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This paper derives a posteriori error estimators for the nonlinear first-order optimality conditions associated
with the Frank-Oseen elastic free-energy model of nematic and cholesteric liquid crystals, where the required
unit-length constraint is imposed via either a Lagrange multiplier or penalty method. Furthermore, theory es-
tablishing the reliability of the proposed error estimator for the penalty method is presented, yielding a concrete
upper bound on the approximation error of discrete solutions. The error estimators herein are composed of
readily computable quantities on each element of a finite-element mesh, allowing the formulation of an efficient
adaptive mesh refinement strategy. Four elastic equilibrium problems are considered to examine the perfor-
mance of the error estimators and corresponding adaptive mesh refinements against that of a simple uniform
refinement scheme. The adapted grids successfully provide significant reductions in computational work while
producing solutions that are highly competitive with those of uniform mesh in terms of constraint conformance
and computed free energies.

Keywords: liquid crystal simulation, a posteriori error estimators, adaptive mesh refinement, nested iteration.
AMS: 76A15, 65N30, 49M15, 65N22, 65N15

1. INTRODUCTION

Liquid crystals are used and studied in a diverse ar-
ray of modern applications including display technologies,
nanoparticle organization [19], and liquid crystal infused
elastomers used in the production of novel actuator devices
such as artificial muscles [26] and light-driven motors [31],
among many others. They are a form of soft material that
exhibits mesophases, depending on temperature, with prop-
erties intermediate between liquid and crystalline phases. In
this paper, we focus on nematic and cholesteric liquid crys-
tals which consist of rod-like molecules with a preferred
average orientation at each point denoted by the vector field
n(x, y, z) = (n1, n2, n3)T . In the model considered below,
this vector field is subject to a pointwise unit-length con-
straint throughout a given domain, Ω. Thorough treatments
of liquid crystal physics are found in [15, 25, 30].

Numerical studies of liquid crystal behavior are a funda-
mental component in the validation and analysis of experi-
ments, exploration of novel physical phenomena [2, 6], and
investigation of device design and performance. Many cur-
rent experiments and technologies require simulations with
anisotropic physical constants and intricate boundary con-
ditions on two and three dimensional domains. This paper
focuses on liquid crystal simulations performed by solving
the first-order optimality conditions derived from the Frank-
Oseen elastic free-energy model. As seen in [2–4], this ap-
proach yields an effective method for simulating compli-
cated physical phenomena, including flexoelectric effects.
However, the variational system resulting from the deriva-
tion of the first-order optimality conditions is highly non-
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linear. Coupled with the nonlinear pointwise unit-length
constraint and the desire to accurately simulate behavior
on higher dimensional domains, this motivates the devel-
opment of an a posteriori error estimator for numerical so-
lutions to the optimality conditions. In the following, error
estimators are derived for the optimality conditions arising
when the unit-length constraint is imposed with either a La-
grange multiplier or a penalty term.

A posteriori error estimators aim to provide easily com-
putable and reliable bounds on the error of numerical so-
lutions for partial differential equations (PDEs) and varia-
tional systems. Accurate error estimators significantly in-
crease the efficiency of numerical methods by facilitating
the construction of optimal discretizations via adaptive re-
finement. Furthermore, such estimators offer a means of
objectively measuring the quality of a computed numeri-
cal solution. A wealth of research exists for the design and
theoretical support of effective error estimators in the con-
text of finite-element methods. This includes techniques
treating both linear and nonlinear PDEs across a number
of applications [8, 10, 18, 22, 27]. As discussed above, the
considered optimality conditions represent nonlinear vari-
ational systems. Therefore, in deriving the error estima-
tors and proving reliability in this paper, the general frame-
work for nonlinear PDE estimators constructed by Verfürth
[28, 29] is employed. In order to demonstrate the efficiency
and capability of the proposed estimators, they are applied
as part of an adaptive mesh refinement (AMR) strategy to a
variety of elastic liquid crystal problems. The adapted grids
significantly reduce computational work while yielding so-
lutions that are highly competitive with those of uniform
mesh in terms of constraint conformance and computed free
energies.

This paper is organized as follows. The Frank-Oseen
free-energy model and variational systems for the first-order
optimality conditions associated with the two constraint en-
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forcement approaches are introduced in Section 2. Sec-
tion 3 discusses additional notation and prerequisite theo-
retical results to be applied in the reliability proofs to fol-
low. In Section 4, error estimators are constructed for both
the penalty and Lagrangian formulations of the variational
systems and reliability of the penalty method estimator is
proven. An AMR strategy applying the derived error esti-
mators is discussed in Section 5, and a number of numerical
experiments are performed demonstrating the accuracy and
efficiency of the mesh refinement strategy. Finally, Section
6 provides some concluding remarks and a discussion of
future work.

2. ENERGY MODEL AND OPTIMALITY CONDITIONS

While a number of liquid crystal models exist [14, 23,
25], we consider the Frank-Oseen free-energy model where
the equilibrium free energy for a domain Ω̄, with coordi-
nates x̄ ∈ Ω̄, is characterized by deformations of the nondi-
mensional unit-length director field, n. Liquid crystal sam-
ples tend towards configurations exhibiting minimal free
energy. Let K̄i, i = 1, 2, 3 be the Frank constants [17] with
K̄i ≥ 0 [16]. Here, we consider the case that each K̄i 6= 0
and define the dimensionless tensor

Z = κn⊗ n + (I− n⊗ n) = I− (1− κ)n⊗ n,

where κ = K̄2/K̄3. Note that if κ = 1, Z is reduced to
the identity. The Frank constants are often anisotropic (i.e.,
K̄1 6= K̄2 6= K̄3), vary with liquid crystal type, and play
important roles in liquid crystal phenomena [7, 20].

We denote the classical L2(Ω) inner product and norm
as 〈·, ·〉0 and ‖ · ‖0, respectively, for both scalar and vector
quantities. Further, let (·, ·) and | · | denote the Euclidean
inner product and norm. Throughout this paper, we assume
the presence of Dirichlet boundary conditions and, there-
fore, utilize the null Lagrangian simplification discussed in
[2, 25]. Thus, the Frank-Oseen free energy for cholesteric
liquid crystals is written∫

Ω̄

w̄F dV̄ =
1

2
K̄1‖∇x̄ · n‖20 + K̄2〈t̄0,n · ∇x̄ × n〉0

+
1

2
K̄3〈Z∇x̄ × n,∇x̄ × n〉0 +

1

2
K̄2〈t̄0, t̄0〉0, (1)

where t̄0 is the wave parameter characterizing the chiral
properties of the cholesteric, which may be positive or neg-
ative depending on the handedness of the cholesteric [13],
and ∇x̄ represents the standard differential operator for
Ω̄. The cholesteric free energy in (1) represents a gener-
alization of the standard nematic free energy, discussed in
[3, 25], and collapses to the nematic representation when
t̄0 = 0. Therefore, in deriving the error estimators, the gen-
eral free-energy model is examined and an estimator for the
nematic case is recovered by setting t̄0 = 0.

As noted above, the director field is subject to a local
unit-length constraint such that n · n = 1 at each point

throughout the domain. In this paper, we consider enforc-
ing this unit-length constraint, as part of an overall energy-
minimization framework, with either a penalty approach or
a Lagrange multiplier. In order to properly formulate both
methods, we first introduce the following nondimensional-
ization. Let µ be a fixed length scale and K denote a char-
acteristic Frank constant. We apply the spatial change of
variables x̄ = µx to (1) and divide the resulting expres-
sion by µK. Finally, define nondimensional Frank con-
stants Ki = K̄i

K , i = 1, 2, 3 and t0 = µt̄0. Note that the
change of variables also scales derivatives. Thus, to com-
pute free-energy minimizing configurations, we define the
nondimensionalized free-energy functional, after rescaling
by a factor of 2, as

G(n) = K1‖∇ · n‖20 +K3〈Z∇× n,∇× n〉0
+ 2K2〈t0,n · ∇ × n〉0 (2)

for a dimensionless domain Ω and differential operator ∇.
Note that the K2〈t0, t0〉0 term from (1) has been dropped
as it does not depend on n and, as such, may be disregarded
in the minimization process.

Throughout this paper, it is assumed that n ∈ H1
g (Ω)3 =

{v ∈ H1(Ω)3 : v = g on ∂Ω}, where H1(Ω) represents
the classical Sobolev space with norm ‖ · ‖1. Here, we as-
sume that g satisfies appropriate compatibility conditions.
For example, if Ω has a Lipschitz continuous boundary, it
is assumed that g ∈ H

1
2 (∂Ω)3. Note that if g = 0, the

space H1
g (Ω)3 = H1

0 (Ω)3 such that the theory of [3, 4] is
applicable.

The penalty method is constructed by augmenting the
functional in (2) with a weighted, positive term such that

H(n) = G(n) + ζ〈n · n− 1,n · n− 1〉0, (3)

whereH(n) has been nondimensionalized in the same fash-
ion as the free-energy functional and ζ > 0 represents a
constant weight penalizing deviations of the solution from
the unit-length constraint. The dimensionless parameter ζ
is defined to be ζ = µ2ζ̄

K . In the limit of large ζ values,
unconstrained minimization of (3) is equivalent to the con-
strained minimization of (2). To minimize the functional
H(n), first-order optimality conditions are derived as

P(n) = K1〈∇ · n,∇ · v〉0 +K3〈Z∇× n,∇× v〉0
+ (K2 −K3)〈n · ∇ × n,v · ∇ × n〉0
+K2t0

(
〈v,∇× n〉0 + 〈n,∇× v〉0

)
+ 2ζ〈v · n,n · n− 1〉0 = 0 ∀v ∈ H1

0 (Ω)3 (4)

after canceling coefficients of 2 for convenience.
An alternative approach to enforcing the unit-length con-

straint is the use of a nondimensionalized Lagrange multi-
plier where the Lagrangian is defined as

L(n, λ) = G(n) +

∫
Ω

λ(x)((n · n)− 1) dV.

2



September 2017

Computing the associated first-order optimality conditions
yields

F(n, λ) = K1〈∇ · n,∇ · v〉0 +K3〈Z(n)∇× n,∇× v〉0
+ (K2 −K3)〈n · ∇ × n,v · ∇ × n〉0

+K2t0
(
〈v,∇× n〉0 + 〈n,∇× v〉0

)
+

∫
Ω

λ(n,v) dV

+

∫
Ω

q((n,n)− 1) dV = 0, (5)

for all (v, q) ∈ H1
0 (Ω)3 ×L2(Ω). In the sections to follow,

an a posteriori error estimator is derived for both the penalty
and Lagrange multiplier methods. Furthermore, theory sup-
porting the reliability of the error estimator for the penalty
method is proven. While extending this theory to the esti-
mator for the Lagrangian formulations is the subject of fu-
ture work, numerical results show that both estimators offer
significant performance increases.

3. ADDITIONAL NOTATION AND PRELIMINARY
THEORY

In this section, we consider discretizing the variational
systems of Section 2 with finite elements to approximate
equilibrium solutions. In preparation for deriving a poste-
riori error estimators and the associated supporting theory,
some additional notation is defined and requisite prelimi-
nary theoretical results are discussed. For the remainder
of the paper, it is assumed that Ω is an open, connected
domain of Rn, n ≥ 2, with polyhedral boundary Γ. For
any open subset ω ⊂ Ω with Lipschitz boundary, the cor-
responding norms are denoted with an index as ‖ · ‖1,ω and
‖ · ‖0,ω . Furthermore, it is assumed that Ω is subject to a
triangulation with a quasi-uniform family of meshes, {Th},
for 0 < h ≤ 1, satisfying the conditions

max{diam T : T ∈ Th} ≤ h diam Ω,

min{diam BT : T ∈ Th} ≥ ρh diam Ω, (6)

where ρ > 0 is a constant and BT is the largest ball con-
tained in a given T such that T is star-shaped with respect
to BT . We also require that any two elements of Th are
either disjoint or share a complete smooth sub-manifold of
their boundaries, satisfying the admissibility property for a
triangulation. For any T ∈ Th, let hT = diam T , denote
the set of edges for T as E(T ), and for any E ∈ E(T ),
hE = diam E. The set N (T ) represents the vertices of T ,
and N (E) is the set of vertices for E. The complete set of
edges and vertices, respectively, for a triangulation Th is

Eh =
⋃
T∈Th

E(T ), Nh =
⋃
T∈Th

N (T ),

with Eh,Ω signifying the set of edges excluding those on the
boundary, Γ. It is also assumed that the mesh family is fine
enough such that hT , hE ≤ 1.

Note that the quasi-uniformity condition in (6) ensures
that for all T ∈ Th and E ∈ E(T ), there exist constants
such that Cl ≤ hT /hE ≤ Cu independent of h, T , and E
[29]. Furthermore, it implies that the smallest angle of any
T is bounded from below by a constant independent of h.
Finally, let

ωT =
⋃

E(T )∩E(T ′) 6=∅

T ′, ωE =
⋃

E∈E(T ′)

T ′,

ω̃T =
⋃

N (T )∩N (T ′) 6=∅

T ′, ω̃E =
⋃

N (E)∩N (T ′) 6=∅

T ′.

Each of the quantities above represent subdomains of Ω.
Let T̂ = {x̂ ∈ Rn :

∑n
i=1 x̂i ≤ 1, x̂j ≥ 0, 1 ≤ j ≤

n} denote a fixed reference element and Ê = T̂ ∩ {x̂ ∈
Rn : x̂n = 0} a fixed reference edge for the triangulation.
The triangulation is assumed to be affine equivalent in the
sense that, for any T ∈ Th, there exists an invertible affine
mapping from the reference components to T . For any E ∈
Eh,Ω and piecewise continuous function φ, the jump of φ
across E in the direction ηE is denoted [φ]E . Finally, for a
given k ∈ N, define the space

Sk,0h = {φ : Ω→ R : φ|T ∈ Πk,∀T ∈ Th} ∩ C(Ω̄)

where Πk is the set of polynomials of degree at most k,
let φ|T denote the restriction of φ to the element T , and
set C(Ω̄) as the collection of continuous functions on the
closure of Ω.

With the notation established above, a number of im-
portant supporting results are gathered here and referenced
substantially in the reliability proofs of Section 4. The first
is an approximation error bound for the Clément interpola-
tion operator [12, 28]. Denoting the operator Ih : L1(Ω)→
S1,0
h , the following holds for Th.

Lemma 3.1 For any T ∈ Th and E ∈ Eh

‖φ− Ihφ‖0,T ≤ C1hT ‖φ‖1,ω̃T
∀φ ∈ H1(ω̃T ),

‖φ− Ihφ‖0,E ≤ C2h
1/2
E ‖φ‖1,ω̃E

∀φ ∈ H1(ω̃E),

where C1 and C2 depend only on the quasi-uniformity con-
dition in (6).

Following the notation in [28, 29], let ψT̂ , ψÊ
∈ C∞(T̂ ,R) be cut-off functions such that

0 ≤ ψT̂ ≤ 1, max
x̂∈T̂

ψT̂ (x̂) = 1, ψT̂ = 0 on ∂T̂ ,

0 ≤ ψÊ ≤ 1, max
x̂∈Ê

ψÊ(x̂) = 1, ψÊ = 0 on ∂T̂\Ê.

Define a continuation operator P̂ : L∞(Ê)→ L∞(T̂ ) as

P̂ û(x̂1, . . . , x̂n) := û(x̂1, . . . , x̂n−1)
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for all x̂ ∈ T̂ , û ∈ L∞(Ê), and fix VT̂ ⊂ L∞(T̂ ) and
VÊ ⊂ L∞(Ê) as two arbitrary finite-dimensional sub-
spaces. Using the affine mappings from reference compo-
nents to triangulation components, the corresponding func-
tions, ψT and ψE , operator P : L∞(E) → L∞(T ), and
spaces VT and VE are extended to arbitrary T ∈ Th and
E ∈ Eh while preserving the properties discussed above.
With these definitions the following lemma and corollary
hold, c.f. [11, 28, 29].

Lemma 3.2 There are constants C1, . . . , C7 depending
only on the finite-dimensional spaces VT̂ and VÊ , the func-
tions ψT̂ and ψÊ , and the quasi-uniform bound of (6) such
that for all T ∈ Th, E ∈ E(T ), u ∈ VT , and σ ∈ VE

C1‖u‖0,T ≤ sup
v∈VT

∫
T
uψT v dV

‖v‖0,T
≤ ‖u‖0,T , (7)

C2‖σ‖0,E ≤ sup
τ∈VE

∫
E
σψEτ dS

‖τ‖0,E
≤ ‖σ‖0,E , (8)

C3h
−1
T ‖ψTu‖0,T ≤ ‖∇(ψTu)‖0,T

≤ C4h
−1
T ‖ψTu‖0,T , (9)

C5h
−1
T ‖ψEPσ‖0,T ≤ ‖∇(ψEPσ)‖0,T

≤ C6h
−1
T ‖ψEPσ‖0,T , (10)

‖ψEPσ‖0,T ≤ C7h
1/2
T ‖σ‖0,E . (11)

Note that with the quasi-uniformity of the triangulation, af-
ter proper adjustment of Ci in any of the above inequali-
ties, the mesh constant hT may be exchanged for hE while
maintaining the inequality.

Corollary 3.3 Under the assumptions of Lemma 3.2, there
exists a C̄4 > 0 and C̄6 > 0 such that

‖ψTu‖1,T ≤ C̄4h
−1
T ‖ψTu‖0,T , (12)

‖ψEPσ‖1,T ≤ C̄6h
−1
T ‖ψEPσ‖0,T . (13)

Proof. These inequalities follow directly from Inequal-
ities (9) and (10), respectively, and the fact that hT ≤ 1.

Finally, we state two central propositions of Verfürth
[28, 29]. Consider Banach spaces X and Y with respec-
tive norms ‖ · ‖X and ‖ · ‖Y . Let L(X,Y ) correspond to
the space of continuous linear maps from X to Y with the
natural operator norm ‖ · ‖L(X,Y ). Further, let Isom(X,Y )
be the set of linear homeomorphisms from X onto Y . De-
fine Y ∗ = L(Y,R) as the dual space of Y and denote the
associated duality pairing as 〈·, ·〉. Let F ∈ C1(X,Y ∗) be
a continuously differentiable function for which a solution
u ∈ X is sought such that

F (u) = 0. (14)

The derivative of F is written as DF . For any u ∈ X and
any real number R > 0, the ball centered at u with radius
R is defined as B(u,R) = {v ∈ X : ‖u− v‖X < R}.

Proposition 3.4 Let u0 ∈ X be a regular solution for
Equation (14) in the sense that DF (u0) ∈ Isom(X,Y ∗).
Assume that DF is Lipschitz continuous at u0, where there
exists an R0 > 0 such that

γ = sup
u∈B(u0,R0)

‖DF (u)−DF (u0)‖L(X,Y ∗)

‖u− u0‖X
<∞.

Set

R = min{R0, γ
−1‖DF (u0)−1‖−1

L(Y ∗,X),

2γ−1‖DF (u0)‖L(X,Y ∗)}.

Then the error estimate

1

2
‖DF (u0)‖−1

L(X,Y ∗)‖F (u)‖Y ∗ ≤ ‖u− u0‖X

≤ 2‖DF (u0)−1‖L(Y ∗,X)‖F (u)‖Y ∗

holds for all u ∈ B(u0, R).

Let Xh ⊂ X and Yh ⊂ Y be finite-dimensional sub-
spaces and Fh ∈ C(Xh, Y

∗
h ) be an approximation of F .

Consider the discretized problem of finding uh ∈ Xh such
that

Fh(uh) = 0. (15)

Proposition 3.5 Let uh ∈ Xh be an approximate solution
for Equation (15) in the sense that ‖Fh(uh)‖Y ∗h is “small”.
Assume that there is a restriction operator Rh ∈ L(Y, Yh),
a finite-dimensional space Ỹh ⊂ Y , and an approximation
F̃h : Xh → Y ∗ of F at uh such that

‖(IdY −Rh)∗F̃h(uh)‖Y ∗ ≤ C0‖F̃h(uh)‖Ỹ ∗h ,

where IdY is the identity operator on Y and C0 > 0 is
independent of h. Then the following estimate holds.

‖F (uh)‖Y ∗ ≤ C0‖F̃h(uh)‖Ỹ ∗h
+ ‖(IdY −Rh)∗[F (uh)− F̃h(uh)]‖Y ∗
+ ‖Rh‖L(Y,Yh)‖F (uh)− Fh(uh)‖Y ∗h
+ ‖Rh‖L(Y,Yh)‖Fh(uh)‖Y ∗h .

4. A POSTERIORI ERROR ESTIMATORS

In this section, an a posteriori error estimator is derived
for the nonlinear variational problem in (4), representing
the first-order optimality conditions of the penalty method
discussed in Section 2, and theory supporting its reliability
as an estimator is shown. In addition, we propose an er-
ror estimator for the first-order optimality conditions in (5)
associated with the Lagrange multiplier approach.

Considering the first-order optimality conditions for the
penalty method in (4), set Y ∗ =

(
H1

0 (Ω)3
)∗

and X =

4
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H1
g (Ω)3. Therefore, P(n) ∈ C1(X,Y ∗). In order to con-

struct an approximate solution to (4), we consider a general
discretization of the form

[S1,0
h ]3 ⊂ Vh ⊂ [Ss,0h ]3,

for s ≥ 1 and define the finite-dimensional space Yh =
{vh ∈ Vh : vh = 0 on Γ}. For the theory presented here,
we assume that the boundary conditions for n are exactly
representable in the finite-element space Vh on the coars-
est grid of {Th}. Note that this restriction on the bound-
ary conditions admits projection of the boundary function
g onto the coarsest mesh of {Th}. At each level of refine-
ment, the boundary conditions are projected onto the refined
mesh and, therefore, the analysis to follow applies to the ad-
ditionally refined levels. Thus, the analysis herein estimates

the error arising from discrete approximation of solutions to
(4) on the interior of Ω but not from approximation of the
boundary conditions. Hence, set Xh = Vh ∩X . For v ∈ Y
and 〈P(n),v〉, define

〈Ph(nh),vh〉 = 〈P(nh),vh〉,

where nh ∈ Xh and vh ∈ Yh.
Let nh be a solution of

Ph(nh) = 0 ∀vh ∈ Yh. (16)

For each T ∈ Th, denoting the outward facing normal of
E ∈ E(T ) as ηE , integrating by parts elementwise, and
using the fact that v = 0 on Γ yields

〈P(nh),v〉 = K1

∑
T∈Th

∫
T

−∇(∇ · nh) · v dV +K1

∑
E∈Eh,Ω

∫
E

[(∇ · nh)ηE ]E · v dS

+K3

∑
T∈Th

∫
T

∇× (Z(nh)∇× nh) · v dV +K3

∑
E∈Eh,Ω

∫
E

[(Z(nh)∇× nh)× ηE ]E · v dS

+ (K2 −K3)
∑
T∈Th

∫
T

((nh · ∇ × nh)∇× nh) · v dV + 2K2t0
∑
T∈Th

∫
T

(∇× nh) · v dV

+ 2ζ
∑
T∈Th

∫
T

((nh · nh − 1)nh) · v dV.

Define a restriction operator Rh : Y → Yh as Rh[u] =
[Ihu1, Ihu2, Ihu3] where Ih is the Clément operator of
Lemma 3.1. As there is no forcing function or Neumann
boundary conditions and the Dirichlet boundary is exactly
captured by the finite-element space, set

〈P̃h(nh),v〉 = 〈P(nh),v〉.

Note that this immediately implies that for the quantities
from Proposition 3.5:

‖(IdY −Rh)∗[P(nh)− P̃h(nh)]‖Y ∗ = 0, (17)
‖P(nh)− Ph(nh)‖Y ∗h = 0. (18)

For any T ∈ Th, define

ΘT =

{
h2
T

∥∥−K1∇(∇ · nh) +K3∇× (Z(nh)∇× nh) + (K2 −K3)(nh · ∇ × nh)∇× nh + 2K2t0(∇× nh)

+ 2ζ(nh · nh − 1)nh
∥∥2

0,T
+

∑
E∈E(T )∩Eh,Ω

hE
∥∥[K1(∇ · nh)ηE +K3(Z(nh)∇× nh)× ηE ]E

∥∥2

0,E

}1/2

.

As is shown below, ΘT constitutes a reliable and con-
structible local error estimator for each element of the dis-
cretization.

For the definitions of P̃(nh) and ΘT above, the follow-
ing lemma holds.
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Lemma 4.1 There exists a constant C > 0 independent of
h such that

‖(IdY −Rh)∗P̃h(nh)‖Y ∗ ≤ C

(∑
T∈Th

Θ2
T

)1/2

.

Proof. First note that

‖(IdY −Rh)∗P̃h(nh)‖Y ∗ = sup
v∈Y
‖v‖Y =1

∑
T∈Th

3∑
i=1

∫
T

(
−K1(∇(∇ · nh))i +K3(∇× (Z(nh)∇× nh))i

+ (K2 −K3)((nh · ∇ × nh)∇× nh)i + 2K2t0(∇× nh)i + 2ζ((nh · nh − 1)nh)i

)(
vi − Ihvi

)
dV

+
∑

E∈Eh,Ω

3∑
i=1

∫
E

[K1((∇ · nh)ηE)i +K3((Z(nh)∇× nh)× ηE)i]E · (vi − Ihvi) dS. (19)

Applying the Cauchy-Schwarz inequality and Lemma 3.1 to each component in (19),

‖(IdY −Rh)∗P̃h(nh)‖Y ∗ ≤ sup
v∈Y
‖v‖Y =1

∑
T∈Th

3∑
i=1

{∥∥−K1(∇(∇ · nh))i +K3(∇× (Z(nh)∇× nh))i

+ (K2 −K3)((nh · ∇ × nh)∇× nh)i + 2K2t0(∇× nh)i + 2ζ((nh · nh − 1)nh)i
∥∥

0,T
· C1hT ‖vi‖1,ω̃T

}
+

∑
E∈Eh,Ω

3∑
i=1

∥∥[K1((∇ · nh)ηE)i +K3((Z(nh)∇× nh)× ηE)i]E
∥∥

0,E
· C2h

1/2
E ‖vi‖1,ω̃E

≤ sup
v∈Y
‖v‖Y =1

max(C1, C2)

( ∑
T∈Th

3∑
i=1

{
h2
T

∥∥−K1(∇(∇ · nh))i +K3(∇× (Z(nh)∇× nh))i

+ (K2 −K3)((nh · ∇ × nh)∇× nh)i + 2K2t0(∇× nh)i + 2ζ((nh · nh − 1)nh)i
∥∥2

0,T

}

+
∑

E∈Eh,Ω

3∑
i=1

hE
∥∥[K1((∇ · nh)ηE)i +K3((Z(nh)∇× nh)× ηE)i]E

∥∥2

0,E

)1/2

·

( ∑
T∈Th

3∑
i=1

‖vi‖21,ω̃T
+

∑
E∈Eh,Ω

3∑
i=1

‖vi‖21,ω̃E

)1/2

(20)

where the last inequality of (20) is given by the Cauchy-Schwarz inequality for sums. Finally, there exists C∗ > 0,
independent of h and taking into account repeated elements in the sums, such that∑

T∈Th

‖w‖21,w̃T
+

∑
E∈Eh,Ω

‖w‖21,w̃E

1/2

≤ C∗‖w‖1.

Applying the above inequality to (20) yields

‖(IdY −Rh)∗P̃h(nh)‖Y ∗

≤ sup
v∈Y
‖v‖Y =1

C∗max(C1, C2)‖v‖Y

( ∑
T∈Th

3∑
i=1

{
h2
T

∥∥−K1(∇(∇ · nh))i +K3(∇× (Z(nh)∇× nh))i

+ (K2 −K3)((nh · ∇ × nh)∇× nh)i + 2K2t0(∇× nh)i + 2ζ((nh · nh − 1)nh)i
∥∥2

0,T

}

6
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+
∑

E∈Eh,Ω

3∑
i=1

hE
∥∥[K1((∇ · nh)ηE)i +K3((Z(nh)∇× nh)× ηE)i]E

∥∥2

0,E

)1/2

.

Noting that the jump components in the bound are summed
over E ∈ Eh,Ω, this implies that

‖(IdY −Rh)∗P̃h(nh)‖Y ∗ ≤ C

(∑
T∈Th

Θ2
T

)1/2

.

Next, define the subspace Ỹh ⊂ Y as

Ỹh = span {ψTv, ψEPσ : v ∈ [Πk|T ]3,

σ ∈ [Πk|E ]3, T ∈ Th, E ∈ Eh,Ω},

such that k ≥ 3s, ψT and ψE are cutoff functions, and P is
the continuation operator as defined in Section 3. For this
subspace, the lemma below holds.

Lemma 4.2 There exists a constant C > 0 independent of
h such that

‖P̃h(nh)‖Ỹ ∗h ≤ C

(∑
T∈Th

Θ2
T

)1/2

.

Proof. Observe that

‖P̃h(nh)‖Ỹ ∗h = sup
vh∈Ỹh

‖vh‖Y =1

∑
T∈Th

{∫
T

(
−K1∇(∇ · nh) +K3∇× (Z(nh)∇× nh)

+ (K2 −K3)(nh · ∇ × nh)∇× nh + 2K2t0∇× nh + 2ζ(nh · nh − 1)nh

)
· vh dV

}

+
∑

E∈Eh,Ω

∫
E

[K1(∇ · nh)ηE +K3(Z(nh)∇× nh)× ηE ]E · vh dS

≤ sup
vh∈Ỹh

‖vh‖Y =1

∑
T∈Th

{∥∥−K1∇(∇ · nh) +K3∇× (Z(nh)∇× nh)

+ (K2 −K3)(nh · ∇ × nh)∇× nh + 2K2t0∇× nh + 2ζ(nh · nh − 1)nh
∥∥

0,T
‖vh‖0,T

}
+

∑
E∈Eh,Ω

∥∥[K1(∇ · nh)ηE +K3(Z(nh)∇× nh)× ηE ]E
∥∥

0,E
‖vh‖0,E

applying the Cauchy-Schwarz inequality. Using the definition of Ỹh, the quasi-uniformity of Th, and standard finite-element
scaling arguments

‖P̃h(nh)‖Ỹ ∗h ≤ sup
vh∈Ỹh

‖vh‖Y =1

∑
T∈Th

{
C1hT

∥∥−K1∇(∇ · nh) +K3∇× (Z(nh)∇× nh)

+ (K2 −K3)(nh · ∇ × nh)∇× nh + 2K2t0∇× nh + 2ζ(nh · nh − 1)nh
∥∥

0,T
‖vh‖1,T

}
+

∑
E∈Eh,Ω

C2h
1/2
E

∥∥[K1(∇ · nh)ηE +K3(Z(nh)∇× nh)× ηE ]E
∥∥

0,E
‖vh‖1,ωE

≤ sup
vh∈Ỹh

‖vh‖Y =1

max(C1, C2)

( ∑
T∈Th

h2
T

∥∥−K1∇(∇ · nh) +K3∇× (Z(nh)∇× nh)

+ (K2 −K3)(nh · ∇ × nh)∇× nh + 2K2t0∇× nh + 2ζ(nh · nh − 1)nh
∥∥2

0,T

7
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+
∑

E∈Eh,Ω

hE
∥∥[K1(∇ · nh)ηE +K3(Z(nh)∇× nh)× ηE ]E

∥∥2

0,E

)1/2

·

( ∑
T∈Th

‖vh‖21,T +
∑

E∈Eh,Ω

‖vh‖21,ωE

)1/2

, (21)

where the second inequality comes after applying the Cauchy-Schwarz inequality for sums. As in the previous proof, there
exists a C∗ > 0, independent of h and taking into account repeated elements in the sum, such that( ∑

T∈Th

‖vh‖21,T +
∑

E∈Eh,Ω

‖vh‖21,ωE

)1/2

≤ C∗‖vh‖Y . (22)

Combining (21) and (22) implies that

‖P̃h(nh)‖Ỹ ∗h ≤ C

(∑
T∈Th

Θ2
T

)1/2

,

where C depends only on the dimension of the problem,
choice of reference elements, and the smallest angle of the
triangulation.

The final inequality targeted is showing that there exists
a C > 0, independent of h, such that

‖(IdY −Rh)∗P̃h(nh)‖Y ∗ ≤ C‖P̃h(nh)‖Ỹ ∗h .

Given the result in Lemma 4.1, it suffices to prove the fol-
lowing lemma.

Lemma 4.3 There exists a C > 0, independent of h, such
that

C

(∑
T∈Th

Θ2
T

)1/2

≤ ‖P̃h(nh)‖Ỹ ∗h .

Proof. Consider an arbitrary element T ∈ Th and
edge E ∈ E(T ) ∩ Eh,Ω and define the space Ỹh|ω , for
ω ∈ {T, ωE , ωT }, as the set of all functions φ ∈ Ỹh with
supp(φ) ⊂ ω. Note that in this proof the numbered con-
stants correspond to those of Lemmas 3.2 and 3.3. First,

C1C̄
−1
4 hT

∥∥−K1∇(∇ · nh) +K3∇× (Z(nh)∇× nh) + (K2 −K3)(nh · ∇ × nh)∇× nh

+ 2K2t0∇× nh + 2ζ(nh · nh − 1)nh
∥∥

0,T

≤ sup
w∈[Πk|T ]3\{0}

C̄−1
4 hT ‖ψTw‖−1

0,T

∫
T

(
−K1∇(∇ · nh) +K3∇× (Z(nh)∇× nh)

+ (K2 −K3)(nh · ∇ × nh)∇× nh + 2K2t0∇× nh + 2ζ(nh · nh − 1)nh

)
· ψTw dV (23)

≤ sup
w∈[Πk|T ]3\{0}

‖ψTw‖−1
1,T

∫
T

(
−K1∇(∇ · nh) +K3∇× (Z(nh)∇× nh)

+ (K2 −K3)(nh · ∇ × nh)∇× nh + 2K2t0∇× nh + 2ζ(nh · nh − 1)nh

)
· ψTw dV (24)

≤ sup
w∈[Πk|T ]3\{0}

‖ψTw‖−1
1,T 〈P̃h(nh), ψTw〉

≤ sup
vh∈Ỹh|T
‖vh‖Y =1

〈P̃h(nh),v〉. (25)

Inequality (23) is given by (7) from Lemma 3.2, and (24) is
a consequence of (12) from Lemma 3.3. The inequality in

(25) comes from expanding the space over which the supre-

8
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mum is taken and noting that ψTw vanishes at the boundary
of T .

Recall that, with proper consideration, the constant hT in
Lemma 3.2 is exchangeable for hE . Now we bound

C2C̄
−1
6 C−1

7 h
1/2
E

∥∥[K1(∇ · nh)ηE +K3(Z(nh)∇× nh)× ηE ]E
∥∥

0,E

≤ sup
σ∈[Πk|E ]3\{0}

C̄−1
6 hE

C7h
1/2
E ‖Pσ‖0,E

∫
E

[K1(∇ · nh)ηE +K3(Z(nh)∇× nh)× ηE ]E · ψEPσ dS (26)

= sup
σ∈[Πk|E ]3\{0}

C̄−1
6 hE

C7h
1/2
E ‖σ‖0,E

{
〈P̃h(nh), ψEPσ〉 −

∫
ωE

(
−K1∇(∇ · nh) +K3∇× (Z(nh)∇× nh)

+ (K2 −K3)(nh · ∇ × nh)∇× nh + 2K2t0∇× nh + 2ζ(nh · nh − 1)nh

)
· ψEPσ dV

}
, (27)

where (26) is given by (8) of Lemma 3.2 and (27) comes
from the fact that ψEPσ is supported on ωE and that the
norm in the denominator is over an edge and the continu-
ation operator, P , does not modify the values of σ there.
Next, we apply (11) of Lemma 3.2 for each of the elements

in ωE and distribute the fraction quantity. Using (13) from
Lemma 3.3 for each of the elements in ωE for the first sum-
mand and the Cauchy-Schwarz inequality along with can-
cellation of the resulting ‖ψEPσ‖0,ωE

terms in the second
summand yields,

C2C̄
−1
6 C−1

7 h
1/2
E

∥∥[K1(∇ · nh)ηE +K3(Z(nh)∇× nh)× ηE ]E
∥∥

0,E

≤ sup
σ∈[Πk|E ]3\{0}

C̄−1
6 hE

‖ψEPσ‖0,ωE

{
〈P̃h(nh), ψEPσ〉 −

∫
ωE

(
−K1∇(∇ · nh) +K3∇× (Z(nh)∇× nh)

+ (K2 −K3)(nh · ∇ × nh)∇× nh + 2K2t0∇× nh + 2ζ(nh · nh − 1)nh

)
· ψEPσ dV

}
≤ sup
σ∈[Πk|E ]3\{0}

‖ψEPσ‖−1
1,ωE
〈P̃h(nh), ψEPσ〉+ C̄−1

6 hE
∥∥−K1∇(∇ · nh) +K3∇× (Z(nh)∇× nh)

+ (K2 −K3)(nh · ∇ × nh)∇× nh + 2K2t0∇× nh + 2ζ(nh · nh − 1)nh
∥∥

0,ωE
.

This then implies that

C2C̄
−1
6 C−1

7 h
1/2
E

∥∥[K1(∇ · nh)ηE +K3(Z(nh)∇× nh)× ηE ]E
∥∥

0,E

≤ sup
vh∈Ỹh|ωE

‖vh‖Y =1

〈P̃h(nh),vh〉+ Cd sup
vh∈Ỹh|ωE

‖vh‖Y =1

〈P̃h(nh),vh〉. (28)

The first part of the inequality is given by expanding the
space over which the supremum is taken. The second com-
ponent of (28) uses the inequality in (25), where Cd relates
the constants C̄−1

6 hE to C1C̄
−1
4 hT .

Observe that the bounds in (25) and (28) only get larger
when considering a supremum over Ỹh|ωT

. Hence, gather-
ing the bounds in (25) and (28) yields

C̄ΘT ≤ sup
vh∈Ỹh|ωT

‖vh‖Y =1

〈P̃h(nh),vh〉

for C̄ independent of h. Finally, recall that if ai ≥ 0,(∑
i

ai

)1/2

≤
∑
i

a
1/2
i . (29)

Summing over T ∈ Th and applying (29) yields

C

(∑
T∈Th

Θ2
T

)1/2

≤ ‖P̃h(nh)‖Ỹ ∗h .

9
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With the preceding lemmas established, we now state and
prove the main result of this section.

Theorem 4.4 Say that n∗ is a solution to Equation (4) sat-
isfying the assumptions of Proposition 3.4. Furthermore,
let nh be a solution to the discrete problem, as in Equa-
tion (16), such that ‖Ph(nh)‖Y ∗h = 0 and nh ∈ B(n∗, R).
Then there exists a C > 0, independent of h, such that

‖n∗ − nh‖1 ≤ C

(∑
T∈Th

Θ2
T

)1/2

.

Proof. Combining the results of Lemmas 4.1 and 4.3 im-
plies that

‖(IdY −Rh)∗P̃h(nh)‖Y ∗ ≤ C̃1

(∑
T∈Th

Θ2
T

)1/2

≤ C̃2‖P̃h(nh)‖Ỹ ∗h ,

for C̃2 > 0, independent of h. Thus, the conditions of
Proposition 3.5 are fulfilled. This implies, noting the quan-
tities in Equations (17) and (18), that

‖P(nh)‖Y ∗ ≤ C0‖P̃h(nh)‖Ỹ ∗h ≤ C1

(∑
T∈Th

Θ2
T

)1/2

,

where the second inequality is a consequence of Lemma
4.2. Finally, using the upper bound from Proposition 3.4
implies

‖n∗ − nh‖1 ≤ 2‖DP(n∗)
−1‖L(Y ∗,X)‖P(nh)‖Y ∗

≤ 2C1‖DP(n∗)
−1‖L(Y ∗,X)

(∑
T∈Th

Θ2
T

)1/2

.

Setting C = 2C1‖DP(n∗)
−1‖L(Y ∗,X) yields the desired

inequality.

As discussed in [28, Remark 2.5], the results of Lemma
3.2 are equally applicable to quadrilateral or simplicial el-
ements. Thus, the theory above holds for mesh families
of quadrilateral finite elements satisfying equivalent condi-
tions, as used in the numerical experiments below.

Considering the Lagrange multiplier variational form in
Equation (5) and following an analogous process to the
penalty case, a related element-wise estimator is derived.
For a T ∈ Th,

ΘT =

{
h2
T

∥∥−K1∇(∇ · nh) +K3∇× (Z(nh)∇× nh) + (K2 −K3)(nh · ∇ × nh)∇× nh + 2K2t0(∇× nh)

+ λhnh
∥∥2

0,T
+ ‖nh · nh − 1‖20,T +

∑
E∈E(T )∩Eh,Ω

hE
∥∥[K1(∇ · nh)ηE +K3(Z(nh)∇× nh)× ηE ]E

∥∥2

0,E

}1/2

. (30)

While theory establishing invertibility of the discretized
derivative of the variational form in (5) has been demon-
strated in [3], solution pairs (n∗, λ∗) satisfying the con-
straint are not localized in the sense that λ∗ may be freely
perturbed while the pair remains a solution. Therefore,
though a number of the lemmas above can be extended to
the estimator proposed in (30), special theoretical treatment
is required to properly apply the propositions of Section 3
and is the subject of future work. Nevertheless, the exper-
iments in Section 5 report and discuss the performance of
the estimator numerically.

5. NUMERICAL RESULTS

In this section, the results of a number of simulations ap-
plying the a posteriori error estimators derived above are
discussed. In general, the algorithm to compute equilibrium

solutions to the nonlinear variational problems presented in
Section 2 has three stages; see Algorithm 1. The outer-
most phase is nested iteration (NI) [24], which begins on
a specified coarsest grid. Newton iterations are performed
on each grid, updating the solution approximation at each
step, as in [3]. The stopping criterion for the Newton it-
erations at each level is based on a specified tolerance for
the current approximation’s conformance to the first-order
optimality conditions in the standard Euclidean l2 norm. In
the numerical experiments to follow, this tolerance is fixed
at 10−4. The resulting approximation is then interpolated
to a finer grid. The composition of the finer mesh is de-
termined via an AMR strategy based on the value of the
appropriate error estimator, ΘT , for each element T of the
coarser mesh. Given the coarse approximate solution uH ,
ΘT is computed for each T of mesh H . In the numerical
simulations to follow, the top 40% of elements are then re-
fined based on their estimator values. For each simulation,

10
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the characteristic length scale discussed above is taken to be
one micron, such that µ = 10−6 m. Furthermore, the char-
acteristic Frank constant is taken to be K = 6.2 × 10−12

N, the dimensional value of K1 for 5CB, a common liquid
crystal.

Algorithm 1: Newton’s method with NI and AMR

0. Initialize u0 on coarse grid.
while Refinement limit not reached do

while First-order optimality conformance
threshold not satisfied do

1. Set up discrete linearized system for Newton
iterations on grid H .

2. Solve for δuH .
3. Compute uk+1 as in uk + αδuH .

end
4. Compute ΘT on each element for approximate
solution uH .

5. Adaptively refine the grid.
6. Interpolate uH → uh.

end

For each Newton iteration an incomplete Newton cor-
rection is performed such that for a given iterate uk, the
next Newton iterate is given by uk+1 = uk + αδuh, where
α ≤ 1. As discussed in [3], this is to encourage strict ad-
herence to the constraint manifold associated with the unit-
length requirement imposed on the director field. At each
level of NI, the damping parameter α is increased, to a max-
imum of 1.0, as the finer features of the solution become
increasingly resolved on finer mesh. The grid management,
discretizations, and adaptive refinement computations are
implemented with the widely used deal.II finite-element li-
brary [9]. In the simulations below, Q2 elements are used
to approximate components associated with n, and Q1 ele-
ments are applied for computations involving λ, where ap-
propriate, on each grid.

The significant nonlinearity present in the Frank-Oseen
energy model has limited known analytical solutions in the
presence of Dirichlet boundary conditions, especially for
two and three dimensional domains. Therefore, while ana-
lytical error rates are not available for the problems consid-
ered in this section, a number of other metrics are reported
to demonstrate the performance of the AMR strategy.

In order to quantify the efficiency gains with adaptive re-
finement, the simulations applying AMR are compared with
those using uniform meshes at each level. To compare the
differences in computational work required across the NI
sequences, an approximate work unit (WU) is calculated.
Assuming the presence of solvers that scale linearly with
the number of non-zeros in the matrix, a WU is defined
as the sum of the non-zeros in the discretized Hessian for
each Newtons step divided by the number of non-zeros in
a discretized Hessian on the finest grid. The total roughly
approximates the work required by the full NI hierarchy in

terms of assembling and solving a single linearization step
on the finest level. To compare the work on the uniformly
refined mesh, the WUs there are computed using the total
number of non-zeros of the finest mesh resulting from the
associated simulation applying AMR. Therefore, the WUs
reported in the experiments to follow are approximate mea-
sures of the required work in terms of assembling and solv-
ing a linearization step on the finest adaptively refined grid
when optimally scaling solvers are applied. While the lin-
ear systems here are solved with simple LU decomposition,
the reported WUs provide a best-case scaling baseline for
comparing the work required with the refinement strategies.

The meshes considered in these numerical simulations
utilize quadrilateral elements. Adaptive refinement, then,
gives rise to the existence of hanging nodes. These nodes
are dealt with in the standard way by constraining their val-
ues with the neighboring regular nodes to maintain conti-
nuity along the boundary. Additionally, we constrain the
number of hanging nodes on a single edge to a maximum
of one. If refinement of a given element would violate this
requirement, the adjacent node is also refined to enforce the
limit. Therefore, in a given refinement step, though a fixed
percentage of cells are flagged for refinement, additional
elements may be refined. Finally, the theory developed in
the preceding sections assumes that the studied mesh sat-
isfies the admissibility property. This requirement is fully
satisfied for the coarsest mesh but, with the introduction of
hanging nodes, no longer holds after the first AMR stage.
While mesh discretizations employing triangular simplices
can maintain admissibility with adaptivity, grids composed
purely of quadrilateral or cuboid elements cannot. Thus,
following the first level of refinement, the error estimator is
applied heuristically to guide AMR on the remaining levels.

5.1. Twisting Nematics in a Square Domain

The first set of numerical experiments examines a unit-
square domain with tilt-twist-type boundary conditions as
shown in Figure 1(a). Along the top and bottom boundaries,
the director is rotated counter-clockwise with respect to the
positive x-axis in the xz-plane by a constant angle of−π8 at
y = 0 and π

8 at y = 1. At the left and right boundaries the
director twists to reconcile the director orientations of upper
and lower boundaries while also tilting to a maximum angle
of π4 in the direction of the y-axis. The Frank constants for
these simulations are set toK1 = 1.0, K2 = 3.0, andK3 =
1.2 and t0 = 0. These parameters are chosen because they
have been shown to predispose the nematic towards tilt even
in the presence of periodic boundary conditions which do
not strongly encourage such a response on the interior of the
domain [4, 21]. The NI mesh hierarchy begins on a uniform
32 × 32 mesh and proceeds with five additional levels of
either adaptive or uniform mesh refinements. The damping
parameter starts at α = 0.2 and increases by 0.2 after each
refinement for the Lagrange multiplier approach, and α =

11
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Penalty (Adapt.) Penalty (Uniform) Lagrangian (Adapt.) Lagrangian (Uniform)
Level Energy Max. Dev. Min. Dev. Energy Max. Dev. Min. Dev. Energy Max. Dev. Min. Dev. Energy Max. Dev. Min. Dev.
Grid 1 3.640 −2.714e-06 −8.786e-05 3.640 −2.714e-06 −8.786e-05 3.641 3.447e-06 −2.689e-06 3.641 3.447e-06 −2.689e-06
Grid 2 3.640 −2.954e-06 −8.420e-05 3.640 −2.954e-06 −8.420e-05 3.641 2.167e-06 −1.962e-06 3.641 4.308e-07 −5.939e-07
Grid 3 3.640 −2.110e-06 −7.244e-05 3.640 −2.110e-06 −7.244e-05 3.641 3.663e-07 −3.266e-07 3.641 1.139e-07 −1.485e-07
Grid 4 3.640 −1.108e-06 −6.468e-05 3.640 −1.108e-06 −6.468e-05 3.641 2.722e-07 −2.482e-07 3.641 3.637e-08 −4.215e-08
Grid 5 3.640 −4.521e-07 −6.469e-05 3.640 −4.521e-07 −6.469e-05 3.641 4.128e-08 −4.030e-08 3.641 1.177e-08 −1.342e-08
Grid 6 3.640 −1.573e-07 −6.469e-05 3.640 −1.573e-07 −6.469e-05 3.641 2.953e-08 −2.824e-08 3.641 3.826e-09 −4.483e-09

Fine DOF 691, 923 12, 595, 203 692, 386 13, 645, 828

WUs 5.224 36.221 4.040 30.109

Timing 337.7s 11, 904.1s 490.3s 15, 682.4s

TABLE I: Simulation statistics associated with the nematic simulations for the square domain with twisting conditions for both adaptive
and uniformly refined mesh hierarchies. The column Fine DOF reflects the number of degrees of freedom on the finest mesh of the NI.
The largest director deviations above and below unit length at the quadrature nodes are shown in the Max. Dev. and Min Dev. columns.

(a)

(b) (c)

FIG. 1: (a) The final computed solution for the Lagrangian formu-
lation on the adapted mesh (restricted for visualization). Frank-
Oseen energy-density function, wF , with overlaid AMR patterns
after three refinements for the (b) Lagrange multiplier approach
and (c) penalty method.

0.4 with increases of 0.2 for the penalty method. Finally,
the penalty parameter is set to ζ = 105 for experiments
applying the penalty method.

Figures 1(b) and (c) display the computed free-energy
density for the director configuration shown in Figure 1(a).
The director field exhibits significant uniformity in tilt
throughout the interior of the domain in agreement with ex-
pectations based on the chosen Frank constants. Overlaid
on the energy density plots are the AMR patterns result-
ing from three successive refinement stages based on the

error estimator for the Lagrange multiplier approach and
the penalty method. While the refinement structures dif-
fer with the method applied, regions of emphasis are shared
that generally coincide with areas of elevated free energy.
The penalty error estimator places more refinement empha-
sis along the boundary of the domain, with coarser refine-
ment along the interior compared to the Lagrange multiplier
estimator.

Table I details a number of statistics comparing the per-
formance of AMR for each method against a uniform re-
finement strategy. At the finest level, the uniformly refined
mesh includes nearly 20 times more degrees of freedom and
requires run times over 30 times longer to reach the speci-
fied tolerance for both approaches. The computed free en-
ergies are in good agreement across all meshes. For the
Lagrangian method, the unit-length constraint conformance
with the AMR technique is competitive with the uniform re-
finement strategy but slightly looser. On the other hand,
AMR for the penalty method maintains nearly identical
constraint enforcement compared with the uniform mesh.
In either case, indistinguishable solutions are acquired with
AMR drastically reducing the computational work neces-
sary to obtain them.

5.2. Nematics in a Patterned Square Domain

The simulations in this section consider the square do-
main with patterned boundary conditions as shown in Fig-
ure 2(a). Along the boundary, the patterning induces a
number of points where the director field abruptly under-
goes orientational transitions leading to areas of elevated
free energy. The Frank constants for these simulations are
K1 = 1.0, K2 = 0.629, and K3 = 1.323, corresponding to
the non-dimensionalized constants of 5CB [25] and t0 = 0.
The NI hierarchy again begins on a uniform 32 × 32 mesh
and proceeds with five additional levels of either adaptive
or uniform mesh refinements. The damping parameter be-
gins at α = 0.2 and increases by 0.2 after each refinement
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Penalty (Adapt.) Penalty (Uniform) Lagrangian (Adapt.) Lagrangian (Uniform)

Level Energy Max. Dev. Min. Dev. Energy Max. Dev. Min. Dev. Energy Max. Dev. Min. Dev. Energy Max. Dev. Min. Dev.

Grid 1 10.925 2.481e-02 −4.144e-02 10.925 2.481e-02 −4.144e-02 10.866 2.920e-02 −3.852e-02 10.866 2.920e-02 −3.852e-02
Grid 2 10.876 1.207e-02 −1.707e-02 10.876 1.207e-02 −1.707e-02 10.875 1.310e-02 −1.569e-02 10.875 1.310e-02 −1.569e-02
Grid 3 10.866 2.785e-03 −3.391e-03 10.866 2.785e-03 −3.391e-03 10.866 3.057e-03 −3.213e-03 10.866 3.057e-03 −3.213e-03
Grid 4 10.866 8.562e-04 −5.825e-04 10.866 8.562e-04 −5.825e-04 10.866 4.064e-04 −4.878e-04 10.866 4.064e-04 −4.878e-04
Grid 5 10.866 6.805e-04 −3.390e-04 10.866 6.805e-04 −3.390e-04 10.866 7.904e-05 −9.432e-05 10.866 7.904e-05 −9.432e-05
Grid 6 10.867 5.962e-04 −2.918e-04 10.867 5.962e-04 −2.918e-04 10.867 7.837e-05 −9.416e-05 10.867 7.837e-05 −9.416e-05

Fine DOF 653, 019 12, 595, 203 700, 203 13, 645, 828

WUs 12.306 69.640 6.864 63.672

Timing 583.7s 21, 177.6s 600.3s 48, 383.3s

TABLE II: Simulation statistics associated with the nematic simulations for the patterned square domain for both adaptive and uniformly
refined mesh hierarchies. The column Fine DOF reflects the number of degrees of freedom on the finest mesh of the NI. The largest
director deviations above and below unit length at the quadrature nodes are shown in the Max. Dev. and Min Dev. columns.

(a)

(b) (c)

FIG. 2: (a) The final computed solution for the Lagrangian formu-
lation on the adapted mesh (restricted for visualization). Frank-
Oseen energy-density function, wF , with overlaid AMR patterns
after three refinements for (b) Lagrange multiplier approach and
(c) penalty method.

for both methods. The penalty parameter is set to ζ = 106,
where appropriate.

As in the previous experiment, the error estimators gen-
erate similar AMR patterns. Each estimator emphasizes re-
finement near areas of behavioral transition while leaving
the central region, which contains a relatively homogeneous
director field, as a set of coarser elements. Figures 2(b) and
(c) exhibit the resulting refinement pattern after three lev-
els of flagging and refinement. The mesh patterns display
some asymmetry along both the x and y axes, mirroring the

asymmetry of the free-energy density and director field pro-
duced by the boundary conditions. As seen in the previous
simulation, the error estimator associated with the penalty
method places some additional value in refinement along
the boundary. However, the difference between the two pat-
terns in this experiment is less pronounced.

The statistics for each method comparing AMR guided
by the error estimators to a uniform refinement strategy are
shown in Table II and exhibit significant efficiency improve-
ments with adaptive refinement while maintaining nearly
identical performance with regard to computed free energy
and unit-length constraint conformance. Each method, re-
gardless of refinement strategy applied, finds the same free
energy for the computed equilibrium configuration. Fur-
thermore, constraint enforcement is identical for both adap-
tive refinement experiments when compared to the perfor-
mance of the uniformly refined meshes. For this simulation,
the difference in consumed work units between the adaptive
and uniformly refined mesh experiments is even higher than
that in the previous section.

5.3. Cholesteric in Elliptic Domain

The two numerical experiments of this section exam-
ine the performance of the error estimators on ellipse-
type meshes. Note that the ellipses are approximated with
quadrilateral meshes such that the presence of a convex
polyhedral boundary, assumed in the theory, remains in
place. However, after cells are flagged for refinement,
boundary elements are refined by splitting the element and
placing the newly created edge node at the appropriate po-
sition on the true boundary of the ellipse to better approxi-
mate the boundary shape. Therefore, the newly created grid
is not a strictly refined subdomain of the previous coarse
domain. Both problems impose Dirichlet conditions such
that n = (0, 0, 1) along the entire boundary. NI consists of
a coarse mesh containing 1, 313 elements followed by five
consecutive adaptive or uniform refinements. The elliptic

13
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(a) (b) (c)

(d) (e) (f)

FIG. 3: (a), (d) Computed solutions for the Lagrangian formulation on the finest adapted mesh (restricted for visualization). The Frank-
Oseen energy-density function, wF , with overlaid AMR patterns after three refinements is shown for the Lagrange multiplier approach
in (b), (e) and the penalty method in (c), (f). The top row corresponds to results for t0 = 6.0 while the bottom shows t0 = 8.0.

Penalty (Adapt.) Penalty (Uniform) Lagrangian (Adapt.) Lagrangian (Uniform)

Level Energy Max. Dev. Min. Dev. Energy Max. Dev. Min. Dev. Energy Max. Dev. Min. Dev. Energy Max. Dev. Min. Dev.

Grid 1 11.986 9.653e-04 −5.880e-04 11.986 9.653e-04 −5.880e-04 11.990 1.487e-03 −1.500e-03 11.990 1.487e-03 −1.500e-03
Grid 2 11.985 5.912e-04 −2.368e-04 11.995 3.690e-04 −6.255e-05 12.002 7.333e-04 −6.244e-04 12.007 2.170e-04 −2.185e-04
Grid 3 11.998 3.015e-04 7.267e-06 12.000 2.295e-04 1.998e-05 12.009 2.213e-04 −1.984e-04 12.012 2.800e-05 −2.847e-05
Grid 4 12.001 2.443e-04 1.767e-05 12.002 2.249e-04 1.562e-05 12.013 6.920e-05 −6.384e-05 12.013 3.553e-06 −3.583e-06
Grid 5 12.002 2.296e-04 1.349e-05 12.002 2.244e-04 1.026e-05 12.013 2.607e-05 −2.539e-05 12.014 4.458e-07 −4.480e-07
Grid 6 12.002 2.249e-04 8.741e-06 − − − 12.014 5.283e-06 −4.739e-06 − − −

Fine DOF 814, 575 3, 935, 235 879, 319 4, 263, 428

WUs 5.580 17.494 4.314 14.819

Timing 628.4s 3, 158.8s 977.4s 13, 047.8s

TABLE III: Simulation statistics associated with the cholesteric confined in an elliptic domain with aspect ratio 1.5 and t0 = 6.0 for both
adaptive and uniformly refined mesh hierarchies. The column Fine DOF reflects the number of degrees of freedom on the finest mesh of
the NI. The largest director deviations above and below unit length at the quadrature nodes are shown in the Max. Dev. and Min Dev.
columns.

domain being modeled has an aspect ratio and major axis
of 1.5.

For these simulations, cholesteric liquid crystals with
t0 = 6.0 and t0 = 8.0, respectively, are considered. The
Frank constants are K1 = K2 = K3 = 1.0 for the first, and
K1 = 1.0, K2 = 3.0, and K3 = 1.2 in the second. Cou-
pling these parameters with confinement of the cholesteric
in the ellipse leads to the presence of distorted equilibrium
director fields on the domain interior due to geometric frus-
tration [1, 5], offering uniquely challenging behavior on

which to examine the performance of the a posteriori error
estimators. For all simulations below, the Newton damping
parameter begins at α = 0.3 and increases by 0.2 after each
refinement in the NI process. The penalty parameter is set
to ζ = 105.

Figures 3(a) and (d) display plots of the computed di-
rector field for the two simulations. As anticipated, con-
finement of the cholesterics within the elliptical boundary
produces equilibrium configurations with substantial defor-
mations on the interior of the domain. Each calculated so-

14



September 2017

Penalty (Adapt.) Penalty (Uniform) Lagrangian (Adapt.) Lagrangian (Uniform)

Level Energy Max. Dev. Min. Dev. Energy Max. Dev. Min. Dev. Energy Max. Dev. Min. Dev. Energy Max. Dev. Min. Dev.

Grid 1 8.726 2.219e-03 −1.728e-03 8.726 2.219e-03 −1.728e-03 8.774 2.931e-03 −3.067e-03 8.774 2.931e-03 −3.067e-03
Grid 2 8.677 1.370e-03 −8.866e-04 8.669 7.358e-04 −2.103e-04 8.738 3.124e-03 −2.222e-03 8.732 4.135e-04 −4.472e-04
Grid 3 8.669 7.357e-04 −1.762e-04 8.667 6.586e-04 1.376e-05 8.730 1.218e-03 −8.633e-04 8.730 5.774e-05 −5.709e-05
Grid 4 8.668 7.281e-04 −4.570e-05 8.668 6.528e-04 3.009e-05 8.731 3.564e-04 −2.640e-04 8.731 7.503e-06 −7.457e-06
Grid 5 8.668 6.586e-04 3.008e-05 8.668 6.523e-04 3.043e-05 8.731 1.430e-04 −1.165e-04 8.731 9.534e-07 −9.444e-07
Grid 6 8.668 6.528e-04 2.119e-05 − − − 8.731 3.555e-05 −3.161e-05 − − −

Fine DOF 810, 687 3, 935, 235 877, 409 4, 263, 428

WUs 7.221 20.273 5.845 19.328

Timing 735.8s 3, 449.5s 1, 243.4s 15, 918.3s

TABLE IV: Simulation statistics associated with the cholesteric confined in an elliptic domain with aspect ratio 1.5 and t0 = 8.0 for both
adaptive and uniformly refined mesh hierarchies. The column Fine DOF reflects the number of degrees of freedom on the finest mesh of
the NI. The largest director deviations above and below unit length at the quadrature nodes are shown in the Max. Dev. and Min Dev.
columns.

lution exhibits challenging patterns. As can be seen in the
remaining figures, some of the largest free-energy density
values are located away from the domain boundary. Fig-
ures 3(b) and (e) display the free-energy density and AMR
patterns for the Lagrange multiplier approach. Correspond-
ingly, Figures 3(c) and (f) show the energy density and mesh
patterns resulting from the penalty method. While refine-
ment, in both cases, occurs along the boundary of the do-
main, portions of refinement also trace the regions of high-
est energy density and areas where the director field behav-
ior changes dramatically. Moreover, the refined grids mirror
the symmetry and some of the shape of n.

Table III details statistics for simulations with t0 = 6.0.
Results for the uniform refinement experiments are limited
to four mesh levels as the memory overhead associated with
constructing and solving the linearization systems for an ad-
ditional refinement level is prohibitive. For both the penalty
and Lagrange multiplier approaches, the computed free en-
ergies on the adapted meshes are close to those of the uni-
formly refined grids throughout the NI process and are in
full agreement on the finest levels. Additionally, even with-
out the final level of uniform refinement, the AMR hierar-
chies require less than 30% of the total WUs used by the
associated uniform mesh.

Due to the complexity of the director field, enforcement
of the unit-length constraint is more challenging. While
still maintaining relatively strict adherence to unit length,
conformance for the Lagrange multiplier approach on the
finest adaptively refined grid trails the fifth uniformly re-
fined mesh by approximately an order of magnitude. How-
ever, the constraint conformance is comparable to the solu-
tion computed on the fourth uniform mesh, which still re-
quires 4.700 WUs to construct compared to the 4.314 con-
sumed for the AMR solution. Moreover, the solution on
the adapted mesh more accurately captures the free energy.
With the penalty method, adherence to the constraint for the
AMR scheme is quite comparable to the uniformly refined
meshes. It should be noted that, by the nature of the penalty

method, unit-length conformance is also dependent on the
penalty parameter. For a fixed ζ, a certain amount of con-
straint violation may result in an energetically advantageous
director field. This is most likely a contributing factor to the
slower rate of improvement in pointwise constraint com-
pliance with either refinement strategy. Nevertheless, the
penalty method with AMR closely tracks the performance
of the uniform grids.

Data associated with the cholesteric simulations for t0 =
8.0 is presented in Table IV. As in the t0 = 6.0 case, the
constraint conformance of the computed equilibrium so-
lution on the finest uniform mesh for the Lagrange multi-
plier approach is approximately an order of magnitude bet-
ter than the finest adapted mesh. Nonetheless, the computed
free energies on each level for the adaptively refined mesh
very closely match those calculated with the uniformly re-
fined grids. Moreover, the uniform refinement study con-
sumes more than three times as many WUs and takes 12
times longer to finish with the current solvers. The penalty
method with AMR is, again, extremely competitive with
the uniform mesh hierarchy in each metric while drastically
reducing computational work.

6. CONCLUSIONS AND FUTURE WORK

In this paper, we have derived a posteriori error esti-
mators for solutions to the nonlinear first-order optimal-
ity conditions of the Frank-Oseen model of cholesteric
and nematic liquid crystal arising in the context of a
penalty method and a Lagrange multiplier approach. The-
ory demonstrating the reliability of the error estimator for
the penalty method was proven, and a discussion of current
work to fully extend the results to the estimator for the La-
grange multiplier formulation was presented. In both cases,
the error estimators represent readily computable quanti-
ties on each element of a finite-element mesh and, thus, a
straightforward AMR strategy implemented within a nested
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iteration framework was proposed and investigated numer-
ically.

Four numerical experiments were conducted comparing
the efficiency and performance of the AMR scheme based
on the derived error estimators to a simple uniform refine-
ment strategy. The adaptively refined meshes resulted in
significant reductions in required computational work while
maintaining favorable accuracy for the tracked statistics. In
the first two simulations, solutions produced on the adap-
tively refined mesh are in near agreement with those found
on the uniform grids for both constraint enforcement ap-
proaches but with more than a five-fold reduction in con-
sumed WUs in each case. For the elliptical domain ex-
periments, the Lagrange multiplier formulation with AMR
generates solutions with free-energy values matching those
found on uniform mesh but trails slightly in quality of point-
wise unit-length enforcement. On the other hand, solutions
computed with the penalty method on the adapted meshes
continue to be very competitive with the uniform grids in
all aspects.

As discussed above, future work will include expand-
ing the theory presented here to demonstrate the reliabil-
ity of the a posteriori error estimator proposed for the La-
grange multiplier approach, which was examined numeri-
cally herein. In addition, we aim to develop a theoretical
framework to show that the derived estimators also con-
stitute efficient estimates of approximation error for both
the Lagrange multiplier and penalty formulations. Finally,
studies considering an optimal choice of refinement per-
centage at each refinement level in the NI hierarchy will
be undertaken.
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