an a-filtration, akxn ∈ Mn+k. Note that

(ak + ak+1)(xn + Mn+1) = akxn + ak+1xn + ak Mn+1 + ak+1Mn+1 ⊆ akxn + Mn+k+1,

so for āk ∈ ak/ak+1 and x̄n ∈ Mn/Mn+1 we can define āk x̄n := akxn ∈ Mn+k/Mn+k+1 uniquely. Extend
this definition by distributivity to a product G(A)× G(M) → G(M), so that to finish checking G(M) is a
G(A)-module, it only remains to check 1̄x = x and (ab)x = a(bx) for a, b ∈ A and for x ∈ G(M). Using
distributivity, we only need to check for homogeneous elements; but then it is obvious, for 1̄x̄n = 1xn = x̄n
and

(āk b̄`)x̄n = akb` x̄n = akb`xn = ākb`xn = āk(b̄` x̄n) in Mk+`+n/Mk+`+n+1

simply because the associative rule holds for the A-module M. To see G(M) is a graded G(A)-module,
note that by construction Gk(A)Gn(M) = (ak/ak+1)(Mn/Mn+1) ⊆ Mn+k/Mn+k+1 = Gn+k(M).

If β ◦ φ = φ̂ ◦ α with β : M→ M̂ injective, α a bijection, and φ̂ surjective, then φ is surjective.* (p. 113)
Write ψ = φ̂ ◦ α; it is surjective since α and φ̂ are. Thus M̂ = im(ψ) = β

(
im(φ)

)
⊆ β(M); so β is

surjective as well, hence a bijection. Thus surjectivity of φ follows from that of ψ.

EXERCISES
1. Let αn : Z/pZ→ Z/pnZ be the injection of Abelian groups given by αn(1) = pn−1 and let α : A→ B be the direct

sum of all the αn (where A is a countable direct sum of copies of Z/pZ, and B is the direct sum of the Z/pnZ).
Show that the p-adic completion of A is just A but that the completion of A for the topology induced from the p-adic
topology on B is the direct product of the Z/pZ. Deduce that the p-adic completion is not a right-exact functor on
the category of all Z-modules.

Since pA = 0, the sequence A/pn A is · · · A id→ A id→ A, the coherent sequences of which are constant
sequences 〈a〉, giving an obvious isomorphism lim←− A/pn A ∼= A.

To make coordinate references easier, let Gn be the nth copy of Z/pZ in A. We have pnB =
⊕

j>n pnZ/pjZ.
As im(αj) = pj−1Z/pjZ, which is contained in pnZ/pjZ so long as j > n, it follows α−1

j (pnZ/pjZ) is

Z/pZ if j > n and 0 otherwise. Then An := α−1(pnB) is the subgroup
⊕

j>n Gj of A =
⊕∞

j=1 Gj, so
A/An ∼=

⊕n
j=1 Gj. The projection A/An+1 → A/An kills the (n + 1)st component and preserves the oth-

ers; the inverse system associated to the topology on A induced by α is thus essentially · · · → (Z/pZ)3 →
(Z/pZ)2 → Z/pZ. Writing πj : A/An+1 → Gj for the projection, in a coherent sequence 〈ξn〉, the compo-
nent πn(ξn) ∈ Gn determines (is equal to) the the components πn(ξ j) of all the later members ξ j, j ≥ n, so
the map φ : lim←− A/An → ∏∞

n=1 Gn taking 〈ξn〉 7→ 〈πn(ξn)〉 is an isomorphism.

Consider the short exact sequence 0 → A α→ B → B/α(A) → 0. If we topologize the groups by the
filtrations 〈α−1(pnB)〉, 〈pnB〉, and 〈pnB/α(A)〉, then by (10.3) the corresponding sequence of completed
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systems is exact; so if we instead give A the p-adic (discrete) topology 〈pn A = 0〉, then, assuming the
map Â → B̂ remains defined, the resulting sequence should not still be exact. Indeed, we have maps
A/pn A ∼= A → α(A) ↪→ B → B/pnB compiling into an inverse system, so we have a short sequence

0→ A→ B̂→ B̂/α(A)→ 0. Since A 6∼= ∏n Z/pZ, this sequence is not exact at B̂, so p-adic completion is
not right-exact. (Though it does preserve surjectivity, because if ρ : B � C is a surjection, we have ρ(pnB) =
pnC, so we have a surjective map 〈B/pnB〉 → 〈C/pnC〉 of surjective inverse systems, and (10.3) gives us
B̂ � Ĉ.)5 p-adic completion is not left-exact, by the same example; the essential reason is that given a
general homomorphism α : A → B (in our example, an injection), we needn’t have α(pn A) = α(A) ∩ pnB,
so the p-adic topology on A is not that induced from B and the hypotheses of (10.3) are not met.

2. In Exercise 1, let An = α−1(pnB), and consider the exact sequence

0→ An → A→ A/An → 0.

Show that lim←− is not right exact, and compute lim←−
1 An.

We can rewrite the sequence as 0 → ⊕∞
j=n+1 Gj →

⊕∞
j=1 Gj →

⊕n
j=1 Gj → 0. The inclusions An+1 ↪→

An, identity map idA, and projections A/An+1 � A/An give us an exact sequence of inverse systems.
(10.2) gives us an exact sequence

0→ lim←− An → lim←− A→ lim←− A/An → lim←−
1 An → lim←−

1 A→ lim←−
1 A/An → 0.

To show lim←− is not right exact, it will be enough, by this sequence, to show lim←−
1 An 6= 0. Since 〈A〉 and

〈A/An〉 are surjective systems, the proof of (10.2) shows us lim←−
1 A and lim←−

1 A/An are 0. As in the last
problem, lim←− A = A and lim←− A/An ∼= ∏∞

j=1 Gj. For lim←− An, since the maps are inclusions, any coherent
sequence is a constant sequence, which means its lone term must be in each An. But

⋂∞
n=1 An = 0. Thus

our exact sequence actually gives us a short exact sequence

0→ A
ψ→ lim←− A/An → lim←−

1 An → 0.

To identify the last term it remains to describe the injection ψ. We claim it is basically the inclusion⊕∞
j=1 Gj ↪→ ∏∞

j=1 Gj. Indeed, since the maps A → A/An are quotient maps, the map from A ∼= lim←− A (
∏∞

n=1 A to lim←− A/An ( ∏∞
n=1 A/An is given by a 7→ 〈a〉 7→ 〈a (mod An)〉. Composing with the isomor-

phisms A/An ∼=
⊕n

j=1 Gj, this gives a 7→
〈
〈πj(a)〉nj=1

〉∞
n=1, sending a ∈ ∏∞

j=1 Gj to a list of truncations.
Using our isomorphism φ : 〈ξn〉 7→ 〈πn(ξn)〉 from the last problem finally gives a 7→ 〈πn(a)〉 = a. Thus
lim←−

1 An ∼=
(

∏∞
n=1 Z/pZ

)/(⊕∞
n=1 Z/pZ

)
.

3. Let A be a Noetherian ring, a an ideal and M a finitely-generated A-module. Using Krull’s Theorem and Exercise
14 of Chapter 3, prove that

∞⋂
n=1

an M =
⋂

m⊇a
ker(M→ Mm),

where m runs over all maximal ideals containing a.
Krull’s Theorem (10.17) says that the left-hand side is the set of elements of M annihilated by 1 + a

for some a ∈ a, so it remains to show the same is true of the right. Let x ∈ M. For all maximal m ⊇ a
we have 1 + a ⊆ 1 +m ⊆ A\m so if (1 + a)x = 0 for some a ∈ a, then by [3.1], x/1 = 0 in Mm for all
maximal m ⊇ a. On the other hand if x/1 = 0 in Mm for all maximal m ⊇ a, then the submodule Ax ⊆ M
is such that (Ax)m = 0, and then [3.14] gives Ax = ax, so in particular there is a ∈ a such that x = ax, or
(1− a)x = 0.

Deduce that
M̂ = 0 ⇐⇒ Supp(M) ∩V(a) = ∅

(
in Spec(A)

)
.

5 We embarrassingly were unable to make the connection between the above and the fact that p-adic completion is not exact,
mostly because we were trying to prove surjectivity was not preserved and to find an exact sequence where A, with the alternate
topology, occurred as the last nonzero term. This paragraph adapts Yimu Yin’s solution: http://pitt.edu/~yimuyin/research/
AandM/exercises10.pdf
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Recall that the module above is the kernel of the canonical map M → M̂, so that M̂ = 0 ⇐⇒ M =⋂
m⊇a ker(M→ Mm). That in turn means that Mm = 0 for all maximal m ⊇ a, or in the language of [3.19],

that none of these maximal ideals are in Supp(M). Let p ∈ Spec(A) be contained in a maximal m, so that
Sm ⊆ Sp. Then if x ∈ M is annihilated by an element of Sm, it is a fortiori annihilated by an element of Sp,
so by [3.1], if Mm = 0, then also Mp = 0. Thus Mm = 0 for all maximal m ⊇ a if and only if Mp = 0 for
all p ∈ V(a), or in other words, Supp(M) ∩V(a) = ∅.

4. Let A be a Noetherian ring, a an ideal in A, and Â the a-adic completion. For any x ∈ A, let x̂ be the image of x in
Â. Show that

x not a zero-divisor in A =⇒ x̂ not a zero-divisor in Â.

Let x ∈ A not be a zero-divisor, so multiplication by x is injective; the book’s suggested sequence
0 → A x→ A is then exact. Taking inverse limits gives an exact sequence 0 → Â → Â by (10.3), where the
map on Â ⊆ ∏ A/an is given by 〈ξn〉 7→ 〈xξn〉, i.e., by multiplication by x̂. Thus multiplication by x̂ is
injective, so x̂ is not a zero-divisor.

Alternately, but very similarly, one can use the A-algebra structure A→ Â to tensor the sequence with
Â. Since A is Noetherian, Â is flat by (10.14), so the map x⊗ id : A⊗A Â→ A⊗A Â is injective. By (2.14.iv)
we have an isomorphism φ : A⊗A Â→ Â, and φ ◦ (x⊗ id) ◦ φ−1 : Â→ Â is multiplication by x̂.

Does this imply that

A is an integral domain =⇒ Â is an integral domain?

Not a priori, for in general not all elements of Â are images of elements of A. In fact,6 if we write Aa for
the

A/(ab)n+1 ∼//

��

A/an+1 × A/bn+1

��
A/(ab)n ∼ // A/an × A/bn

completion of A at a, then if A is an integral domain and a, b� A are
coprime ideals, we can show Aab is not an integral domain. Since for
each an and bn remain coprime for n ≥ 1 (see the footnote to [9.8]), by
the Chinese Remainder Theorem (1.10), each map A/(ab)n → A/an ×
A/bn given by x + (ab)n 7→ 〈x + an, x + bn〉 is an isomorphism, and
the square diagrams to the right commute, where the vertical maps on
the right are 〈x + an+1, y + bn+1〉 7→ 〈x + an, y + bn〉. Thus we have an
isomorphism between Aab and the inverse limit on the right, which ring consists of coherent sequences〈
〈ξn, ηn〉

〉
n of pairs in ∏(A/an × A/bn), which correspond to pairs

〈
〈ξn〉n, 〈ηn〉n

〉
of coherent sequences

in
(

∏ A/an)× (∏ A/bn) under the obvious isomorphism, so that Aab ∼= Aa × Ab, and hence is not an
integral domain.

5. Let A be a Noetherian ring and let a, b be ideals in A. If M is any A-module, let Ma, Mb denote its a-adic and
b-adic completions respectively. If M is finitely generated, prove that (Ma)b ∼= Ma+b.

Since (10.13) tells us Ma = Aa⊗A M, by (2.14) it is enough to prove that Ab⊗A Aa ∼= Aa+b, but it is not
obvious how to do this. Instead, we follow the book’s instructions to complete a proof that is unfortunately
lengthy when fully fleshed out.

Following the book’s suggestion, we can a-adically complete the sequences 0 → bm M → M →
M/bm M → 0 to get sequences 0 → (bm M)a → Ma → (M/bm M)a → 0, which are exact by (10.12). Us-
ing the isomorphisms (10.13) we see the map (bm M)a → Ma is the composition (bm M)a

∼−→ Aa⊗Ab
m M �

Aa⊗A M ∼−→ Ma. Since the isomorphism Aa⊗A M→ Aa⊗A Ma → Aa⊗Aa M→ Ma is given by 〈an〉 ⊗ x 7→
〈an〉 ⊗ 〈x〉 7→ 〈anx〉, it follows that the image of (bm M)a → Ma is bm Ma. Then exactness gives Ma/bm Ma ∼=
(M/bm M)a.

Therefore

(Ma)b = lim←− Ma/bm Ma ∼= lim←− (M/bm M)a ∼= lim←−
m

lim←−
n

(
M

bm M

/
an M + bm M

bm M

)
,

since (an M + bm M)/bm M is the image of an M under M � M/bm M. But by the third isomorphism
theorem (2.1.i), the terms on the right-hand side are isomorphic to M/(an M + bm M) =: Mm, n.

6 This is taken, after our own failure, from [?].
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An element of lim←−n
Mm, n is represented by a sequence 〈xm, n〉n of elements xm, n ∈ Mm, n coherent un-

der the quotient maps Mm, n+1 → Mm, n, and an element of lim←−m lim←−n Mm, n is represented by a sequence〈
〈xm, n〉n

〉
m of such sequences, coherent under the reductions m + 1 7→ m, which act on the nth coordi-

nates xm+1, n (the inverse limit being a submodule of ∏n Mm+1, n) as the quotient maps Mm+1, n → Mm, n.
Note that whenever n ≤ n′ and m ≤ m′, the iterated quotient maps Mm′ , n′ → Mm′ , n → Mm, n and
Mm′ , n′ → Mm, n′ → Mm, n are equal. Thus an element of the double limit is really just an infinite array
〈xm, n〉m, n coherent in both directions. Given such a coherent array, each xp, p uniquely determines all xm, n
with m, n ≤ p. Therefore, to specify a coherent array uniquely, one need only specify a coherent diag-
onal sequence 〈xp, p〉 ∈ lim←−p Mp, p. This sets up a bijection lim←−m lim←−n Mm, n ↔ lim←− Mp, p that obviously

preserves the operations and hence is an isomorphism.
Finally, since

(a+ b)2n ⊆ an + bn ⊆ (a+ b)n,

the topology on M induced by the filtration 〈(an + bn)M〉 is the same as that induced by 〈(a+ b)n M〉,
so the corresponding completions should be isomorphic. But the former is the inverse limit from above,
isomorphic to (Ma)b, and the latter is Ma+b.

6. Let A be a Noetherian ring and a an ideal in A. Prove that a is contained in the Jacobson radical of A if and only if
every maximal ideal of A is closed for the a-topology. (A Noetherian topological ring in which the topology is defined
by an ideal contained in the Jacobson radical is called a Zariski ring. Examples are local rings and (by (10.15)(iv))
a-adic completions.

This proof oddly requires no use of the Noetherian hypothesis. We show a maximal ideal m is closed
in the a-topology if and only if a ⊆ m. This implies the result because a is contained in all maximal ideals
if and only it is contained in their intersection, the Jacobson radical. Note that a set C ⊆ A is closed if and
only if each x ∈ A\C has a basic neighborhood x + an disjoint from C. Let m� A be a maximal ideal.

If a ⊆ m and x /∈ m, then so x + an ⊆ x +m is disjoint from m for all n.
If a 6⊆ m, any element of a\m descends to a unit in the field A/m, and so has a multiple x ≡ 1 (mod m),

with x ∈ a. Then xn ∈ an and xn ≡ 1 (mod m), so 1− xn ∈ (1 + an) ∩m for all n even though 1 /∈ m, and
m is not closed.

7. Let A be a Noetherian ring, a an ideal of A, and Â the a-adic completion. Prove that Â is faithfully flat over A
(Chapter 3, Exercise 16) if and only if A is a Zariski ring (for the a-topology).

We again seem to be able, alarmingly, to prove the result without using the Noetherian hypothesis. By
(10.14), Â is flat, and by [3.16.iii], the condition will be met if and only if the extensions mÂ 6= Â for all
maximal m� A. Since a Noetherian ring A is Zariski if and only if a is in all maximal m, it will be enough
to show that for each maximal m we have a ⊆ m ⇐⇒ mÂ 6= Â ⇐⇒ (IS THIS REALLY THE SAME?) for
no element x ∈ m is x̂ a unit in Â.

If a ⊆ m, then m/an is a proper ideal of A/an for all n, and so no element of m can become invertible.
If a 6⊆ m, then a+m = (1), and there are x ∈ m and a ∈ a with x = 1− a. Inductively, given y2n such

that xy2n = 1− a2n
, multiplying both sides by 1 + a2n

gives xy2n(1 + a2n
) = 1− a2n+1

, showing x is a unit
modulo a2n+1

. Now y2n+1 := y2n(1 + a2n
) ≡ y2n (mod a2n

), so if we set ym = y2n+1 for 2n < m ≤ 2n+1, we
see 〈yn + an〉 is an element of Â inverse to x̂.

Alternately7 (and using the Noetherian hypothesis), if Â is faithfully flat, then by [3.16.iii], me 6= Â for
any maximal m� A, so there is a maximal n� Â containing it. By [1.5.iv], nc ⊇ mec ⊇ m is maximal, so
nc = m. (10.15.iv) says â is in R(Â), so â ⊆ n. Therefore a ⊆ âc ⊆ nc = m, and a is contained in R(A).

The book also has a suggested proof. Since Â is flat by (10.14), to prove faithful flatness [3.16.v] says it
is enough to check that the canonical maps M → Â⊗A M are injective for all A-modules M. If this fails,
some nonzero x ∈ M is killed, so the composition Ax ↪→ M → Â⊗A M is already not injective. Since
Â is flat, again by (10.14), Â⊗A Ax → Â⊗A M is injective, so the map Ax → Â⊗A Ax is not. Thus we
only need to check injectivity for cyclic modules M; in this case, (10.13) tells us Â⊗A M ∼= M̂, so we are
concerned with the maps M→ M̂.

7 http://pitt.edu/~yimuyin/research/AandM/exercises10.pdf
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If a is contained in the Jacobson radical of A, then since A is Noetherian and M is finitely generated,
by (10.19), the kernel of M→ M̂ is 0.

If a is not contained in the Jacobson radical, there is a maximal ideal m /∈ V(a); write M = A/m.
Since m ⊆ A is not closed by [10.6], it follows that {0} ⊆ M is not closed, and so cannot be the kernel of
M → M̂. Alternately, since each an +m = (1), it follows that an M = M for each n, so the kernel is M.
Looked at yet another way, by (3.19.v), Supp(M) = V

(
Ann(M)

)
= {m}, which is disjoint from V(a), so

by [10.3], M̂ = 0.

8. Let A be the local ring of the origin in Cn (i.e., the ring of all rational functions f/g ∈ C(z1, . . . , zn) with g(0) 6= 0),
let B be the ring of power series in z1, . . . , zn which converge in some neighborhood of the origin, and let C be the
ring of formal power series in z1, . . . , zn, so that A ( B ( C. Show that B is a local ring and that its completion
for the maximal ideal topology is C. Assuming that B is Noetherian, prove that B is A-flat.

To sensibly talk about B, we first must pick a notion of convergence for power series in several variables;
we use absolute convergence, because it is independent of which sequence of partial sums we take the
limit of.

The surjective ring homomorphism h 7→ h(0) : B � C shows the ideal m = (z1, . . . , zn) of power
series with zero constant term is maximal. To show B is local, we demonstrate a power series f with
nonzero constant term is a unit. If the reader is willing to accept that a formal multiplicative inverse of a
power series with positive multiradius of convergence likewise has positive multiradius of convergence,
then we need only produce an f−1 ∈ C; and we can do this by an induction starting at n = 0, for by
[1.5.i], f ∈ C[[z1, . . . , zn, w]] is a unit just if f(z, 0) ∈ C[[z1, . . . , zn]] is a unit. Otherwise, please consult the
footnote.8 This also shows that A ⊆ B, since any g ∈ C[z] with g(0) 6= 0 has an inverse in B. But A ( B,
since for example exp(z) /∈ A. We see B ( C since ∑ j!zj

1 ∈ C but j!|ζ j| → ∞ for ζ 6= 0.
To compute B̂, write n = m ∩ A and note that the inclusion A ↪→ B induces isomorphisms A/nm ∼−→

B/mm for all m ∈ N, basically because the truncations of power series below a given total degree are
just polynomials. Since these isomorphisms respect the quotient maps A/nm+1 � A/nm, we have an
isomorphism of inverse systems, so B̂ ∼= Â, which, as pointed out in the proof of (10.27), is C.

Since A and B are local rings with topologies defined by their maximal ideals (which are their Jacobson
radicals), and we are told B is Noetherian ([7.4.ii] contains a proof in the n = 1 case; can we do an
induction?), they are Zariski rings. By [10.7], C = B̂ = Â is faithfully flat over A and B, so it follows from
[3.17] that B is A-flat.

9. Let A be a local ring, m its maximal ideal. Assume that A is m-adically complete. For any polynomial f(x) ∈ A[x],
let f̄(x) ∈ (A/m)[x] denote its reduction mod. m. Prove Hensel’s lemma: if f(x) is monic of degree n and if there
exist coprime monic polynomials ḡ(x), h̄(x) ∈ (A/m)[x] of degrees r, n− r with f̄(x) = ḡ(x)h̄(x), then we can
lift ḡ(x), h̄(x) back to monic polynomials g(x), h(x) ∈ A[x] such that f(x) = g(x)h(x).

There is a more general version stated as [?, Thm. 7.18], proved there in two exercises whose extensive
hints we follow.

First, we show that given a ring B and coprime, monic p, q ∈ B[x] with deg p = r, any c ∈ B[x] admits
an expression c = ap + bq with deg b < r. (In the case q = 1, this is the division algorithm. This implies the

8 This is adapted from a proof where n = 1 in [?, Ch. II, Thm. 3.3]. As convergence is unaffected by taking constant multiples,
we may assume without loss of generality that f(0) = 1. Here we set up some notation. We will work in the rings C[[z, w]] =
C[[z1, . . . , zn, w]] and C[[w]]. If α = 〈α1, . . . , αn〉 ∈ Nn is a multi-index, xα = ∏ xαm

m , whether xm = zm or xm ∈ C. If |aj| ≤ rj for
aj ∈ C and rj ≥ 0, write ∑ ajwj ≺ ∑ rjwj in C[[w]]; this is a transitive relation. The following fact is helpful: if f, g ∈ C[[w]] and ω ∈ C

are such that f ≺ g and g(ω) converges, then f(ω) converges.
To see f−1 converges in a neighborhood of the origin, set g = 1− f ; then formally, f−1 = (1− g)−1 = ∑k gk , using the geometric

series. Write g = ∑ ajwj ∈ C[[z, w]] for aj ∈ C[[z]]. Since g converges absolutely some neighborhood of the origin, we can find a closed
polydisk {〈ζ, ω〉 : ζm ≤ εm, ω ≤ δ} on which g converges absolutely. In particular, the aj converge absolutely on D̄ = {ζ : ζm ≤ εm}.
If we write aj = ∑ cαzα for cα ∈ C, then their maximal values on D̄ are the finite numbers rj = ∑ |cα|εα, and so to show f−1(ζ, ω)

converges for all ζ ∈ D̄ it suffices to show f−1(r, ω) := f−1(r1, . . . , rn, ω) converges. If we had rj ≥ δ−j for infinitely many j, the
series g(r, δ) would not converge; as we know it does, rj < δ−j for all but finitely many j, and thus there is a constant R ≥ δ−1 such
that rj < Rj for all j. We now have g(r, w) ≺ ∑∞

j=1 Rjwj = Rw
1−Rw , so

f−1(r, w) ≺
∞

∑
k=0

g(r, w)k ≺
∞

∑
k=0

( Rw
1− Rw

)k
=

1
1− Rw

1−Rw
=

1− Rw
1− 2Rw

= (1− Rw)
∞

∑
k=0

(2Rw)k ≺ (1 + Rw)
∞

∑
k=0

(2Rw)k ,

showing f−1 converges on D̄× {ω : |ω| < 1/2R}.
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book’s suggested lemma, for if deg q = n− r and deg c ≤ n, we have deg bq < n, forcing deg a ≤ n− r.)
Indeed, B[x]/(p) is generated by q̄ since (p, q) = B[x], so there is b ∈ B[x], such that b̄q̄ = c̄ in B[x]/(p).
Since p is monic of degree r, the elements 1̄, x̄, . . . , x̄r−1 freely generate B[x]/(p) as a B-module, so we
may assume deg b < r. Since q is monic, this choice of b is unique. Now c ≡ bq

(
mod (p)

)
, and p, being

monic, is by [1.2.ii] not a zero-divisor, so ap = c− bq has a unique solution a ∈ B[x]. 9, 10

Second, we claim that if b ⊆ R(A) is an ideal of A and we are given g, h ∈ A[x] with g monic,
then if (ḡ, h̄) = (1) in (A/b)[x], we have (g, h) = A[x]. Indeed, if M = A[x]/(g), and N = hM, then
since bA[x] + (g, h) = A[x], we have bM + N = M. Since M is finitely generated by 1̄, x̄, . . . , x̄deg g−1,
Nakayama’s Lemma (2.7) applies to show hM = M, so that (g, h) = (1) in A[x].

Now we prove the result. We need only assume that A is complete with respect to some ideal a; we
do not necessarily need a maximal or A local. We inductively construct sequences 〈gk〉 and 〈hk〉 of monic
polynomials of the right degrees in A[x] with f − gkhk ≡ 0 (mod ak) and gk ≡ gj, hk ≡ hj (mod aj)
for j < k. Coefficient by coefficient, the gk and the hk will form Cauchy sequences with respect to the
a-topology, and so converge to unique limits g, h ∈ A[x] with g ≡ gk, h ≡ hk (mod ak) for all k ≥ 1. We
will then have f − gh = ( f − gkhk) + (gkhk − gh) ≡ 0 (mod ak) for all k. Since A is a-adically complete,⋂
ak = 0, so f = gh, as hoped.

If g1, h1 are lifts of the appropriate degrees of ḡ, h̄ to A[x], by assumption, f − g1h1 ≡ 0 (mod a) (really
meaning modulo a[x]). The Eisenbud version of the induction step follows; the one from the book is in the
footnote.11 Suppose inductively we have found gk, hk ∈ A[x] such that gk ≡ gj, hk ≡ hj (mod a2j−1

) for

all j < k and f − gkhk = c ≡ 0 (mod a2k−1
). Since by (10.15.iv), a2k−1 ⊆ R(A), it follows from the second

claim, with b = a2k−1
, that (gk, hk) = A[x]. By the first claim, with B = A, p = gk, q = hk, there are unique

a, b ∈ A[x] with deg b < r and agk + bhk = c. Descending to A/a2k−1
[x], where we take B = A/a2k−1

in
the first claim and use uniqueness, we see that since c̄ = 0 we also have ā = b̄ = 0, or a, b ∈ a2k−1

[x]. Set
gk+1 = gk + b ∈ gk + a2k

[x] and hk+1 = hk + a ∈ hk + a2k
[x], so

f − gk+1hk+1 = ( f − gkhk)− (agk + bhk)− ab = c− c + ab = ab ∈ a2k
[x].

10. i) With the notation of Exercise 9, deduce from Hensel’s lemma that if f̄(x) has a simple root α ∈ A/m, then f(x)
has a simple root a ∈ A such that α = a mod m.

If α is a simple root of f̄, we have a factorization f̄ = (x − α)ḡ, where ḡ is coprime to x − α. Since we
assume f̄ is monic, so is ḡ. By [10.9], there exist monic lifts h of x− α and g of ḡ to A[x]; since deg h = 1,
we must be able to write h = x− a for some a ∈ A, and a 7→ α under A→ A/m. Since x− a is irreducible,
if it divided g, then (x− α)2 would divide f̄, contrary to assumption, so a is a simple root of f.

9 There is actually a mistake here ([?]), as the author does not require q to be monic. We need q̄ to not be a zero-divisor for the
uniqueness claim. This will also be the case if B[x]/(p) is an integral domain, but we cannot make any guarantees on p in the rest of
the proof.

10 Here is a proof of the book’s lemma that if monic p, q ∈ B[x] of respective degrees r, n− r are coprime, then for any polynomial
c of degree ≤ n there are a, b ∈ B[x], of respective degrees ≤ n− r, r, such that ap + bq = c. Since (p, q) = (1), this is obviously
possible if we drop the restriction on degrees. If a = ajxj + (deg < j) and b = bmxm + (deg < m) with aj, bm 6= 0, and j > n− r,
we will polynomials a′, b′ of degrees respectively < j, m such that again a′p + b′q = c; applying this repeatedly eventually achieves
the desired restriction on degrees. Since deg c ≤ n < j + r, it follows that the leading term ajxj+r of ap cancels the leading term
bmxm+n−r , so aj = −bm and j + r = m + n− r, or j− (n− r) = m− r. (This also shows r < m.) If we let a′ = a− ajxj−(n−r)q and
b′ = b− bmxm−r p, then deg a′ < j and deg b′ < m, and

a′p + b′q = (ap + bq)− (ajxj−(n−r) + bmxm−r)pq = c.

11 Let gk , hk ∈ A[x] be given. Since ḡk = ḡ, h̄k = h̄, we have (ḡk , h̄k) = (1) in (A/a)[x], so there are mj ∈ ak such that
f − gkhk = ∑n

j=0 mjxj, and for 0 ≤ j ≤ n there exist aj, bj ∈ A[x] of degrees ≤ n− r, r such that āj ḡk + b̄j h̄k = x̄j in (A/a)[x]. Then
there are rj ∈ a[x] with deg rj ≤ n such that ajgk + bjhk + rj = xj in A[x] (this paraphrases the solution in [?]; I had not seen the
necessity of working coefficient by coefficient and gotten stuck). We then can write

f − gkhk = ∑ mj(ajgk + bjhk + rj) = gk ∑ mjaj + hk ∑ mjbj + ∑ mjrj.

Now gk+1 = gk + ∑ mjbj ∈ gk + ak+1[x] and hk+1 = hk + ∑ mjaj ∈ hk + ak+1[x] satisfy the degree restrictions, and

f − gk+1hk+1 = ( f − gkhk)− gk ∑ mjaj − hk ∑ mjbj −∑
j

∑
`

mjm`ajb` = ∑ mjrj −∑
j

∑
`

mjm`ajb` ∈ ak+1[x].

128



Chapter 10: Completions Ex. 10.11

ii) Show that 2 is a square in the ring of 7-adic integers.
2 is be a square if and only if x2 − 2 ∈ Z7[x] has a solution, if and only if it splits into linear factors.

x2 − 2̄ has simple roots ±3̄ in Z7/7Z7 ∼= Z/7Z, so by i), 2 has two square roots in Z7.

iii) Let f(x, y) ∈ k[x, y], where k is a field, and assume that f(0, y) has y = a0 as a simple root. Prove that there
exists a formal power series y(x) = ∑∞

n=0 anxn such that f
(

x, y(x)
)
= 0.

(This gives the “analytic branch” of the curve f = 0 through the point (0, a0).)
Write A = k[[x]] and m = (x), so A/m = k. Considering f(x, y) as an element of A[y] ) k[x][y] = k[x, y],

the image of f in k[y] is f(0, y), which by assumption has a simple root a0 ∈ k. By i), f(x, y) has a simple
root y(x) ∈ k[[x]] with constant term a0.

11. Show that the converse of (10.26) is false, even if we assume that A is local and that Â is a finitely-generated
A-module.

Since (10.26) says that completing a Noetherian ring A with respect to an ideal a produces a Noetherian
Â, the converse would presumably be that if the a-completion Â of a ring A is Noetherian, then A
was already Noetherian. It then falls to us to find a non-Noetherian local ring with finitely generated,
Noetherian completion.

Following the book’s hint, let A = C∞
0 (R) be the set of germs [ f ] at 0 ∈ R of C∞ real-valued functions

f. The homomorphism [ f ] 7→ f(0) surjects onto the field R, showing the functions vanishing at 0 form a
maximal ideal a. To see this is the only maximal ideal, suppose f represents an [ f ] /∈ a; then by continuity
f 6= 0 on some neighborhood of 0, so f locally admits a multiplicative inverse g, and [ f ][g] = [1], showing
[ f ] is a unit.

Write bn :=
{
[ f ] ∈ A : f (j)(0) = 0 for 0 ≤ j < n

}
; we want to show an = bn = (xn). Suppose

inductively that an ⊆ bn. Then if [ f ] ∈ an+1, we can write f as a sum of elements gh for [g] ∈ a and
[h] ∈ an. By the generalized product rule, (gh)(n) = ∑n

j=0 (
n
j)g(j)h(n−j); since g(0) = 0, and h(n−j)(0) = 0

for j ≥ 1, we see f (n)(0) = 0, so [ f ] ∈ bn+1. For the reverse inclusion, we use Taylor’s theorem with
remainder: for any open interval U ⊆ R and f ∈ C∞(U), we can write f(x) = ∑n−1

j=0
1
j! f (j)(0)xj + gn(x)xn

on U, where gn ∈ C∞(U) and gn(0) = 1
n! f (n)(0).12 Thus bn ⊆ (xn) ⊆ an.

Since xngn ∈ an, and any polynomial is its own Maclaurin series, truncations of Maclaurin series yield
isomorphisms A/an → R[x]/(xn) compatible with the quotient homomorphisms given by n + 1 7→ n. By
Example 1 on p. 105, Â ∼= R[[x]], which is Noetherian by (7.5*) because R is a field. However, by (10.18),
since 0 6= e−1/x2 ∈ ⋂ an (its Maclaurin series is 0), A is not Noetherian. By Borel’s theorem that every
power series is the Taylor series of a C∞ function, A→ Â is surjective, so that Â is finitely generated.

12. If A is Noetherian, then A[[x1, . . . , xn]] is a faithfully flat A-algebra.
By [2.5], A→ A[x1, . . . , xn] is flat, and by (10.14) and our proof above that the latter is the completion

of the former, A[x1, . . . , xn] → A[[x1, . . . , xn]] is flat, so [2.8.ii] says A → A[[x1, . . . , xn]] is flat. For any
a� A we have ae = a+ a · (x1, . . . , xn), so that aec = a; thus, by [3.16.i], A[[x1, . . . , xn]] is faithfully flat
over A.

12 For a proof, note that by the chain rule, d
dt f(tx) = xf ′(tx). Integrating both sides from 0 to 1 and using the fundamental theorem

of calculus gives f(x)− f(0) = x
∫ 1

0 f ′(tx) dt. Write g(x) =
∫ 1

0 f ′(tx) dt; then g(0) =
∫ 1

0 f ′(0) dt = f ′(0). Thus f(x) = f(0) + xg(x) for
a C∞ function g with g(0) = f ′(0). See [?, Lemma 1.4] for a generalization of this result to real-valued functions on open subsets of
Rn, star-shaped with respect to some point (specialized to 0 for us).

Applying the above to g and iterating, we get expressions f(x) = f(0) + ∑n−1
j=1 gj(0)xj + gn(x)xn, so f (n)(0) = n!gn(0) for all n.

This differs slightly from the usual form of the theorem, which assumes only that f is n times differentiable at 0 and gets a
remainder term hn−1(x)xn−1 with limx→0 hn−1(x) = 0 instead of our gn(x)xn; see e.g. [?].
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(1− t)−d =
∞

∑
k=0

(
d + k− 1

d− 1

)
tk. (p. 117)

(1− t)−1 = 1 + t + t2 + · · · , so we want to check that the coefficient of tk in its dth power is (d+k−1
d−1 ).

This coefficient is the number of possible ways of forming a product ∏d
j=1 tkj with ∑d

j=1 k j = k, which is
the number of ordered partitions of a row of k objects into d groups. This is the same as the number of
ways of inserting d− 1 dividers into the row of k objects, or of choosing d− 1 objects out of k + d− 1 to
serve as dividers, namely (d+k−1

d−1 ).

Example. Let A = A0[x1, . . . , xs], where A0 is an Artin ring and the xi are independent indeterminates. Then
An is a free A0-module generated by the monomials xm1

1 · · · x
ms
s where ∑ mi = n; there are (s+n−1

s−1 ) of these, hence
P(A, t) = (1− t)−s. (p. 118)

The coefficient of tn in P(A, t) is l(An). Since An ∼= A
(s+n−1

s−1 )
0 as an A0-module, it follows l(An) =

(s+n−1
s−1 )l(A0). Then by the expression above, P(A, t) = l(A0)(1− t)−s. This is not the expression that the

book gives unless l(A0) = 1. The degree d(A) = d
(
Gm(A)

)
as defined on p. 119 is unaffected by this

change, and hence so is the dimension n of k[x1, . . . , xn](x1, ..., xn) in the example on p. 121 and d
(
Gq(A)

)
in the proof of (11.20).

Given a polynomial f(x) ∈ Z[x], the sum g(n) = ∑n
j=0 f(j) is a polynomial in n.* (p. 119)

We can write f(n) = ∑k aknk, so it will be enough to show that for each n the function gk(n) = ∑n
j=0 jk

is a polynomial.1 Note that g0(n) = n + 1. Suppose inductively that gj(n) is a polynomial for j ≤ k. By
the binomial theorem we have (m + 1)k+1 − mk+1 = ∑k

j=0 (
k+1

j )mj. Summing both sides from m = 0 to

n gives (n + 1)k+1 = ∑k
j=0 (

k+1
j )gj(n), and rearranging, we see gk(n) = (n + 1)k+1 − ∑k−1

j=0 (k+1
j )gj(n) is a

polynomial in n.

If 0 → N ↪→ M → M′ → 0 is exact and q� A, then 0 → N/(N ∩ qn M) → M/qn M → M′/qn M′ → 0 is
exact.* (p. 120)

This is a special case of a similar result in the beginning notes to Ch. 10.

EXERCISES
1. Let f ∈ k[x1, . . . , xn] be an irreducible polynomial over an algebraically closed field k. A point P on the variety

f(x) = 0 is non-singular ⇐⇒ not all the partial derivatives ∂f/∂xi vanish at P. Let A = k[x1, . . . , xn]/( f ), and
let m be the maximal ideal of A corresponding to the point P. Prove that P is non-singular ⇐⇒ Am is a regular
local ring.

Write k[x] = k[x1, . . . , xn] and let P = 〈a1, . . . , an〉, so that m is the image in A of mP = (x1 −
a1, . . . , xn − an)� k[x]. Since f(P) = 0, we have f ∈ mP, so there are pj ∈ k[x] (possibly zero) such that
f = ∑(xj − aj)pj. Then ∂f/∂xi = pi + (xi − ai)(∂pi/∂xi) + ∑j 6=i(xj − aj)∂pj/∂xi. All terms but possibly pi are
in mP; so it follows that P is a singular point of the variety f(x) = 0 ⇐⇒ all the ∂f/∂xi vanish at P ⇐⇒
each pi ∈ mP ⇐⇒ f ∈ m2

P.
Now we work to rephrase regularity of Am in terms of f . Since A = k[x]/( f ) and the quotient map

k[x] → A takes SmP → Sm, by (3.4.iii) and [3.4], we have k[x]mP /( f )mP
∼=
(
k[x]/( f )

)
m

= Am. Since

1 adapted from http://mathforum.org/library/drmath/view/56920.html
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dim k[x]mP = n, by (11.18), dim Am = n − 1. By the third isomorphism theorem (2.1.i) and (3.4.iii),
k ∼= k[x]/mP ∼= A/m ∼= Am/mAm, so, using (3.4.iii) again, Am is a regular local ring just if dimk(m/m2) =
dimk(mAm/m2 Am) = n − 1. Now m = mP/( f ), and m2 is the image of m2

P under k[x] → A, which is(
m2

P + ( f )
)
/( f ), so that by (2.1.i) again, m/m2 = mP

( f )

/
m2

P+( f )
( f )

∼= mP/
(
m2

P + ( f )
)
. If f ∈ m2

P, then this

is mP/m2
P, which has dimension n, so Am is not regular. Otherwise m2

P + ( f ) strictly contains m2
P, so

dimk(m/m2) < n. But by (11.15), dimk(m/m2) ≥ n− 1.

2. In (11.21) assume that A is complete. Prove that the homomorphism k[[t1, . . . , td]]→ A given by ti 7→ xi (1 ≤ i ≤
d) is injective and that A is a finitely-generated module over k[[t1, . . . , td]].

The first thing to check is that this homomorphism is well defined. If n = (t1, . . . , td) � k[t] :=
k[t1, . . . , td], then the nn form a neighborhood basis of 0 in k[t], and the map k[t] → A given by ti 7→ xi
sends nn → qn ⊆ mn. Thus a Cauchy sequence in k[t] is sent to a Cauchy sequence in A, which converges
to a point of A by completeness, so since k[[t]] := k[[t1, . . . , td]] is the completion of k[t] with respect to n,
we have a well defined map k[[t]]→ A as asserted, making A a k[[t]]-module.

For injectivity, let p(t) ∈ k[[t]] be in the kernel. Writing q = (x1, . . . , xd), by (7.16.iii), p(x) = 0 ⇐⇒
p(x) ∈ qn for every n. Write pn(t) for the nth homogeneous component of p(t); since p0(x) = 0, it follows
p0(t) = 0. Inductively suppose pj(t) = 0 for all j ≤ n. Now p(x)− pn(x) ∈ qn+1, and p(x) = 0 ∈ qn+1, so
pn(x) ∈ qn+1 By (11.20), the coefficients of pn(t) are in k ∩m = 0. Thus each pn(t) = 0, so p(t) = 0.

Now 〈qn〉 is a n̂-filtration of A, k[[t]] is complete, and A is Hausdorff (since complete) with respect to
the q-topology (which by (7.16.iii) is the m-topology), so by (10.24), A will be a finitely-generated k[[t]]-
module if Gq(A) is a finitely-generated Gn̂

(
k[[t]]

)
-module. By (10.22.ii), Gn̂

(
k[[t]]

) ∼= Gn

(
k[t]
)

and the latter
is isomorphic to k[t] under t̄i 7→ ti. But the map k[t]→ Gq(A) taking ti 7→ x̄i is a quotient map.

3. Extend (11.25) to non-algebraically-closed fields.
By Noether normalization [5.16], if d = dim V, there are algebraically independent x1, . . . , xd ∈ A(V)

such that A(V) is integral over the polynomial subring B = k[x1, . . . , xd]. Since B is a UFD, as noted on
p. 63, it is integrally closed. Following the book’s hint, note that k̄ is integral over k ( B, and trivially the
xi are integral over B, so that by (5.3) the ring C = k̄[x1, . . . , xd] is integral over B. As V is an irreducible
variety, A(V) is an integral domain, so that (11.26) applies to the inclusion B ⊆ A(V): for any maximal
ideal m � A(V), then, dim A(V)m = dim Bmc , where mc is maximal by (5.8). It remains to show that
dim Bn = d for all maximal ideals n� B. By (5.10), since C is integral over B, there is a prime of C lying
over n, and by (1.4), there is a maximal ideal q� C containing that prime, whose contraction to B is then
a prime ideal containing n, which must be n itself. As (11.26) also applies to the inclusion B ⊆ C, we have
dim Bn = dim Cq. But we already established in (11.25) that dim Cq = d.

4. An example of a Noetherian domain of infinite dimension (Nagata). Let k be a field and let A = k[x1, x2, . . . , xn, . . .]
be a polynomial ring over k in a countably infinite set of indeterminates. Let m1, m2, . . . be an increasing [or even
just unbounded] sequence of positive integers such that mi+1 − mi > mi − mi−1 for all i > 1. [Actually, set
m1 = 0.] Let pi = (xmi+1, . . . , xmi+1) and let S be the complement in A of the union of the ideals pi.

Each pi is a prime ideal and therefore the set S is multiplicatively closed. The ring S−1 A is Noetherian by Chapter
7, Exercise 9. Each S−1pi has height equal to mi+1 −mi, hence dim S−1 A = ∞.

Note that the complement S of the union of a set P of primes in A is multiplicatively closed, as follows:
x, y ∈ S ⇐⇒ ∀p ∈ P (x, y /∈ p) ⇐⇒ ∀p ∈ P (xy /∈ p) ⇐⇒ xy ∈ S.

The prime ideals of A that persist in S−1 A are by (3.11.iv) those that don’t meet S, so the maximal
ideals of S−1 A are S−1p for prime p� A maximal with respect to not meeting S. Suppose a� A doesn’t
meet S, so it is contained in the union of the pi; we claim it is contained in some pi. Given (a1, . . . , a`) ⊆
a, the aj only involve finitely many indeterminates, so for some n we have (a1, . . . , a`) ⊆

⋃n
i=1 pi. By

(1.11.i), (a1, . . . , a`) ⊆ pi for some i ≤ n. If we append a`+1 ∈ a, we again have an n′ ∈ N such that
(a1, . . . , a`, a`+1) ⊆ pi for some i ≤ n′; but n′ ≤ n, since we don’t have a1 ∈ pi for i > n by assumption.
Thus appending a generator can only decrease our collection of candidate pi. If for any b ∈ a we have
b /∈ pi, we can choose a`+1 = b and pick a new pi with i ≤ n. Since there are only finitely many of these,
this is eventually no longer possible, and then we are done.

Thus the maximal ideals of S−1 A are the S−1pi. We claim the localizations with respect to these
are Noetherian. Without loss of generality, take i = 1. Note

(
S−1 A\S−1p1

)−1
=
(
S−1(A\p1)

)−1
=
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(
S−1Sp1

)−1
= S−1

p1
S = S−1

p1
since S = A\⋃ pj ⊆ A\p1 = Sp1 and Sp1 is multiplicatively closed. Thus

the localization

(S−1 A)S−1p1
=
(
S−1 A\S−1p1

)−1
(S−1 A) = S−1

p1
S−1 A = S−1

p1
A = Ap1 .

If we let K be the field k(xm2+1, . . . , xm2+n, . . .), then Ap1 = K[x1, . . . , xm2 ](x1, ..., xm2 )
as a subset of the field

of fractions of A. Since K[x1, . . . , xm2 ] is Noetherian by the Hilbert Basis Theorem (7.6), Ap1 is Noetherian
by (7.4). By (3.13), the height of S−1p1 is dim (S−1 A)S−1p1

= dim Ap1 = dim K[x1, . . . , xm2 ](x1, ..., xm2 )
; this

is m2 by the example on p. 121.
Since each nonzero a ∈ A only uses finitely many indeterminates, it can only be in finitely many pi,

and so each nonzero a/s ∈ S−1 A can only be in finitely many maximal ideals S−1pi. This and the fact that
the (S−1 A)S−1pi

are Noetherian are the hypotheses of [7.9], which tells us S−1 A is Noetherian.

5. Reformulate (11.1) in terms of the Grothendieck group K(A0) (Chapter 7, Exercise 25).
We recall the hypotheses and definitions. A =

⊕
An is a Noetherian graded ring, generated as an alge-

bra over its summand A0 by finitely many homogeneous elements xj, j = 1, . . . , r, of respective degrees
k j > 0. M =

⊕
Mn is a finitely generated graded A-module, so that each Mn is a finitely generated A0-

module. λ is an additive function from the the class of finitely generated A0-modules to Z. The Poincaré
series of Mwith respect to λ is Pλ(M, t) = ∑∞

n=0 λ(Mn)tn ∈ Z[[t]]. (11.1) states that, with q = ∏r
j=1(1− tkj)

and the standard definition for reciprocals of power series, Pλ(M, t) ∈ q−1Z[t] ( Z[[t]].
I feel my attempts to say something meaningful about this situation in terms of K(A0) have come up a

little short, but here goes.
Write Fgr(A) for the category of finitely generated graded A-modules and degree-preserving A-

module homomorphisms. Define the graded Grothendieck group Kgr(A) of A from the Fgr(A) using the
same process by which we defined the original K-group: form the free abelian group on the set of iso-
morphism classes of Fgr(A) and take the quotient by the subgroup generated by [N]− [M] + [P] for all
short exact sequences 0 → N → M → P → 0 (where now the isomorphisms defining the classes and
the maps in the sequences are degree-preserving). Write γgr(M) for the class of M in Kgr(A) and γ(Mn)
for the class of Mn in K(A0). As a degree-preserving homomorphism of graded A-modules induces an
A0-module homomorphism on each component, there is a natural map Φ : Kgr(A) → K(A0)[[t]] given by
γgr(M) 7→ ∑ γ(Mn)tn, where K(A0)[[t]] is just an additive group. There does not seem to be a reason to
expect Φ to be either surjective or injective.

Since λ is additive, it induces a homomorphism λ0 : K(A0) → Z as in [7.26.i], which we can apply to
each component in K(A0)[[t]]; call this process Λ0]. Then we can factor Pλ(−, t) as

Fgr(A)
γgr→ Kgr(A)

Φ→ K(A0)[[t]]
Λ0−→ Z[[t]] :

M 7→ γgr(M) 7→∑ γ(Mn)tn 7→∑(λ0 ◦ γ)(Mn)tn = ∑ λ(Mn)tn.

From this one can see that the original additive function λ doesn’t matter so much as the associated λ0 ∈
Hom

(
K(A0), Z). Thus im(Φ ◦ γgr) ( K(A0)[[t]] is a collection of “universal Poincaré series” for finitely

generated graded A-modules, each of which, when subjected to any λ0 ∈ Hom
(
K(A0), Z), produces an

element of q−1Z[t] ( Z[[t]].2 Thus, finally, the best we can do in the general case is to say that the Poincaré
series yields a bilinear map

Q : Hom
(
K(A0), Z

)
× Kgr(A)→ Z[[t]]

with im Q = q−1Z[t]. This looks a bit different than the original, but is not much more interesting.3

2 One would like to lift the result about the image up to K(A0)[[t]], and say something like “im(Φ ◦ γgr) ⊆ q−1K(A0)[t],” but since
K(A0) doesn’t usually have a ring structure, multiplication and hence q−1 have no obvious meaning in K(A0)[[t]].

3 With more restrictive hypotheses, we can say more; see http://math.stackexchange.com/questions/217612/
exercise-11-5-from-atiyah-macdonald-hilbert-serre-theorem-and-grothendieck-grou and the articles by William Smoke
linked therein.
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6. Let A be a ring (not necessarily Noetherian). Prove that

1 + dim A ≤ dim A[x] ≤ 1 + 2 dim A.

If p0 ( p1 ( · · · ( pr is any ascending chain of length r in Spec(A), then p0[x] ( p1[x] ( · · · ( pr[x] (
pr + (x) is an ascending chain of length r + 1 in Spec

(
A[x]

)
; the last ideal is prime since it is the kernel of

A[x] � A/pr and the others by [2.7]. Thus 1 + dim A ≤ dim A[x].
By [3.21.iv], for p ∈ Spec(A) we have a homeomorphism between the set of primes of A[x] lying

over p and Spec
(
k(p)⊗A A[x]

)
, where k(p) is the field Ap/pAp. By [2.6], k(p)⊗A A[x] ∼= k(p)[x]; but

dim k(p)[x] = 1, because any nonzero prime is maximal, so a chain of primes of A[x] over a given p has
length no more than one, and hence contains at most two primes. Thus a chain of length r in Spec(A),
containing r + 1 primes, is the contraction of a chain of at most 2r + 2 primes of A[x], which has length
2r + 1. Taking suprema over chains in Spec(A) gives dim A[x] ≤ 1 + 2 dim A.

7. Let A be a Noetherian ring. Then

dim A[x] = 1 + dim A,

and hence, by induction on n,
dim A[x1, . . . , xn] = n + dim A.

By [11.6], we have dim A[x] ≥ 1 + dim A.
For the other direction, it will be enough to show that height P ≤ height p+ 1 whenever P is a prime

of A[x] and p = Pc � A. If we form rings of fractions of both rings with respect to A\p to get Pp � Ap[x]
lying over pp � Ap, we see by (3.11.iv) that these have the same heights as P and p, respectively, so we
may assume A is local with maximal ideal p.

Following the book’s hint, we first show height p[x] = height p. If height p = m, then since A is a local
Noetherian ring, there is by (11.13) a p-primary ideal q of A generated by m elements. q[x] is p[x]-primary
by [4.7.iii], and is generated over A[x] by the m generators of q, so by (11.16), height p[x] ≤ m. We proved
m ≤ height p[x], on the other hand, in [11.6].

Now we show, by induction on height p, that height P ≤ height p+ 1. For height p = 0, the result is
again implied by the proof of [11.6]. Suppose that height p = m and the result holds for primes of height
< m. To show height P ≤ m + 1, we need to see height Q ≤ m for each prime Q ( P. If Qc ( p, then
height Qc < m, so height Q ≤ m by induction. If Qc = p, then p[x] ⊆ Q ( P, and so, recalling from our
proof of [11.6] that the longest chain of primes in A[x] lying over p contains two primes, we see Q = p[x],
whose height is m.
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