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ABSTRACT: Under ultra-high solar concentration, drastic efficiency drops are attributed to a deteriorating fill factor 
and additional thermal effects. The effects of ultra-high solar concentration on other fundamental electrical 
properties, such as open-circuit voltage, have yet to be explored in detail. In this work, we discuss our theoretical 
examination of semiconductor performance under ultra-high irradiance. Using advanced numerical analysis 
techniques and the finite-element library deal.II, we develop a computational model to simultaneously solve the 
carrier continuity equations and Poisson’s equation for optically generated charge carriers and the resulting electric 
potential as functions of space and time.  We use this model to analyze VOC in both dynamic and quasi-steady state 
conditions.  Ultimately, we characterize the relationship between VOC and increasing solar concentration.   
Keywords: III-V semiconductors, concentrator cells, modeling, numerical simulation.  
 

 
 
1 INTRODUCTION 
 

Today, record efficiencies from concentrated 
photovoltaic devices (CPVs) emerge from devices 
subjected to solar concentration greater than 500 suns [1]. 
In the ultra-high solar concentration regime, the incident 
light on a photovoltaic device becomes greater than 1000 
times the sun. At such high solar concentrations, the 
magnitude of optically generated carriers begin to rival 
equilibrium carrier densities, moving devices out of the 
“low-injection” and towards the “high-injection” regime.   
This complicates our understanding of carrier dynamics, 
as drift rivals diffusion for the dominant type of carrier 
transport in the PN-junction [2]. 

As a result, understanding complex electrical 
parameters, such as open-circuit voltage, is a nontrivial 
challenge.  Conventionally, the relationship between 
open-circuit voltage (VOC) and solar concentration (X) is 
linked to the diode ideality factor (n).   
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Although Equation 1 is experimentally confirmed at 
under high irradiance (X<1000 suns), this explanation 
breaks down under ultra-high irradiance (X>1000 suns).  
In the logarithmic plots depicted in Figure 1, the 
flattening slope of VOC(X) is attributed to non-radiative 
or Auger recombination dominating [4][5]. Any sublinear 
behavior of Voc(X) under ultra-high irradiance has been 
dismissed as cell overheating [5]; however, sublinear 
behavior is still present under conventional flash-testing 
where the duration of illumination is short and, therefore, 
should not generate significant thermal effects [5]. This 
inconsistency reveals a gap in our understanding of VOC’s 
dependence on solar concentration. 

To predict VOC at ultra-high solar concentrations, we 
utilize the definitions of the quasi-Fermi levels to model 
VOC under quasi-steady state and dynamic conditions.  

 
 
Figure 1: (a) Triple junction GaInP/InGaAs/InGaAs CPV 
subjected to high-irradiance flash testing [3]. (b) Dual 
junction GaInP/GaInAs/Ge CPV subjected to ultra-high 
irradiance flash testing [5]. (c) Triple junction 
GaInP/GaAs/Ge CPV subjected constant ultra-high 
irradiance [6]. 
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Equation 4 yields a definition of VOC that is directly related 
to the charger carrier distributions in space and time.  
Typically, the splitting of the quasi-Fermi levels is 
considered to be constant across the depletion region and 
steadily increasing with solar concentration, a valid 
assumption in the low-injection regime. However, as 
mentioned before, low-injection assumptions may no 
longer hold under ultra-high solar concentration.  In this 



work, we simultaneously solve the carrier continuity 
equations and Poisson’s equation in space and time 
without many of the standard simplifying assumptions to 
investigate the effect of dynamically changing carrier 
concentrations on the splitting of the quasi-Fermi levels, 
and ultimately VOC. 

 

2 PROBLEM FORMUATION 
 
 The carrier continuity equations characterize the flux 
of electrons (n) and holes (p) through a semiconductor.  
We solve these two equations simultaneously with 
Poisson’s equation, which determines the electric 
potential that arises from the carrier distributions.  In 1D, 
our partial-differential equation (PDE) system is as 
follows 
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where Dn, Dp, µn, µp, and 𝜖 are material parameters.  In 
this work, we chose to model a gallium arsenide (GaAs) 
solar cell; therefore, we chose parameters appropriate for 
this condition.  Our charge carrier distributions, n(x,t) and 
p(x,t) can be thought of as the superposition of 
equilibrium carriers and excess, optically generated, 
carriers. 
 
                        𝑛 𝑥, 𝑡 = 𝑛! + 𝛿𝑛(𝑥, 𝑡) (8) 
                        𝑝 𝑥, 𝑡 = 𝑝! +   𝛿𝑝(𝑥, 𝑡) (9) 
 
2.1 Generation and Recombination 
 
 We consider a spatially varying generation profile for 
optically generated carriers based on the Beer-Lambert 
Law, rather than the simplified uniformly illuminated 
condition. Light intensity and generated carriers both 
decay as a function of depth through the semiconducting 
material at a rate determined by the absorption 
coefficient, α.  Our generation profile has the following 
form, 
 

𝐺!" = 𝛼  𝑋  𝐿!"𝑒!!" , (10) 
  
where α and the photon flux (Lfl) are material parameters 
chosen to model GaAs.    
 The net recombination rate (U) considered in this 
work is comprised of radiative and Auger recombination: 
the dominating recombination types under low and high-
irradiance,  
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where Rec is the radiative recombination constant and 
An/Ap are the Auger constants for GaAs. 
 
 
 

 

2.2 Boundary Conditions 
 
 To achieve a unique solution to our PDE system we 
impose boundary conditions (BCs) on our unknowns (n, p, 
V) at x=0 and x=L, the total depth of the semiconducting 
material.  The BCs imposed on the carrier distributions are 
Robin, in that they constrain the derivative of the function 
to its value at that point.  This arises from surface 
recombination effects. 
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The boundary conditions for the electric potential, V, can 
be either Dirichlet (function value is imposed on 
boundary) or Neumann (derivative value is imposed on 
boundary).  We began with Dirichlet BCs, as we know 
V(L) is determined by the built-in-voltage of the PN-
junction, 
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where NA and ND are the doping profiles of the p-type and 
n-type material, respectively.   
 
2.3 Finite-Element Method (FEM) 
 
 To solve our PDE system, we created a flexible 
computational model that uses finite-element methods 
(FEM) and nested iteration to numerically approximate 
solutions to a linearized, varational formulation of our 
original system [7].  Our process employs the Newton-
Raphson method: an iterative process that approximates 
the root of a real function.  The process in its simplest form 
is as follows, 
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In our problem, we simultaneously solve for the roots of 
Equations 5-7 by calculating the iterative updates (Δn, Δp, 
ΔV) that bring us closer to the true solutions. 
 
2.4 Nondimensionalization 
 
 To manage the widely varying orders of magnitudes 
present in our problem, we utilize a nondimensionalization 
scheme based on the Debye length of a charge carrier [9].  
Here, 
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where N is of the same order of magnitude as the dopant 
concentrations, NA or ND. 



 We employ these techniques together in deal.II, an 
open-source FEM library that facilitates solving 
complicated PDE systems [9]. We eliminate any second-
order terms by integrating by parts and applying the 
Robin BCs, yielding a first-order varational system.  We 
build our solutions using Lagrange elements of order 2, 
scaled to define our functions over the material depth 
L=1µm.   
 
3 RESULTS 
 
3.1 Quasi-Steady State Condition: High Concentration  

 
We began by zeroing the time derivatives in 

Equations 5-7 to investigate VOC in the quasi-steady state 
condition. This allows us to solve our PDE system 
spatially, rather than both spatially and temporally.  
Figure 2 shows the concentration carrier profiles and 
resulting band structure under VOC conditions while 
illuminated by 1 sun.  We observe conventional splitting 
of the quasi-Fermi levels.  Under high solar concentration 
(X=1000), the magnitude of minority carriers increases, 
resulting in a larger split between the quasi-Fermi levels.  

 
3.2 Time-stepping Considerations 

 
To solve our PDE system temporally, we introduce 

time-stepping and a second nondimensionalization 
scheme.  We scale our time steps by the dielectric 
relaxation time scale [9], which is related to the Debye 
length as follows. 
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Figure 3 depicts the time-evolution of excess carriers 
after the generation source is turned off at t=0.  The 
minority carriers rapidly decay to their equilibrium 
values, with the electrons reaching the equilibrium value 
quicker than the holes.  This is due to the large difference 
in mobility between electrons and holes in GaAs.  We 
intend to use this version of the solver to simulate “flash-
testing” conditions. 
 
3.3 Ultra-High Concentration and VOC Effects 

 
As we increase solar concentration up to 100,000 

suns, we observe a steady increase in VOC.  Figure 4 
shows that this increase is linear, and is identical with and 
without Auger recombination accounted for in our net 
recombination rate (U).  The inset in Figure 4 shows that 
Auger recombination does not outpace radiative 
recombination in GaAs until carrier densities are >1021 
cm-3.  This would seem to show that carrier dynamics do 
not cause a drop-off in VOC at ultra-high concentration. 
 However, when we look at the carrier profiles at 
concentrations that would “wash-out” the PN-junction 
effects – δn >> n0 in the n-type material, or δp >> p0 in 
the p-type material – we notice unusual behavior.  Figure 
5 depicts the carrier concentration profiles and electric 
potential under 100,000,000 suns solar concentration.  At 
this concentration, the optically generated carriers are an 
order of magnitude greater than the equilibrium majority 
carriers.   We see that the total electron and hole densities 
are almost equal in the p-type region of the device, 
resulting in a near zero electric potential.  However, in 
the n-type portion of the device the profiles return to the 

   
 

   
 

Figure 2: Carrier concentration profiles and energy band 
diagrams under 1X and 1000X.  Electrons and the electron 
quasi-Fermi level are represented by the red lines, while 
the holes and hole quasi-Fermi level are represented by the 
blue lines. VOC is calculated to be the maximum split 
between the quasi-Fermi levels on the band diagram.   
 
 
 
 

  
 
Figure 3: Time evolution of optically generated carriers 
decaying to equilibrium concentrations.   
 

 
 

Figure 4: (a) VOC plotted logarithmically against 
increasing solar concentration (X).  Plots with and without 
Auger recombination are identical up to 100,000 suns, 
which is consistent with the inset plot, showing that Auger 
recombination does not outpace radiative recombination 
until carrier densities are of order 1021 cm-3.  
 



   

Figure 5: Computed carrier and potential profiles for 
X=100,000,000 suns.  Dirichlet BCs are forcing PN-
junction behavior where it should be washed out.   

same values that were present in the PN-junction, and the 
electric potential increases linearly to the built-in voltage, 
set by our Dirichlet BC.  We believe this to be an 
artificial effect, rather than a result of the carrier 
dynamics.  Therefore, it is possible that we are not seeing 
the true evolution of VOC with solar concentration, and 
rather are seeing a trend that is a result of enforcing the 
Dirichlet boundary condition. 
 In a conventional PN-junction, the electric field (ξ) is 
only nonzero in the depletion region.  Therefore, we can 
employ zero Neumann BCs on the electric potential. 
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However, in order to achieve a unique solution to 
Poisson’s equation in this manner, we must uphold the 
compatibility condition [7].  
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As this is a global constraint, it is computationally 
expensive to implement into our solver.  We are currently 
exploring other ways of satisfying this condition without 
drastically slowing computation time.  
 
4 CONCLUSIONS 
 

In this work, we solved a PDE system that governs 
the spatial dependence of charge carriers and the electric 
potential in ultra-high concentration photovoltaics. Using 
the deal.II finite-element library, we computed carrier 
density profiles for a variety of solar concentrations 
illuminating a GaAs PN-junction, and solved for the 
resulting VOC. Additionally, we integrated time-stepping 
into our solver in order to model flash testing conditions.  
We demonstrate a linear relationship between VOC and 
solar concentration, but note that this may be a result of 
our strongly enforced boundary condition on the electric 
potential, rather than a result of carrier dynamics. In 
future work, we will implement zero Neumann boundary 
conditions on the electric potential to more accurately 
characterize the evolution of VOC with increasing solar 
concentration.   
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