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ABSTRACT
We study the problem of a cholesteric liquid crystal confined to an elliptical channel. The system is
geometrically frustrated because the cholesteric prefers to adopt a uniform rate of twist deformation,
but the elliptical domain precludes this. The frustration is resolved by deformation of the layers or
introduction of defects, leading to a particularly rich family of equilibrium configurations. To identify
the solution set, we adapt and apply a new family of algorithms, known as deflation methods that
iteratively modify the free energy extremisation problem by removing previously known solutions. A
second algorithm, deflated continuation, is used to track solution branches as a function of the aspect
ratio of the ellipse and preferred pitch of the cholesteric.
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1. Introduction

Cholesteric liquid crystals are complex fluids that exhi-
bit long-range orientational order, elasticity, local
alignment at surfaces, optical activity and response to
external stimuli [1]. They are composed of chiral mole-
cules that, in the absence of boundaries, adopt a helical
structure with a preferred pitch, q0, set by the molecu-
lar structure and the ambient temperature. There has
recently been a great deal of interest in cholesterics in
confined geometries because of parallels with other
condensed matter systems such as chiral ferromagnets,
Bose–Einstein condensates and the Quantum Hall
effect. All of these systems exhibit topological defects
under confinement, including skyrmions and torons,
where the boundary conditions preclude adoption of
the energetically preferred uniformly twisted state.

Hence, they are geometrically frustrated. It was recog-
nised some time ago that nematic liquid crystals also
may potentially form skyrmions, but these are only
metastable due to the lack of preferred twist [2].

Liquid crystals are particularly attractive to study
these defect structures, because they can be conveni-
ently produced and imaged in three dimensions with
techniques such as confocal microscopy [3].
Cholesterics may form skyrmion lattices in two dimen-
sions [4]. In three dimensions, torons resemble parti-
culate inclusions [5,6] and form chains or lattices [7].
Other more complicated defect structures called ‘twis-
tions’ occur in films thinner than the cholesteric pitch
[8]. They also provide an elegant experimental actuali-
sation of the Hopf fibration, a map from the 3-sphere
onto the 2-sphere such that each distinct point of the 2-
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sphere comes from a distinct circle of the 3-sphere [9],
and are an ideal model system for experimental
exploration of Hopf solitons [10]. Strongly confined
geometries such as micropatterned surfaces [11], chan-
nels [12,13] and droplets [14] can all be used to control
and order the location of skyrmions.

A key challenge in simulating these systems is that,
due to the geometric frustration, they possess a parti-
cularly rich family of stationary solutions of the free
energy. The ground state strongly depends on the
shape of the domain and material parameters, includ-
ing the cholesteric pitch. Typically, extremisation is
performed from an initial guess using a relaxation
algorithm, or by solving a set of non-linear Euler–
Lagrange equations. In either case, having found a
solution, the question remains: are there others? It is
also highly desirable to track the solution set as a
function of geometric and material parameters to
assemble a bifurcation diagram.

A common approach to identify distinct solutions,
referred to in the mathematics literature under the
umbrella term of multistart methods [15], is to begin
from a significant number of initial guesses. This
requires extensive knowledge of the problem to
devise a suitable set of initial guesses and can be
inefficient as multiple guesses often converge to the
same configuration. Other well-established techniques
include numerical continuation [16,17], which is par-
ticularly effective in fully resolving connected bifur-
cation branches but can neglect solutions if they are
not homotopic with respect to the continuation para-
meters [18], and approaches, such as Branin’s
method, that rely on numerical integration of the
Davidenko differential equation corresponding to
the original non-linear problem [19,20]. Branin’s
method is capable of systematic computation of mul-
tiple solutions but requires determinant calculations
that become prohibitively expensive for large-scale
problems without special structure.

In this paper, we adapt a new technique known as the
deflation method [21,22] to a model problem in this
class, the configuration of a cholesteric in an elliptical
channel. The method is generalisable, robust and com-
putationally efficient for large-scale applications. It has
been successfully applied to a diverse set of non-linear
problems including non-linear partial differential equa-
tions (PDEs), singularly perturbed problems, the analy-
sis of Bose–Einstein condensates and the computation of
disconnected bifurcation diagrams [18,21,23,24]. This
paper is structured as follows: in Section 2, we briefly
describe the problem; in Section 3, we introduce the
deflation technique with an illustrative toy example. In
Section 4, we present results for the cholesteric problem.

Conclusions are drawn, with prospects for further
enhancement of the algorithm, in Section 5.

2. Model

We consider a cholesteric liquid crystal in a channel
with elliptical cross section. Equilibrium structures are
found by identifying critical points of the Frank energy,

F ¼ 1
2
!
Ω
dV K1 " " nð Þ2 þ K2 n " "& nþ q0ð Þ2

þ K3 n& "& nj j2; (1)

where K1, K2 and K3 are the splay, twist and bend elastic
constants; n is a headless unit vector, the director, that
corresponds to the local symmetry axis of the molecular
orientational distribution and q0 is the preferred pitch for
the cholesteric. Rigid anchoring (Dirichlet) boundary
conditions are imposed on the boundary @Ω, where the
director is required to point perpendicular to the plane of
the cross section. The energy is readily non-dimensiona-
lised by introducing a typical length λ and dividing
through by a characteristic magnitude of the elastic con-
stants ~K; henceforth, we use dimensionless parameters.

As discussed in the introduction, this problem pro-
motes the existence of multiple local equilibria by con-
struction. To see why, first consider the cholesteric in the
absence of boundaries. As is well known, the minimiser of
(1) is a unique uniformly twisted state. Level sets of n form
families of equally spaced planes often referred to as cho-
lesteric ‘layers’. We note a valuable discussion of the lim-
itations of this view is found in Ref. [25]. Variation away
from this preferred structure, which is equivalent to com-
pressing or bending the layers, implies an elastic cost.
Considering a cholesteric in a disc, the minimisers of (1)
are solutions where n rotates about the radial axis and lies
everywhere perpendicular to it. The number of rotations is
determined by the cholesteric pitch, q0, which promotes a
constant rotation rate, and level sets of constant orientation
therefore form equally spaced concentric circles.

For an elliptical domain, however, it is not possible to
fill the ellipse with equally spaced layers, and so defects
or a variable layer spacing must be introduced. The
cholesteric order, which prefers a uniformly twisted
state, and the shape of the domain are in competition,
so the system is said to be geometrically frustrated. The
frustration is resolved by adopting a compromise state,
incorporating some combination of layer deformation
or defects; in common with other frustrated systems,
there is typically more than one way to do this, leading
to the possibility of more than one minimiser.

Further, we explore solutions where K2 > K1;K3,
which might occur in exotic liquid crystal systems

2 D. B. EMERSON ET AL.

D
ow

nl
oa

de
d 

by
 [2

4.
15

0.
11

6.
14

3]
 a

t 1
7:

57
 2

2 
A

ug
us

t 2
01

7 



[26]. This choice of parameters leads to a material that
is doubly frustrated because it is required to twist by the
cholesteric term but, nonetheless, the twist is relatively
expensive compared to other deformation modes. As a
result, the cost of modulating the cholesteric layers is
reduced. The interaction of geometric and internal
frustration is expected to lead to a particularly rich
solution set because they permit multiple ways of
relieving the frustration: one solution might accommo-
date an incommensurate number of cholesteric periods
by folding the layers; another might introduce a defect.
These parameters therefore yield an extremisation pro-
blem that we anticipate a priori to be very challenging
to explore by naive multistart methods.

3. Deflation

In solving problems that possess multiple equilibrium
solutions, such as that posed in Section 2, a key challenge
is to ensure that the true ground state has been found from
the set of energetically low-lying solutions. The idea of the
deflation algorithm is to successivelymodify the non-linear
problem under consideration to eliminate known solu-
tions, enabling the discovery of additional distinct solu-
tions. Consider AðuÞ ¼ 0, a set of non-linear equations,
that may admit multiple solutions. This system, for
instance, could represent a set of continuous or discretised
non-linear PDEs; here, we minimise the Frank energy in
(1), subject to the unit-length constraint of the director,
and consider the resulting system of non-linear first-order
optimality conditions. Using a known solution, v, to the
system AðvÞ ¼ 0, we define the deflation operator,

Mp;αðu; vÞ ¼
1

u' vk kpU
þ α

 !

I; (2)

where α ( 0 is a shift scalar, p 2 ½1;1Þ is the defla-
tion exponent and I is the identity operator. An appro-
priate norm "k kU must be chosen for the solution space
to which the solutions belong. The deflated system is
then formed by applying the deflation operator to the
original non-linear system as

BðuÞ ¼ Mp;αðu; vÞAðuÞ ¼ 0: (3)

Iterative techniques, such as Newton’s method, may
then be applied to solve the deflated system. While
these iterations are guaranteed to not converge to the
known solution v under mild regularity conditions, the
remainder of the solution space for the original system
is preserved by the deflation operator. Numerical
experiments have found the effectiveness of the defla-
tion operator to be relatively insensitive to the choice
of deflation parameters. However, for certain problems,

performance improvements may be obtained by vary-
ing p and α [21,22]. Typical values, used throughout
this paper, are α ¼ 1 and p ¼ 2.

Having found two solutions v1; v2, an expanded
deflation operator can be constructed by composition
of single-solution deflation operators,

Mp;α u; v1; v2ð Þ ¼ Mp;α u; v1ð ÞMp;α u; v2ð Þ; (4)

and applied to the original non-linear system. As the set
of known solutions v1; v2; . . . ; vmf g is expanded, the
deflation operator is grown as the product of the single
deflation operators for each distinct solution in the set,

Mp;α u; v1; v2; . . . ; vmð Þ ¼
Ym

i¼1

Mp;α u; við Þ; (5)

and its action remains multiplicative on the original
system.

To provide a simple and tractable illustration of the
deflation process, we apply it to the problem of locating
critical values of a one dimensional objective function,

f ðxÞ ¼ 1
54

x4 ' 1
52

x2 þ 1; (6)

displayed in Figure 1 by solving the equation,

f 0ðxÞ ¼ 4
54

x3 ' 2
52

x ¼ 0: (7)

Starting from the initial guess x ¼ 2:2, Newton’s method
locates the first solution x0 ¼

ffiffiffi
5

p
=2. The deflation opera-

tor is constructed following the definition in (2) as

Figure 1. Toy 1D example of deflation. Critical values of the
function fðxÞ (black), found by solving f 0ðxÞ ¼ 0 (grey). Having
located a minimum at x0 ¼

ffiffiffi
5

p
=2, a deflated function f 0dðxÞ

(grey; dashed) is constructed; this now contains a pole at x0
but retains zeros in common with f 0ðxÞ.
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Mp;α x; x0ð Þ ¼ 1
x ' x0j jp

þ α; (8)

where "j j denotes the standard absolute value. Applying
this to (7) yields the deflated optimality condition,

0 ¼ f 0dðxÞ ¼ Mp;α x; x0ð Þf 0ðxÞ

¼ 1
x ' x0j jp

þ α
" #

4
54

x3 ' 2
52

x
" #

; (9)

to be solved for x. The function f 0dðxÞ is also plotted in
Figure 1 for deflation parameters α ¼ 1 and p ¼ 2.
Notice that x0 is not a solution to f 0dðxÞ ¼ 0, while the
remaining solutions to f 0ðxÞ ¼ 0 persist as solutions to
f 0dðxÞ ¼ 0. Use of the deflation operator precludes con-
vergence of certain iterative techniques, such as
Newton’s method, to x0 while facilitating convergence
to additional distinct solutions from the same initial
guess. With the deflation parameters chosen previously
and the same initial point, x ¼ 2:2, Newton’s method
converges to the critical point x1 ¼ 0:0. Thus, two
solutions are obtained from the same initial guess.
The process may then be repeated by constructing a
multi-deflation operator, incorporating both known
roots, to enable the discovery of the third distinct
solution at x2 ¼ '

ffiffiffi
5

p
=2 to (7) and hence identify all

extremal values of f ðxÞ.
While deflation is a useful device for finding

distinct solutions, the number of solutions discov-
ered may still depend on the analyst supplying a
suitable set of initial guesses. A systematic way to
generate the set of initial guesses to use is provided
by continuation. Suppose that the problem incorpo-
rates some set of parameters k, which for the liquid
crystal problem includes the elastic constants and
preferred pitch q0. Given a set of solutions for some
initial value of these parameters k0 ¼ !k0, we use
each of these solutions as an initial guess for
Newton’s method at a nearby parameter
k0 ¼ !k0 þ δk, deflating each solution as we find it.
Subsequently, we use the full power of the deflation
approach to search for new solution branches that,
if discovered, can be extended to other values of k0
using standard continuation techniques. The solu-
tions at k0 ¼ !k0 þ δk can in turn be used as initial
guesses to find the solutions at k0 ¼ !k0 þ 2δk, and
so on. This combination of deflation and continua-
tion is referred to as deflated continuation and is an
even more powerful algorithm than standard defla-
tion applied to a single non-linear problem [18]. It
can be interpreted physically as computing a bifur-
cation diagram, a portrait of the solutions of an
equation as a parameter varies. We shall use both

the deflation and the deflated continuation
approaches to resolve ground state solutions of the
cholesteric problem in the next section.

4. Results

We apply the deflation algorithm described above to
the cholesteric problem in an ellipse, varying the aspect
ratio of the domain, μ, and preferred cholesteric pitch,
q0. In each simulation, the director is held fixed on the
boundary such that the director points out of the plane,
i.e. n ¼ ð0; 0; 1Þ. Elastic constants are chosen to be
K1 ¼ 1, K2 ¼ 3:2 and K3 ¼ 1:1, corresponding to the
exotic splay–bend cholesteric described above. The
computational domain is centred on the origin with
major axis parallel to the x-axis. The area of each
bounding ellipse is held fixed at 3π=2.

Our multilevel finite-element code used to com-
pute stationary points of the free energy (1) is thor-
oughly described elsewhere [22,27–29]. Briefly, the
code uses the Cartesian representation of the director
n ¼ nx; ny; nz

$ %
and directly finds equilibrium points

of the Frank energy (1) by applying Newton linear-
isation to the first-order optimality conditions in
variational form, resulting from the constrained
minimisation. The code is based on deal.II [30] and
features mesh refinement and nested iteration [31]
such that the problem is discretised and solved first
on coarse meshes where computation is cheap, resol-
ving major solution features, and then interpolated
to more refined meshes to determine finer attributes
of the computed approximation. Nested iteration has
been shown to significantly improve computational
efficiency in a wide variety of problems including
liquid crystal simulations [29,32,33]. Here, we use a
nested iteration mesh hierarchy of four mesh levels
of refinement with 4884 degrees of freedom on the
coarsest grid and ending with 297,988 degrees of
freedom at the finest level. Finally, a damping factor,
ω, is applied to each Newton step for both the
undeflated and deflated systems. This damped
Newton stepping is combined with an increased
step size, !ω, when the non-linear residual drops
below 0.1. The accelerated Newton stepping is
applied to increase the rate of convergence when
the candidate solution begins to closely satisfy the
optimality conditions.

As a first example, in Figure 2, we display the results
of a typical run for aspect ratio μ ¼ 1:5 and q0 ¼ 8.
The algorithm is initialised from three initial guesses
(shown in the left column of Figure 2). As anticipated,
deflation enables the discovery of several solutions for
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each value by successively removing them with the
deflation operator. Several of these solutions possess
energetically degenerate partners that are obtained by
simple reflection about an axis of the ellipse. These are
also found by deflation, even though knowledge of the
symmetry of the problem is not explicitly built into the
algorithm.

It is important to note that the solutions to which
the code converges are stationary points of the
Lagrangian (Frank energy plus unit-length constraint),
not necessarily minimisers of the energy. It is therefore
highly desirable to characterise the nature of each solu-
tion as it is found, i.e. determine if it is a local mini-
mum, a local maximum or a saddle point. To do this,
we must verify the second-order sufficiency conditions:
a stationary point is a local minimum if the reduced
Hessian of the energy (the Hessian projected onto the
nullspace of the linearised constraints, i.e. restricted to
feasible perturbations) is positive definite. One
approach would be to assemble the linearised con-
straint Jacobian, compute a (dense) basis for its null-
space using the singular value decomposition,
construct the (dense) reduced Hessian and compute
its eigenvalues; but this would be unaffordably expen-
sive. A better way is to exploit the fact that the eigen-
values of the reduced Hessian of the energy are related
to the eigenvalues of the (sparse) Hessian of the
Lagrangian: by counting the number of negative eigen-
values of the Hessian of the Lagrangian, and comparing
it to the dimension of the constraint space, we can
determine the inertia (the number of positive, zero
and negative eigenvalues) of the associated reduced
Hessian of the energy [34, Thm. 16.3]. This allows for
the characterisation of the nature of each solution
found using a single sparse LDLT decomposition,

computed using the FEniCS, PETSc and MUMPS soft-
ware packages [35–37].

In Figure 3, we show the computed ground state
(lowest energy solution) as a function of μ and q0. For
each solution, we display the value of the energy func-
tional and also compute the Skyrmion number [2],

Q ¼ 1
4π

! n " @n
@x

& @n
@y

" #
dA; (10)

a topological index that represents the number of times
n covers the unit sphere. Such indices help identify
topologically distinct solutions: as the parameters μ
and q0 are slowly varied in Figure 3, the ground state
mostly changes smoothly. However, between certain
values, e.g. q0 ¼ 4 and 5 with μ ¼ 1, a transition to a
new solution as the ground state occurs; this is accom-
panied by a change in the Skyrmion number. Some
solutions that are quite different in appearance, e.g.
μ ¼ 1:85, between q0 ¼ 4 and 5 or q0 ¼ 8 and 9 have
identical Q because they are linked by a continuous
deformation of the director field. While deflated con-
tinuation will enable us to find intermediate solutions
between chosen values, and resolve any transitions that
take place, the Skyrmion number provides a classifica-
tion of the distinct branches that arise.

For certain values of μ and q0, the solution set
discovered by deflation alone failed to include a mini-
mal energy solution that was stable. These values are
indicated in Figure 2 with an asterisk. For these values,
we applied the deflated continuation technique
described above to identify the stable ground state
shown in Figure 3. For instance, consider the case μ ¼
1:15 and q0 ¼ 7. The lowest energy solution found
using deflation is displayed as an inset indicated by
an asterisk in Figure 4 but possesses unstable directions

10.506 

8.730 

10.872 11.118 

9.067 18.742 (a)

(b)

(c)

Figure 2. (Colour online) Example solution set found with deflation. Solution set for cholesteric pitch q0 ¼ 8 and aspect ratio
μ ¼ 1:5. Rows A–C depict different initial guesses (left) and the solution set (right) recovered for each through successive
applications of the deflation operator (5). The computed free energy of each solution is also given.
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according to the Hessian analysis described above. We
therefore use the μ ¼ 1:15 and q0 ¼ 6 solution set and
continue in q0 from 6 to 7. The energies of intermedi-
ate solutions obtained in the process are plotted in
Figure 4 as a bifurcation diagram; the initial and final
solution set recovered in this process are displayed in
Figure 4 as insets. A new pair of solutions, not in the
q0 ¼ 6 solution set, emerges through a fold bifurcation
at approximately q0 * 6:67 and represents the stable
ground state at higher values of q0; the prior ground
state becomes higher in energy and is now unstable.

The same procedure was applied to all the proble-
matic cases in Figure 3, where the solutions shown are
the lowest energy solutions found and are all verified as
stable. This example illustrates the power of deflated
continuation to track distinct branches in the solution
set and identify solutions very different from the initial
guesses provided. While it remains possible that the
true ground state remains elusive for some values in
μ; q0ð Þ space, it is clear that deflation and deflated
continuation are powerful tools to assist in the assem-
bly of phase diagrams.

The solutions found in Figure 3 catalogue the
interesting interplay of the elastic constants, choles-
teric parameter and confining geometry. For μ ¼ 1,
a circular domain, increasing q0 initially leads only

to the incorporation of additional rotations as
expected. Around a critical value of q0 ¼ 7, the
contours of constant orientation are greatly
deformed as the number of radial rotations in the

q=3 4 5 6 7

µ=1

1.15

1.35

1.5

1.65

1.85

2.0

2.123 5.833 5.316 2.941 

5.476 

7.633

5.809 2.927 6.246

8

7.536 3.533 5.004 7.508 4.309 5.496 

9.231 4.714 4.068 8.32

3.976 3.384 7.482 6.413 4.338 

5.779 

7.033 3.342 7.488 11.216 

3.194 7.626 9.138 

7.813 9.348 13.001 

0 1 1 0 1 0 1 2

9

5.054 6.079 11.079 13.423 

1 1 1 0 0 0 0 1

10

6.588 5.433 10.535 11.761 

1 1 1 0 0 0 0 1

6.349 4.631 

3.717 5.890 8.602

1 1 0 0 0 1 1 1

6.605 2.255

2.798 

3.466 3.822 

0 0 0 0 1 11 1

4.482 

0 0 0 1 1 1 1 1

4.500 3.972

1 0 0 0 1 1 1 1

* *

* *

* *

*

* *

*

Figure 3. (Colour online) Cholesteric liquid crystal in an elliptical domain. Ground state solutions shown as a function of pitch q0
and aspect ratio μ. For each solution, the value of the energy functional is displayed in the top right, with the Skyrmion number
shown bottom right. Solutions indicated by *, marked top left, were found using the deflated continuation technique.

Cholesteric pitch q0

E
ne

rg
y 

fu
nc

tio
na

l

*

Figure 4. (Colour online) Bifurcation diagram as a function of
q0 generated by deflated continuation for aspect ratio
μ ¼ 1:15. The solution set is visualised at q0 ¼ 6 and q0 ¼ 7.
Black points represent stable solutions and grey points indicate
one unstable direction. The lowest energy, yet non-stable,
solution identified by deflation without continuation for q0 ¼
7 is indicated by an asterisk.
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channel increases from π at q0 ¼ 6 to 3π=2 for
q0 ¼ 8. A similarly deformed structure is visible at
q0 ¼ 10, which is apparently close to a jump from
3π=2 rotations to 2π.

For higher aspect ratios, the contours of constant
orientation can be deformed by the geometry of the
channel. For example, for aspect ratio μ ¼ 1:5 and
q0 + 7, the ground state consists of the director
rotating by 2π about the radial direction from the
centre; above this value, an extra π rotation is
incorporated. Comparing the shape of contours of
constant tilt, notice that the interior ‘layer’ is
approximately circular for q0 ¼ 5 but becomes
more elongated with increasing q0. For q0 ¼ 8, the
ground state is strikingly different: two highly
deformed interior circular layers are accommodated
within one contiguous outer layer. The ground state
for q0 ¼ 9 reverts to the expected pattern, simply
incorporating an additional twist. Furthermore, as μ
increases, the transition points between states with
different amounts of twist occur at higher values of
q0 and are typically proceeded by substantial layer
deformation. Therefore, the confining geometry
plays a role in deterring or encouraging the addi-
tion of layers.

We note that deflation uncovers a particularly
large number of solutions for q0 ¼ 8 and that many
of the solutions have relatively low energy compared
to the ground state. For other values of q0, only a
few of the solutions are close to the ground state in
energy. We speculate that this phenomenon is due to
commensurability, with some values of q0 being more
compatible with the shape of the domain than
others. For a circular domain, commensurate solu-
tions exist where q0 happens to allow an integer
multiple of π rotations from the centre. Maximally
strained solutions occur between these special values,
potentially inducing deformation of the layers to
relieve the frustration. This is clearly visible at μ ¼
1:5 and q0 ¼ 8, or at μ ¼ 1:85 and q0 ( 9, where the
inner layer in both cases is highly tortuous to fill the
interior of the domain.

To resolve the sequence of transitions that occurs
around one of the maximally strained solutions, we
visualise a bifurcation diagram in Figure 5 for an
elliptical domain with aspect ratio μ ¼ 1:5 and with
the preferred pitch ranging from q0 ¼ 5 to q0 ¼ 9.
We initialise the computation with the solutions
found by our previous analysis. The diagram shown
in Figure 5(a) displays a relatively small solution set
for q0 < 7, but above q0 * 7:4, a dense thicket of
additional solutions appears. As is visible in the

expanded region depicted in Figure 5(b), this con-
sists of a rapid succession of fold and pitchfork
bifurcations. The corresponding solutions at several
values of q0 are displayed in Figure 5(c), illustrating
the striking complexity of solution sets that can be
uncovered using deflated continuation.

Because deflation suppresses solutions close to the
initial guess, even very distant solutions can be recovered.
A particularly important result is that while our initial
guesses are smooth functions, the algorithm was able to
spontaneously identify solutions with disclinations.
Confined cholesterics in rectangular domains or channels
have been experimentally and numerically shown to exhi-
bit structures with disclinations [5,12,13], as discussed in
the introduction. The existence, type and number of the
disclinations were shown to be modulated by changes to
the depth and width of the channel, as well as the choles-
teric pitch. Figure 6 displays three examples for μ ¼ 1:5
and varying q0 with computed director fields and asso-
ciated elastic energy densities from which disclinations
are readily identified. For q0 ¼ 5, the solution shown in
Figure 6(a) has four defect points, arranged in a diamond
pattern near the centre of the domain. The solutions in
Figure 6(b,c) were found for q0 ¼ 7 and possess two and
one disclinations, respectively. Comparing the solutions’
free energies, it is clear that the single defect structure is
energetically preferred. We note that the energy of the
solution in Figure 5(c) corresponds to the third lowest
energy (and first unstable state) shown for q0 ¼ 7 in the
bifurcation diagram in Figure 5(a). Thus, our results
suggest that the propensity of the cholesteric to forming
metastable structures with disclinations in elliptical chan-
nels, perhaps upon quenching from the isotropic phase,
strongly depends on the aspect ratio of the channel
boundary. Moreover, our numerical experiments indicate
that multiple equilibrium configurations with distinct
disclination patterns may exist for the same geometry
and material parameters.

The deflation technique plays a central role in the
discovery of these disclination arrangements. For
instance, numerical simulations in Ref. [13] relied on a
priori knowledge, gained from experimental observa-
tions, that disclination structures should be present in
order to initialise the Newton iterations within a basin of
attraction. We emphasise that here the simulations are
initialised with smooth director fields. Multiple solutions
and the emergence of disclinations occurred as sponta-
neous discoveries enabled by the deflation computa-
tions. In situations where experimental and analytical
information is limited, such numerical capabilities facil-
itate a more robust and thorough exploration of the
admissible solution space of a given problem.
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5. Conclusion

In this paper, we present a new technique, deflation, for
recovering equilibrium solutions of the free energy of a
liquid crystal. The utility of the method is shown on a toy
example and then used to determine the structure of a
cholesteric in an elliptical domain. The ground state is
identified for a range of aspect ratios μ and preferred
pitches q0, showing gradual deformation of the solutions
as a function of these parameters and transitions to

different solutions at critical values. For selected values
of μ and q0, we reconstruct the bifurcation diagram for
the low energy solution set, finding remarkably dense
solutions sets near the transition points. In future work,
we will apply the method to characterise the solution set
of more complex geometries involving cholesterics, such
as the rich 3D structures observed in Ref. [3]. It will also
be important to include weak anchoring, and other
experimentally relevant anchoring conditions such as
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Figure 5. (Colour online) Deflated continuation. (a) Bifurcation diagram computed for fixed μ ¼ 1:5 and continuing in q0. Points are
coloured by the number of unstable directions, with black indicating a stable solution, and lighter grey indicating more unstable
directions. A particularly dense portion of the diagram, outlined in red, is shown in greater detail in (b) where vertical dashed lines
indicate values of q0 for which the solution set is displayed in (c).
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degenerate tangential anchoring rather than the vertical
Dirichlet condition imposed here. The surface saddle-
splay K24 elastic term must also be included together
with weak anchoring and will likely further modify the
solution set.

The deflation methodology significantly enhances the
utility of Newton iterations applied to non-linear systems
by enabling Newton’s method to converge to multiple
solutions from the same initial guess. Applying the defla-
tion operator ensures that subsequent Newton iterations
do not converge to previously discovered solutions and
effectively modifies the basin of attraction to include
unknown solutions. While convergence to multiple solu-
tions is not guaranteed through use of the deflation opera-
tor, sufficient conditions for convergence of deflated
iterations are constructed in Ref. [18] based on a general-
isation of the Rall–Rheinboldt theorem. Our results not
only illuminate the effect of deflation but also highlight the
case that the use of multiple initial guesses to discover all
solutions is not entirely eliminated with deflation.
However, deflated continuation systematically provides a
sequence of good initial guesses and increases overall effi-
ciency and reliability of multiple solution discovery
throughmore systematic exploration of the solution space.

More generally, deflation and deflated continuation
therefore allows theorists to recover energetically low-
lying solutions in which a liquid crystal may become
kinetically trapped. It can also be used to track different
solution branches when a system exhibits a bifurcation
with respect to some external parameter, e.g. the applied
field in a Freedericksz transition. The method is very
general and can be readily adapted to different represen-
tations, e.g. the Q-tensor and parametrisations; it is likely

to be most useful in systems where little analytical gui-
dance or experimental imaging is available.
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