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Abstract

Liquid crystals are substances that possess mesophases with properties intermedi-

ate between liquids and crystals. Here, we consider nematic liquid crystals, which

consist of rod-like molecules whose average pointwise orientation is represented by

a unit-length vector, n(x, y, z) = (n1, n2, n3)
T . In addition to their self-structuring

properties, nematics are dielectrically active and birefringent. These traits continue

to lead to many important applications and discoveries. Numerical simulations of

liquid crystal configurations are used to suggest the presence of new physical phe-

nomena, analyze experiments, and optimize devices.

This thesis develops a constrained energy-minimization finite-element method

for the efficient computation of nematic liquid crystal equilibrium configurations

based on a Lagrange multiplier formulation and the Frank-Oseen free-elastic energy

model. First-order optimality conditions are derived and linearized via a Newton

approach, yielding a linear system of equations. Due to the nonlinear unit-length

constraint, novel well-posedness theory for the variational systems, as well as error

analysis, is conducted. The approach is shown to constitute a convergent and well-

posed approach, absent typical simplifying assumptions. Moreover, the energy-

minimization method and well-posedness theory developed for the free-elastic case

are extended to include the effects of applied electric fields and flexoelectricity.

In the computational algorithm, nested iteration is applied and proves highly

effective at reducing computational costs. Additionally, an alternative technique

is studied, where the unit-length constraint is imposed by a penalty method. The

performance of the penalty and Lagrange multiplier methods is compared. Fur-

thermore, tailored trust-region strategies are introduced to improve robustness and

efficiency. While both approaches yield effective algorithms, the Lagrange multiplier

method demonstrates superior accuracy per unit cost. In addition, we present two

novel, optimally scaling, multigrid approaches for these systems based on Vanka-

and Braess-Sarazin-type relaxation. Both approaches outperform direct methods
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and represent highly efficient and scalable iterative solvers.

Finally, a three-dimensional problem considering the effects of geometrically pat-

terned surfaces is presented, which gives rise to a nonlinear anisotropic reaction-

diffusion equation. Well-posedness is shown for the intermediate linearization sys-

tems of the proposed Newton linearization. The configurations under consideration

are part of ongoing physics research seeking new bistable configurations induced by

geometric nano-patterning.
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Chapter 1

Introduction

Modern scientific research and applications require large-scale computational sim-

ulation of physical phenomena. Such simulations are used in many different ways,

including predictive analysis, exploratory design, and theory validation. In order to

carry out high-fidelity numerical simulations, accurate, efficient, and robust numer-

ical methods are necessary. This thesis focuses on the computational simulation of

liquid crystal configurations. Liquid crystals are used in diverse ways, most famously

in display technologies, and the frontier of scientific applications and discoveries

continues to expand. Emerging applications include liquid crystal-functionalized

polymer fibers [74], nanoparticle organization [58, 126], photorefractive cells [29],

and liquid crystal elastomers designed to produce effective actuator devices such as

light driven motors [128] and artificial muscles [119].

Numerical simulation of liquid crystal equilibrium configurations are used to test

and examine theory, suggest the presence of new physical phenomena [5], analyze

experiments, and optimize device designs. Many current technologies and experi-

ments, including bistable devices [30, 90], require simulation of anisotropic physical

constants on two- and three-dimensional domains with complicated boundary con-

ditions.

Many mathematical and computational models of liquid crystal continuum the-

ory lead to complicated systems involving unit-length constrained vector fields. Cur-

rently, the complexity of such systems has restricted the existence of known analyt-

ical solutions to simplified geometries in one (1-D) or two dimensions (2-D), often

under strong simplifying assumptions. When coupled with electric fields and other

effects, far fewer analytical solutions exist, even in 1-D [117]. In addition, associated

systems of partial differential equations, such as the equilibrium equations [46,117],

suffer from non-unique solutions, which must be distinguished via energy arguments.
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Due to such difficulties, efficient, theoretically supported, numerical approaches to

the modeling of nematic liquid crystals under free elastic and augmented electric

effects are of great importance. A concise overview of existing research on the com-

putational modeling of nematic liquid crystals is given in Section 3.1.

Herein, this thesis develops an energy-minimization finite-element approach for

the computational simulation of static liquid crystal configurations based on the

Frank-Oseen free-energy model. A theoretical framework supporting the accuracy

and effectiveness of the approach is constructed, and tailored multigrid methods

are explored for the arising linear systems. The overarching objective is a robust,

efficient, and theoretically supported approach to the modeling of liquid crystal

configurations.

In addition, we consider the numerical simulation of three-dimensional liquid

crystal equilibrium problems incorporating substrates with certain two-dimensional

geometric patterns. Surfaces with two-dimensional patterns have shown the poten-

tial to promote novel bistable arrangements, which are important in the design of

display devices [3, 4]. We propose a variational system and finite-element method

approach and analyze the well-posedness of the linearized systems in the context of

both Dirichlet and Robin boundary conditions.

1.1 Thesis Outline

The structure of this thesis is as follows. Chapter 2 discusses the free-energy model

to be used in simulating the nematic liquid crystal structures. This includes the free-

elastic energy model, as well as extensions to include both external electric fields

and internal electric fields due to flexoelectric effects. The chapter also includes a

brief overview of the existing work on nematic equilibrium simulation.

In Chapter 3, an energy-minimization method using continuous Lagrange mul-

tipliers is developed for nematic liquid crystals under the influence of free-elastic ef-

fects. Theory proving the well-posedness of the linearization systems derived within

the energy-minimization framework is established and error analysis is conducted to
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demonstrate convergence. Finally, numerical results are presented using the mini-

mization approach. Chapter 4 establishes an alternative energy-minimization frame-

work where the necessary pointwise unit-length constraint is enforced via a penalty

method. Well-posedness theory for the resulting linearization systems is again estab-

lished. Trust-region methods designed for both the penalty and Lagrange multiplier

approaches with finite-element discretizations are proposed in this chapter. The

performance of the unit-length constraint techniques, trust-region methods, and

nested iteration implementations is investigated in the numerical results section of

the chapter.

Extensions of the energy-minimization approach with Lagrange multipliers are

derived in Chapter 5 for external electric fields and flexoelectricity. The well-

posedness theory constructed for the free-elastic model in Chapter 3 is expanded

here to include both types of electric fields. In Chapter 6, two multigrid relax-

ation schemes specifically tailored to the block saddle-point linear systems arising

in the discretization of the electrically coupled systems discussed in Chapter 5 are

proposed and numerically vetted. These relaxation schemes lead to an optimally-

scaling monolithic multigrid method well-suited for the electrically coupled discrete

systems. Finally, numerical experiments applying the ensuing multigrid technique

and demonstrating the energy-minimization method’s performance for liquid crystal

configurations in the presence of electric fields are performed.

Chapter 7 discusses the application of Newton linearization and finite-element

methods for a nonlinear reaction-diffusion partial differential equation associated

with a three-dimensional free-elastic liquid crystal configuration problem. Exis-

tence and uniqueness theory is proven for the emerging linearized systems in the

presence of both Dirichlet and Robin boundary conditions. Numerical results com-

puting configurations of physical interest are shown and ongoing experimental work

is discussed.

Lastly, Chapter 8 gives some concluding remarks. The chapter also outlines some

interesting problems and discusses a number of opportunities for future work. It

addresses projects already under investigation, including extensions to liquid crystal
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dynamics problems, as well as questions to be targeted in the future, such as parallel

multigrid implementations and adaptive refinement techniques.
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Chapter 2

Liquid Crystal Model

Liquid crystals, whose discovery is attributed to Reinitzer in 1888 [106], are sub-

stances that possess mesophases with properties intermediate between liquids and

crystals. That is, liquid crystals are fluid yet exhibit long-range structured or-

dering. The mesophases exist at different temperatures or solvent concentrations.

While the first observed liquid crystal structures were naturally occurring materials,

a wide variety of synthesized chemical compounds have been produced [117]. There

are many different liquid-crystal molecular structures including cholesterics, smec-

tics, and their associated subclasses. However, in this thesis, we focus exclusively on

nematic liquid crystal phases, which consist of rod-like molecules that self-assemble

into an ordered structure, such that the molecules tend to align along a preferred

orientation. The first nematic liquid crystals were synthesized in 1890 [55], while

the first nematics existing stably at room temperature were not produced until 1969

by Kelker and Scheurle [72].

The preferred average direction for nematic liquid crystals at any point in a

domain, Ω, is known as the director, denoted n(x, y, z) = (n1, n2, n3)
T ; see Figure

2.1. The director is taken to be of unit length at every point and headless, that is

n and −n are indistinguishable, reflecting the observed experimental symmetry of

the phase. Thorough overviews of liquid crystal physics and properties are found

in [22, 37, 117]. In the following sections, we discuss the various free-energy models

to be used throughout this dissertation.

2.1 Free-Elastic Effects

At equilibrium, absent any external forces, fields, or boundary conditions, the free-

elastic energy present in a liquid crystal sample is given by an integral functional,

F , which depends on the state variables of the system. A liquid crystal sample
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Figure 2.1: Nematic liquid crystals with director orientation n [74].

tends toward configurations exhibiting minimal free energy. While a number of free-

energy models exist cf. [31, 36], this thesis considers the Frank-Oseen free-elastic

model [50, 117, 124]. The Frank-Oseen equations represent the free-elastic energy

density, wF , in a sample as

wF =
1

2
K1(∇⋅n)

2
+

1

2
K2(n⋅∇×n)

2
+

1

2
K3∣n×∇×n∣

2
+

1

2
(K2+K4)∇⋅[(n⋅∇)n−(∇⋅n)n].

Throughout this thesis, the standard Euclidean inner product and norm are denoted

(⋅, ⋅) and ∣ ⋅ ∣, respectively. The Ki, i = 1,2,3,4, are known as the Frank elastic

constants [50], which vary depending on temperature and liquid crystal type [37,61].

By Ericksen’s inequalities [47], Kj ≥ 0 for j = 1,2,3. Each term represents an

energy penalty for the presence of splay, twist, bend, and saddle-splay deformations,

respectively.

As noted in [117],

∇ ⋅ [(n ⋅ ∇)n − (∇ ⋅ n)n] = [tr((∇n)
2
) − (∇ ⋅ n)

2
].

Using the 2-tensor definition

[∇v]ij = vi,j =
∂vi
∂xj

,
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we write the trace term as

tr((∇n)
2
) = ∇n1 ⋅

∂n

∂x
+∇n2 ⋅

∂n

∂y
+∇n3 ⋅

∂n

∂z
.

Therefore,

∇ ⋅ [(n ⋅ ∇)n − (∇ ⋅ n)n] = ∇n1 ⋅
∂n

∂x
+∇n2 ⋅

∂n

∂y
+∇n3 ⋅

∂n

∂z
− (∇ ⋅ n)

2. (2.1)

Additionally, let

Z = κn⊗ n + (I − n⊗ n) = I − (1 − κ)n⊗ n, (2.2)

where κ = K2/K3; in general, we consider the case that K2,K3 > 0. Denote the

classical L2(Ω) inner product and norm as ⟨⋅, ⋅⟩0 and ∥ ⋅ ∥0, respectively. Employing

(2.1), (2.2), and the fact that n has unit length, the total free energy for a domain,

Ω, is

∫
Ω
wF dV =

1

2
(K1 −K2 −K4)∥∇ ⋅ n∥

2
0 +

1

2
K3⟨Z∇× n,∇× n⟩0

+
1

2
(K2 +K4)(⟨∇n1,

∂n

∂x
⟩0 + ⟨∇n2,

∂n

∂y
⟩0 + ⟨∇n3,

∂n

∂z
⟩0).

For simplicity, we define the following functional, scaled by 2, to be used in the

minimization framework,

F1(n) = (K1 −K2 −K4)∥∇ ⋅ n∥
2
0 +K3⟨Z∇× n,∇× n⟩0

+ (K2 +K4)(⟨∇n1,
∂n

∂x
⟩0 + ⟨∇n2,

∂n

∂y
⟩0 + ⟨∇n3,

∂n

∂z
⟩0). (2.3)

For the special case of full Dirichlet boundary conditions, we consider a fixed

director, n, at each point on the boundary of Ω. Considering the integration carried

out on the terms in (2.1),

1

2
(K2 +K4)∫

Ω
∇ ⋅ [(n ⋅ ∇)n − (∇ ⋅ n)n]dV
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=
1

2
(K2 +K4)∫

∂Ω
[(n ⋅ ∇)n − (∇ ⋅ n)n] ⋅ ν dS, (2.4)

by the divergence theorem, where ν is the outward facing unit normal. Further, since

n is fixed along ∂Ω, the free energy contributed by n on the boundary is constant

regardless of the configuration of n on the interior of Ω. Thus, in the associated

minimization to follow, the free energy contribution from this term is ignored. For

this reason, (2.4) is often referred to as a null Lagrangian [124]. Note that the above

identity is also applicable to a rectangular domain with mixed Dirichlet and periodic

boundary conditions. Such conditions are considered extensively, in addition to

Dirichlet boundary conditions, in the theory and numerical experiments to follow.

This simplifies the free-energy functional in (2.3) to

F2(n) =K1∥∇ ⋅ n∥
2
0 +K3⟨Z∇× n,∇× n⟩0. (2.5)

We proceed with the functional in (2.3) in building a framework for minimization

under general boundary conditions, including the possibility of Neumann or Robin

conditions arising in the context of a free surface or weak anchoring [37,117]. How-

ever, in the treatment of existence and uniqueness theory below, we assume the

application of full Dirichlet or mixed Dirichlet and periodic boundary conditions

and, thus, utilize the simplified form in (2.5).

2.2 Applied Electric Fields

In addition to their internal elastic properties, nematic liquid crystals are dielec-

trically active. Thus, their configurations are affected by electric fields. Moreover,

since these materials are birefringent, with refractive indices that depend on the

polarization of light, they can be used to control the propagation of light through a

nematic structure.

Liquid crystal interactions with electric fields are strongly coupled as nematic

polarization and electric displacement, in turn, affect the original electric field. This



10

coupling is captured by an auxiliary term added to the Frank-Oseen equations above,

such that the total system free energy has the form

∫
Ω
(wF −

1

2
D ⋅E)dV, (2.6)

where D is the electric displacement vector induced by polarization and E is the

local electric field [37]. This electric displacement vector is written

D = ε0ε⊥E + ε0εa(n ⋅E)n.

Here, ε0 > 0 is the permittivity of free space. The dielectric anisotropy constant is

εa = ε∥ − ε⊥, where the constant variables ε∥ > 0 and ε⊥ > 0 represent the parallel and

perpendicular dielectric permittivity, respectively, specific to the liquid crystal. If

εa > 0, the director is attracted to parallel alignment with the electric field, and if

εa < 0, the director tends to align perpendicular to E. Thus,

D ⋅E = ε0ε⊥E ⋅E + ε0εa(n ⋅E)
2.

Note that the magnitude and difference between ε∥ and ε⊥ influence the strength of

polarization in the nematic as well as the coupling interaction with the electric field.

Equation (2.6) is expanded as

∫
Ω
wF dV − ∫

Ω

1

2
D ⋅EdV = ∫

Ω
wF dV −

1

2
ε0ε⊥⟨E,E⟩0 −

1

2
ε0εa⟨n ⋅E,n ⋅E⟩0. (2.7)

The addition of the electric field not only increases the complexity of the functional,

it introduces an inherent saddle-point structure into the equilibria for the liquid

crystal samples. Energy minima are those that minimize the contribution of the

free-elastic energy, while maximizing the negative contribution of the electric field

terms. Moreover, the relevant Maxwell’s equations for a static electric field, ∇⋅D = 0

and ∇×E = 0, known as Gauss’ and Faraday’s laws, respectively, must be satisfied.

In light of the necessary Maxwell equations and the fact that we are considering
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static fields, we define a functional based on the system free energy in (2.7) using an

electric potential function, φ, such that E = −∇φ. Applying similar scaling to that

of (2.3), let

F3(n, φ) = (K1 −K2 −K4)∥∇ ⋅ n∥
2
0 +K3⟨Z∇× n,∇× n⟩0

+ (K2 +K4)(⟨∇n1,
∂n

∂x
⟩0 + ⟨∇n2,

∂n

∂y
⟩0 + ⟨∇n3,

∂n

∂z
⟩0)

− ε0ε⊥⟨∇φ,∇φ⟩0 − ε0εa⟨n ⋅ ∇φ,n ⋅ ∇φ⟩0. (2.8)

Observe that using the potential function implies

∇×E = ∇× (−∇φ) = 0.

So Faraday’s law is automatically satisfied. It is noted below that, in the framework

of energy-minimization, Gauss’ law is also satisfied at an energy minimum.

2.3 Flexoelectric Phenomena

Flexoelectricity is a property demonstrated by certain dielectric materials, includ-

ing liquid crystals. It is a spontaneous polarization of the liquid crystal induced by

present curvature; it is caused by shape asymmetry of the constituent molecules of

the liquid crystal material. The initial suggestion of this type of property in liquid

crystals was introduced by Meyer [95]. The phenomenon is analogous to the accumu-

lation of electric charge due to strain in solids, known as the piezoelectric effect [27].

Therefore, in some literature, flexoelectricity is referred to as piezoelectricity.

Flexoelectric phenomena can, for instance, be useful in the conversion of me-

chanical energy to electrical energy via large deformations of the boundary contain-

ing a liquid crystal sample [66]. It can also play a significant role in determining

the equilibrium states of liquid crystal samples with patterned surface boundaries.

For example, it is an important effect in the bistable configuration of the Zenithal

Bistable Device (ZBD) [30].
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The effect of flexoelectricity on the alignment of a liquid crystal bulk is modeled

by an augmentation of the electric displacement vector D, discussed above, and ad-

ditional terms for the bulk free-energy functional. The electric displacement vector

is modified [43] such that

D = ε0ε⊥E + ε0εa(n ⋅E)n +Pflexo.

Following the notation and sign convention of Rudquist [109], we write

Pflexo = esn(∇ ⋅ n) + eb(n ×∇ × n),

where es and eb are material constants specific to a given liquid crystal. It is also

common in physics literature to denote these constants as e1 and e3 under a separate

sign convention [37,43,95].

As expressed in [43], the system free energy, when considering flexoelectricity, is

written

∫
Ω
wF dV −

1

2
ε0ε⊥⟨E,E⟩0 −

1

2
ε0εa⟨n ⋅E,n ⋅E⟩0 − ⟨Pflexo,E⟩0.

Thus, the system free energy contributed by flexoelectric polarization is expanded

as

−∫
Ω
es(∇ ⋅ n)(E ⋅ n) + eb(n ×∇ × n) ⋅EdV.

Substituting an electric potential function, E = −∇φ, and scaling by a factor of 2,

the flexoelectric free-energy functional to be minimized is expressed,

F4(n, φ) = F3(n, φ) + 2es⟨∇ ⋅ n,n ⋅ ∇φ⟩0 + 2eb⟨n ×∇ × n,∇φ⟩0. (2.9)

Additionally, note that the Maxwell’s equations, ∇ ⋅D = 0 and ∇×E = 0, must still

be satisfied. As before, the use of the electric potential implies that Faraday’s law

is automatically satisfied.
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In the presence of full Dirichlet or mixed Dirichlet and periodic boundary con-

ditions on a rectangular domain, the simplification in (2.4) is applied to eliminate

the (K2 +K4) free-elastic terms from Functionals (2.8) and (2.9).
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Chapter 3

Free-Elastic Energy Minimization

In this section, a general approach to computing the free-elastic equilibrium state

for n is derived. Therefore, only free-elastic effects, governed by the functional in

(2.3), are considered here. This equilibrium state corresponds to the configuration

which minimizes the system free energy subject to the local constraint that n is of

unit length throughout the sample volume, Ω. That is, the minimizer must satisfy

n ⋅ n = 1 pointwise throughout the domain. Pointwise unit-length constraints are

present in other types of physical problems, such as ferromagnetics [73]. These

constraints offer unique computational challenges as they are nonlinear, local, and

differ significantly from the well-studied constraints treated in fluid theory.

3.1 Existing Approaches and Simplifications

A number of computational techniques for liquid crystal equilibrium [25, 57, 64,

103, 117] and dynamics problems [83, 84, 86, 127, 129] exist, including least-squares

finite-element methods [5], discrete Lagrange multiplier approaches [54, 105], and

penalty methods [57,64]. In addition, numerical experiments involving finite-element

methods with Lagrange multipliers, applied to the equilibrium equations, have been

successful in capturing certain liquid crystal characteristics [103].

Many of the methods described above utilize the so called one-constant approx-

imation that K1 =K2 =K3 and K4 = 0 [25,54,57, 64, 83, 84, 86,105,117,127,129], in

order to significantly simplify the free-elastic energy density to

ŵF =
1

2
K1∣∇n∣

2, where ∣∇n∣
2
=

3

∑
i,j=1

(
∂ni
∂xj

)

2

.
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This expression for the free-energy density is more amenable to theoretical devel-

opment and computational techniques. However, while this is an accurate approxi-

mation in certain scenarios, especially when the relationship of the Frank constants

is unknown, there are many applications for which this approximation does not

suitably capture liquid crystal behavior [3, 4, 6, 76]. Therefore, we endeavor to fully

exclude this type of approximation.

Certain approaches, such as those in [103], have numerically resolved physically

expected liquid crystal behavior under simplifying assumptions but do so in the

context of the equilibrium equations [46], which offer many theoretical and com-

putational development challenges. Similarly, methods using a first-order system

least-squares approach [20, 21] applied to the equilibrium equations have predicted

new physical phenomena [5] but still require theory supporting ellipticity and have

encountered difficulties in properly capturing applied electric field effects.

In the following, we develop a theoretically supported method that directly tar-

gets energy minimization in the continuum. The method and accompanying theory

are applicable for a wide range of physical parameters. This allows for significantly

improved modeling of physical phenomena not captured in many approaches. More-

over, as will be seen in subsequent chapters, the approach readily accommodates

applied electric fields and flexoelectric effects.

3.2 Energy-Minimization Approach

Throughout the derivation of the energy-minimization framework, we use the general

functional, F1(n), in (2.3) and consider the spaces

H(div,Ω) = {v ∈ L2
(Ω)

3
∶ ∇ ⋅ v ∈ L2

(Ω)},

H(curl,Ω) = {v ∈ L2
(Ω)

3
∶ ∇ × v ∈ L2

(Ω)
3
}.

Further, let

H0(div,Ω) = {v ∈H(div,Ω) ∶ ν ⋅ v = 0 on ∂Ω},
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H0(curl,Ω) = {v ∈H(curl,Ω) ∶ ν × v = 0 on ∂Ω},

where ν is the outward unit normal for ∂Ω. Define

H
DC

(Ω) = {v ∈H(div,Ω) ∩H(curl,Ω) ∶ B(v) = g},

with norm ∥v∥2
DC = ∥v∥2

0 + ∥∇ ⋅ v∥2
0 + ∥∇× v∥2

0 and appropriate boundary conditions

B(v) = g. Here, we assume that g satisfies appropriate compatibility conditions for

operator B. For example, if B represents Dirichlet boundary conditions and Ω has

a Lipschitz continuous boundary, it is assumed that g ∈H
1
2 (∂Ω)3 [56]. Further, let

HDC0 (Ω) = {v ∈ H(div,Ω) ∩H(curl,Ω) ∶ B(v) = 0}. Note that if Ω is a Lipshitz

domain and B imposes Dirichlet boundary conditions, then HDC0 (Ω) =H1
0(Ω)3 [56,

Lemma 2.5]. Finally, denote the unit sphere as S2. The desired minimization

becomes

n∗ = argmin
n∈S2∩HDC(Ω)

F1(n).

3.3 First-Order Optimality and Newton Linearization

Since n must be of unit length, it is natural to employ a Lagrange multiplier ap-

proach. This length requirement represents a pointwise equality constraint, such

that (n,n) − 1 = 0. Following the notation in [88], we have H(n) = (n,n) − 1 = 0

and, hence, the Lagrange multiplier z∗ ∈ L2(Ω)∗, where L2(Ω)∗ is the dual space

for L2(Ω). The Lagrangian is written

L(n, z∗) = F1(n) + ⟨H(n), z∗⟩.

Since L2(Ω) is a Hilbert space, by the Riesz representation theorem [108] there

exists a λ(x) ∈ L2(Ω) such that the Lagrangian becomes

L(n, λ) = F1(n) + ∫
Ω
λ(x)((n,n) − 1)dV. (3.1)
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In order to minimize (2.3), we compute the Gâteaux derivatives of L with respect

to n and λ in the directions v ∈ HDC0 (Ω) and γ ∈ L2(Ω), respectively. Hence, the

necessary continuum first-order optimality conditions are

Ln[v] =
∂

∂n
L(n, λ)[v] = 0, ∀v ∈H

DC
0 (Ω), (3.2)

Lλ[γ] =
∂

∂λ
L(n, λ)[γ] = 0, ∀γ ∈ L2

(Ω). (3.3)

Computing these derivatives yields

Ln[v] =2(K1 −K2 −K4)⟨∇ ⋅ n,∇ ⋅ v⟩0 + 2K3⟨Z(n)∇× n,∇× v⟩0

+ 2(K2 −K3)⟨n ⋅ ∇ × n,v ⋅ ∇ × n⟩0 + 2(K2 +K4)(⟨∇n1,
∂v

∂x
⟩0

+ ⟨∇n2,
∂v

∂y
⟩0 + ⟨∇n3,

∂v

∂z
⟩0) + 2∫

Ω
λ(n,v)dV,

and

Lλ[γ] = ∫
Ω
γ((n,n) − 1)dV.

The variational system contains nonlinearities in both (3.2) and (3.3). Therefore,

Newton iterations are employed by computing a generalized first-order Taylor series

expansion, requiring computation of the Hessian [11,39,100].

Let nk and λk be the current approximations for n and λ, respectively. Addi-

tionally, let δn = nk+1 − nk and δλ = λk+1 − λk be updates to these approximations.

Then, the Newton iterations are denoted

⎡
⎢
⎢
⎢
⎢
⎢
⎣

Lnn Lnλ

Lλn Lλλ

⎤
⎥
⎥
⎥
⎥
⎥
⎦

⎡
⎢
⎢
⎢
⎢
⎢
⎣

δn

δλ

⎤
⎥
⎥
⎥
⎥
⎥
⎦

= −

⎡
⎢
⎢
⎢
⎢
⎢
⎣

Ln

Lλ

⎤
⎥
⎥
⎥
⎥
⎥
⎦

, (3.4)

where each of the system components are evaluated at nk and λk. The matrix-vector

multiplication indicates the direction that the derivatives in the Hessian are taken.
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That is,

Lnn[v] ⋅ δn =
∂

∂n
(Ln(nk, λk)[v]) [δn], Lnλ[v] ⋅ δλ =

∂

∂λ
(Ln(nk, λk)[v]) [δλ],

Lλn[γ] ⋅ δn =
∂

∂n
(Lλ(nk, λk)[γ]) [δn], Lλλ[γ] ⋅ δλ =

∂

∂λ
(Lλ(nk, λk)[γ]) [δλ],

where the partials denote Gâteaux derivatives in the respective variables.

Since L(n, λ) is linear in λ, Lλλ[γ] ⋅δλ = 0. Hence, the Hessian in (3.4) simplifies

to a saddle-point structure,

⎡
⎢
⎢
⎢
⎢
⎢
⎣

Lnn Lnλ

Lλn 0

⎤
⎥
⎥
⎥
⎥
⎥
⎦

⎡
⎢
⎢
⎢
⎢
⎢
⎣

δn

δλ

⎤
⎥
⎥
⎥
⎥
⎥
⎦

= −

⎡
⎢
⎢
⎢
⎢
⎢
⎣

Ln

Lλ

⎤
⎥
⎥
⎥
⎥
⎥
⎦

. (3.5)

The discrete form of this Hessian leads to a saddle-point matrix, which poses unique

difficulties for the efficient computation of the solution to the resulting linear system.

Such structures commonly appear in constrained optimization and other settings; for

a comprehensive overview of discrete saddle-point problems; see [10]. Here, we focus

only on the linearization step rather than the underlying linear solvers. Multigrid

solvers specifically designed for saddle-point systems are developed in Chapter 6.

Computing the Gâteaux derivatives yields

Lnλ[v] ⋅ δλ = 2∫
Ω
δλ(nk,v)dV, (3.6)

Lλn[γ] ⋅ δn = 2∫
Ω
γ(nk, δn)dV, (3.7)

Lnn[v] ⋅ δn = 2(K1 −K2 −K4)⟨∇ ⋅ δn,∇ ⋅ v⟩0 + 2K3⟨Z(nk)∇× δn,∇× v⟩0

+ 2(K2 −K3)(⟨δn ⋅ ∇ × v,nk ⋅ ∇ × nk⟩0 + ⟨nk ⋅ ∇ × v, δn ⋅ ∇ × nk⟩0

+ ⟨nk ⋅ ∇ × nk,v ⋅ ∇ × δn⟩0 + ⟨nk ⋅ ∇ × δn,v ⋅ ∇ × nk⟩0

+ ⟨δn ⋅ ∇ × nk,v ⋅ ∇ × nk⟩0) + 2(K2 +K4)(⟨∇δn1,
∂v

∂x
⟩0

+ ⟨∇δn2,
∂v

∂y
⟩0 + ⟨∇δn3,

∂v

∂z
⟩0) + 2∫

Ω
λk(δn,v)dV. (3.8)

Constructing (3.5) using (3.6)-(3.8) yields a linearized variational system, which is
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fully expanded in Appendix A.1. For these iterations, we compute δn and δλ satis-

fying this system for all v ∈HDC0 (Ω) and γ ∈ L2(Ω) with the current approximations

nk and λk. The current approximations are then corrected with the solutions δn

and δλ to produce nk+1 and λk+1.

If we are considering a system with Dirichlet or mixed periodic and Dirichlet

boundary conditions, as described above, we eliminate the (K2 +K4) terms from

(3.5), simplifying the linearization. This simplified system is also represented in

Appendix A.1.

3.4 Uniform Symmetric Positive Definiteness of Z

In subsequent sections, theory establishing the existence and uniqueness of solu-

tions to the Newton linearizations is developed. A key property exploited in these

proofs is that Z is uniformly symmetric positive definite (USPD) under reasonable

assumptions.

It is clear from the definition that Z is symmetric. Recall that by Ericksen’s

inequalities [47], K2,K3 ≥ 0. Throughout this thesis, we consider the case where

the inequality is strict; thus, κ > 0. We also assume that, in the Newton iterations,

control has been maintained over the director length such that

α ≤ n2
1 + n

2
2 + n

2
3 ≤ β, ∀x ∈ Ω, (3.9)

with constants 0 < α ≤ 1 ≤ β.

Lemma 3.4.1 Assume that α ≤ (n,n) ≤ β for all x ∈ Ω. If κ ≥ 1, then Z is USPD

on Ω. For 0 < κ < 1, if β < 1
1−κ , then Z is USPD on Ω.

Proof: Rewrite Z as

Z = I −
n⊗ n

n ⋅ n
+ (1 + (κ − 1)(n ⋅ n))

n⊗ n

n ⋅ n
.
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For any x ∈ Ω, consider ξ ∈ R3. Decompose ξ as ξ = a1v+a2n, where v ⋅n = 0. Then,

ξTZ(x)ξ

ξT ξ
=
a2

1v ⋅ v + (1 + (κ − 1)(n ⋅ n))a2
2(n ⋅ n)

a2
1v ⋅ v + a

2
2(n ⋅ n)

.

Thus,

min(1,1 + (κ − 1)(n ⋅ n)) ≤
ξTZ(x)ξ

ξT ξ
≤ max(1,1 + (κ − 1)(n ⋅ n)).

Case 1. κ ≥ 1.

Note that

1 ≤ 1 + (κ − 1)α ≤ (1 + (κ − 1)(n ⋅ n)) ≤ 1 + (κ − 1)β, ∀x ∈ Ω.

Hence,

1 ≤
ξTZ(x)ξ

ξT ξ
≤ 1 + (κ − 1)β, ∀x ∈ Ω, ξ ∈ R3.

Case 2. 0 < κ < 1.

For this case,

1 + (κ − 1)β ≤ (1 + (κ − 1)(n ⋅ n)) ≤ 1 + (κ − 1)α ≤ 1, ∀x ∈ Ω.

Along with the assumption that β < 1
1−κ , this implies that

0 < 1 + (κ − 1)β ≤
ξTZ(x)ξ

ξT ξ
≤ 1, ∀x ∈ Ω, ξ ∈ R3.

◻

Thus, Z is USPD for any κ > 0, as long as sufficient control is maintained on the

length of n. Let η and Λ denote the lower and upper bounds, respectively, in the

proof above such that

0 < η ≤
ξTZ(x)ξ

ξT ξ
≤ Λ, ∀x ∈ Ω, ξ ∈ R3.
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These USPD bounds for Z play an important role in the proofs of existence and

uniqueness of solutions to the linearizations undertaken below.

3.5 Existence and Uniqueness for the Linearizations

Here and in the following subsections, we routinely make use of the following set of

assumptions.

Assumption 3.5.1 Consider an open, bounded domain, Ω, with a Lipschitz-continuous

boundary. Further, assume that there exist constants 0 < α ≤ 1 ≤ β, such that

α ≤ ∣nk∣
2 ≤ β and Z(nk(x)) remains USPD with lower and upper bounds on its

Rayleigh quotient, η and Λ, respectively. Finally, assume that Dirichlet boundary

conditions are applied. Therefore, both δn and v are in H0(div,Ω) ∩H0(curl,Ω).

In the continuum, the above Newton systems are written in a general form as

a(δn,v) + b(v, δλ) = F (v), ∀v ∈H
DC
0 (Ω), (3.10)

b(δn, γ) = G(γ), ∀γ ∈ L2
(Ω), (3.11)

where a(⋅, ⋅) is a symmetric bilinear form, b(⋅, ⋅) is a bilinear form, and F and G

are linear functionals. Note that in the presence of Dirichlet boundary conditions

or mixed periodic and Dirichlet boundary conditions on a rectangular domain, the

linearized system is reduced by the application of (2.4). For simplicity, throughout

this section, we drop the notation of δn, δλ. Thus,

a(u,v) =K1⟨∇ ⋅ u,∇ ⋅ v⟩0 +K3⟨Z(nk)∇× u,∇× v⟩0

+ (K2 −K3)(⟨u ⋅ ∇ × v,nk ⋅ ∇ × nk⟩0 + ⟨nk ⋅ ∇ × v,u ⋅ ∇ × nk⟩0

+ ⟨nk ⋅ ∇ × nk,v ⋅ ∇ × u⟩0 + ⟨nk ⋅ ∇ × u,v ⋅ ∇ × nk⟩0

+ ⟨u ⋅ ∇ × nk,v ⋅ ∇ × nk⟩0) + ∫
Ω
λk(u,v)dV, (3.12)
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and

b(v, γ) = ∫
Ω
γ(nk,v)dV.

Moreover,

F (v) = −(K1⟨∇ ⋅ nk,∇ ⋅ v⟩0 +K3⟨Z(nk)∇× nk,∇× v⟩0

+ (K2 −K3)⟨nk ⋅ ∇ × nk,v ⋅ ∇ × nk⟩0 + ∫
Ω
λk(nk,v)dV ),

and

G(γ) = −
1

2
∫

Ω
γ((nk,nk) − 1)dV.

In this section, we aim to show that the system in (3.10) and (3.11) is well-

posed. Therefore, continuity, coercivity, and weak coercivity results are desired for

the bilinear forms a(⋅, ⋅) and b(⋅, ⋅). Due to the complexity of the bilinear forms,

deriving theoretical results in the continuum is challenging. However, the following

lemmas hold.

Lemma 3.5.2 Under Assumption 3.5.1 and the assumption that λk is pointwise

non-negative, if κ = 1, there exists an α0 > 0 such that α0∥v∥2
DC ≤ a(v,v) for all

v ∈HDC0 (Ω).

Proof: The proof of this lemma is identical to that of Lemma 3.5.8 below. ◻

If additional regularity is asserted, such that δn and v are elements of HDC
1

0 (Ω) =

{w ∈ HDC0 (Ω) ∶ ∇ ×w ∈ H1(Ω)3} with norm ∥w∥2
DC1 = ∥w∥2

0 + ∥∇ ⋅w∥2
0 + ∥∇ ×w∥2

1,

where ∥ ⋅ ∥1 denotes the standard norm on H1(Ω), then the next two lemmas hold

for arbitrary κ.

Lemma 3.5.3 Under Assumption 3.5.1, F and G are bounded linear functionals

on HDC
1

0 (Ω) and L2(Ω), respectively.
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Proof: A simple application of the Cauchy-Schwarz inequality shows that G(γ) is a

bounded linear functional.

For F (v), observe that

∣F (v)∣ ≤K1∣⟨∇ ⋅ nk,∇ ⋅ v⟩0∣ +K3∣⟨Z(nk)∇× nk,∇× v⟩0∣

+ ∣K2 −K3∣∣⟨nk ⋅ ∇ × nk,v ⋅ ∇ × nk⟩0∣ + ∣∫
Ω
λk(nk,v)dV ∣, (3.13)

by the triangle inequality. Applying Cauchy-Schwarz inequalities to (3.13), one

obtains

∣F (v)∣ ≤K1∥∇ ⋅ nk∥0∥∇ ⋅ v∥0 +K3∥Z(nk)∇× nk∥0∥∇× v∥0

+ ∣K2 −K3∣∣⟨nk ⋅ ∇ × nk,v ⋅ ∇ × nk⟩0∣ + ∥λknk∥0∥v∥0

≤K1∥∇ ⋅ nk∥0∥v∥DC1 +K3∥Z(nk)∇× nk∥0∥v∥DC1

+ ∣K2 −K3∣∣⟨nk ⋅ ∇ × nk,v ⋅ ∇ × nk⟩0∣ + ∥λknk∥0∥v∥DC1 . (3.14)

In order to bound ∣F (v)∣, consider the final three summands separately. Note that

since ∣Z(nk)∣ ≤ Λ, where Λ is the relevant upper bound from Lemma 3.4.1, it is

evident that

∥Z(nk)∇× nk∥0 ≤ Λ∥∇× nk∥0, (3.15)

and that

∥λknk∥
2
0 ≤ β ∫

Ω
λ2
k dV = C2

L, (3.16)

where β is the upper bound in (3.9). Finally, consider

∣⟨nk ⋅ ∇ × nk,v ⋅ ∇ × nk⟩0∣ = ∣⟨(nk ⋅ ∇ × nk)∇× nk,v⟩0∣.

Applying the Cauchy-Schwarz inequality,

∣⟨(nk ⋅ ∇ × nk)∇× nk,v⟩0∣ ≤ ∥(nk ⋅ ∇ × nk)∇× nk∥0∥v∥0
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≤ ∥(nk ⋅ ∇ × nk)∇× nk∥0∥v∥DC1 . (3.17)

By Corollary 1.1 in [56], since ∇× nk ∈H
1(Ω)3, ∇× nk ⋅ ∇ × nk ∈ L

2(Ω). Note that

(nk ⋅ ∇ × nk)∇× nk ⋅ (nk ⋅ ∇ × nk)∇× nk = (nk ⋅ ∇ × nk)
2
(∇× nk ⋅ ∇ × nk)

≤ (∣nk∣ ⋅ ∣∇× nk∣)
2
(∇× nk ⋅ ∇ × nk)

≤ β ⋅ (∇× nk ⋅ ∇ × nk)
2.

Employing this in (3.17) and letting ∥∇× nk ⋅ ∇ × nk∥0 = CN ,

∥(nk ⋅ ∇ × nk)∇× nk∥0 ≤
√
β(∫

Ω
(∇× nk ⋅ ∇ × nk)

2 dV )
1/2

≤
√
βCN . (3.18)

Therefore, using (3.14)-(3.16), and (3.18),

∣F (v)∣ ≤K1∥∇ ⋅ nk∥0∥v∥DC1 +K3Λ∥∇× nk∥0∥v∥DC1

+ ∣K2 −K3∣
√
βCN∥v∥DC1 +CL∥v∥DC1 . ◻

Lemma 3.5.4 Under Assumption 3.5.1, a(u,v) and b(v, γ) are continuous for the

norms ∥ ⋅ ∥DC1 and ∥ ⋅ ∥0.

Proof: First consider

∣b(v, γ)∣ = ∣∫
Ω
γ(v,nk)dV ∣

≤ ∥γ∥0∥v ⋅ nk∥0

≤ ∥γ∥0

√
β∥v∥0,

by Hölder’s inequality and (3.9). Therefore, b(v, γ) is a continuous bilinear form.

For the continuity of a(u,v), observe that

∣a(u,v)∣ ≤K1∣⟨∇ ⋅ u,∇ ⋅ v⟩0∣ +K3∣⟨Z(nk)∇× u,∇× v⟩0∣
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+ ∣K2 −K3∣(∣⟨u ⋅ ∇ × v,nk ⋅ ∇ × nk⟩0∣ + ∣⟨nk ⋅ ∇ × v,u ⋅ ∇ × nk⟩0∣

+ ∣⟨nk ⋅ ∇ × nk,v ⋅ ∇ × u⟩0∣ + ∣⟨nk ⋅ ∇ × u,v ⋅ ∇ × nk⟩0∣

+ ∣⟨u ⋅ ∇ × nk,v ⋅ ∇ × nk⟩0∣) + ∣∫
Ω
λk(u,v)dV ∣, (3.19)

by the triangle inequality. For simplicity, consider the components of the sum above

separately. Note that

∣⟨∇ ⋅ u,∇ ⋅ v⟩0∣ ≤ ∥∇ ⋅ u∥0∥∇ ⋅ v∥0 ≤ ∥u∥DC1∥v∥DC1 . (3.20)

Considering ∣⟨Z(nk)∇× u,∇× v⟩0∣, using (3.15) implies that

∣⟨Z(nk)∇× u,∇× v⟩0∣ ≤ ∥∇× v∥0∥Z(nk)∇× u∥0

≤ Λ∥v∥DC1∥∇× u∥0

≤ Λ∥v∥DC1∥u∥DC1 . (3.21)

From the imbedding in Lemma 2.5 of [56], if Ω is an open, bounded domain,

with Lipschitz-continuous boundary, then for any w ∈H0(div,Ω)∩H0(curl,Ω) there

exists a Cimb > 0 such that

∥w∥
2
1 ≤ Cimb∥w∥

2
DC1 .

Furthermore, w ∈ H1
0(Ω)3 by [56, Lemma 2.5]. Consider ∣⟨u ⋅ ∇ × v,nk ⋅ ∇ × nk⟩0∣

from (3.19). By Corollary 1.1 in [56], the map u ⋅∇×v is a continuous bilinear map,

H1(Ω)3 ×H1(Ω)3 → L2(Ω). Therefore, there exists a Ccon > 0 such that

∥u ⋅ ∇ × v∥0 ≤ Ccon∥u∥1∥∇× v∥1.

By the Cauchy-Schwarz inequality

∣⟨u ⋅ ∇ × v,nk ⋅ ∇ × nk⟩0∣ ≤ ∥u ⋅ ∇ × v∥0∥nk ⋅ ∇ × nk∥0. (3.22)
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Let C ′ = CconCimb and note that

∥u ⋅ ∇ × v∥0 ≤ Ccon∥u∥1∥∇× v∥1 (3.23)

≤ C ′
∥u∥DC1∥v∥DC1 , (3.24)

where (3.23) is given by continuity and (3.24) is given by the imbedding. Hence,

∣⟨u ⋅ ∇ × v,nk ⋅ ∇ × nk⟩0∣ ≤ C
′
∥u∥DC1∥v∥DC1∥nk ⋅ ∇ × nk∥0

≤ C ′√β∥∇× nk∥0∥u∥DC1∥v∥DC1 . (3.25)

The next summand from (3.19) is

∣⟨nk ⋅ ∇ × v,u ⋅ ∇ × nk⟩0∣ ≤ ∥nk ⋅ ∇ × v∥0∥u ⋅ ∇ × nk∥0.

Again bound

∥nk ⋅ ∇ × v∥0 ≤
√
β∥v∥DC1 .

Since u ∈H1
0(Ω)3 and ∇× nk ∈H

1(Ω)3,

∥u ⋅ ∇ × nk∥0 ≤ Ccon∥u∥1∥∇× nk∥1

≤ C ′
∥u∥DC1∥∇× nk∥1.

Therefore,

∣⟨nk ⋅ ∇ × v,u ⋅ ∇ × nk⟩0∣ ≤
√
βC ′

∥∇× nk∥1∥u∥DC1∥v∥DC1 . (3.26)

Now consider ∣⟨nk ⋅ ∇ × nk,v ⋅ ∇ × u⟩0∣ and note that this inner product is the same

as that in (3.22) with the roles of u and v reversed. Since u and v are from the

same space, the steps for deriving (3.25) are equally valid here. Thus,

∣⟨nk ⋅ ∇ × nk,v ⋅ ∇ × u⟩0∣ ≤ C
′√β∥∇× nk∥0∥u∥DC1∥v∥DC1 . (3.27)
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Similarly, the inequality for ∣⟨nk ⋅∇×u,v ⋅∇×nk⟩0∣ is derived in an analogous manner

to that of (3.26). Thus,

∣⟨nk ⋅ ∇ × u,v ⋅ ∇ × nk⟩0∣ ≤
√
βC ′

∥∇× nk∥1∥u∥DC1∥v∥DC1 . (3.28)

Next, examine

∣⟨u ⋅ ∇ × nk,v ⋅ ∇ × nk⟩0∣ ≤ ∥u ⋅ ∇ × nk∥0∥v ⋅ ∇ × nk∥0.

Since ∇× nk ∈H
1(Ω)3,

∥u ⋅ ∇ × nk∥0 ≤ Ccon∥u∥1∥∇× nk∥1 ≤ C
′
∥u∥DC1∥∇× nk∥1,

∥v ⋅ ∇ × nk∥0 ≤ Ccon∥v∥1∥∇× nk∥1 ≤ C
′
∥v∥DC1∥∇× nk∥1.

Thus,

∣⟨u ⋅ ∇ × nk,v ⋅ ∇ × nk⟩0∣ ≤ (C ′
)

2
∥∇× nk∥

2
1∥u∥DC1∥v∥DC1 . (3.29)

Finally,

∣∫
Ω
λk(u,v)dV ∣ ≤ ∥λk∥0∥u ⋅ v∥0

≤ ∥λk∥0Ccon∥u∥1∥v∥1

≤ ∥λk∥0C
′Cimb∥u∥DC1∥v∥DC1 . (3.30)

Combining (3.20), (3.21), and (3.25)-(3.30),

a(u,v) ≤ (K1 +K3Λ + ∣K2 −K3∣(2C ′√β∥∇× nk∥0 + 2
√
βC ′

∥∇× nk∥1

+ (C ′
)

2
∥∇× nk∥

2
1) + ∥λk∥0C

′Cimb)∥u∥DC1∥v∥DC1 . ◻

In addition to these lemmas, Appendix B discusses a lemma proven in the course

of studying the weak coercivity properties of the bilinear form, b(v, γ). While the

framework in which this lemma was considered is not sufficient for demonstrating
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weak coercivity, the lemma statement and proof are given in the appendix in order

to inform further research addressing unit-length constrained problems.

The auxiliary regularity above poses a number of theoretical problems. For the

well-posedness of the continuum system, coercivity and weak coercivity must be

shown in the more intricate HDC
1
(Ω)-norm. Moreover, conforming finite elements

for this space, such as Bogner-Fox-Schmit elements [13], are undesirably cumber-

some and present notable difficulties in demonstrating stability for this linearization

system. However, in the discrete setting, results guaranteeing the existence and

uniqueness of solutions to the discrete Newton systems at each step are attained

under less strict assumptions.

The existence and uniqueness theory to follow is explicitly developed in the pres-

ence of full Dirichlet boundary conditions. However, the theory is equally applicable

for a rectangular domain with mixed Dirichlet and periodic boundary conditions.

Such a domain is considered in the numerical experiments presented herein. In or-

der for the theory discussed below to extend to the mixed Dirichlet and periodic

boundary conditions case, it suffices to extend the results of Remark 2.7 in [56].

Here, for brevity, we present the extension under a slab-domain assumption, used

in the numerical experiments below, such that v may have a nonzero z-component

but ∂v
∂z = 0.

Lemma 3.5.5 If Ω is a rectangular domain and v ∈ HDC0 (Ω) with mixed periodic

and Dirichlet boundary conditions, then there exists Cp > 0 such that

∥∇v∥
2
0 ≤ Cp(∥∇ ⋅ v∥

2
0 + ∥∇× v∥

2
0).

Proof: Without loss of generality assume periodicity of v(x, y) in x with unit-length

period. Let v0 denote the extension of v by zero in the y-direction outside of Ω.

Denote the space for which v0 is defined as ΩE = [0,1] ×R. As in [56, Lemma 2.5],

v0 ∈H(div,ΩE) ∩H(curl,ΩE) with

∥∇ ⋅ v0∥0, ΩE = ∥∇ ⋅ v∥0,
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∥∇× v0∥0, ΩE = ∥∇× v∥0,

∥v0∥0, ΩE = ∥v∥0.

Since v0(x, y) is periodic in x, we define the Fourier transform on ΩE as

Fv0 = ∫

1

0
∫

∞

−∞
v0(x, y)e

−2iπσxe−2iπµy dy dx.

Note that Fv0(σ,µ) is a function of Z ×R and

∥Fv0∥
2
0, Z×R =

∞
∑

σ=−∞
(∫

∞

−∞
Fv0 ⋅Fv0 dµ) ,

where the overbar notation represents complex conjugation. By Plancherel’s theo-

rem, as in [96], if f ∈ L2(ΩE), then

∥F (f)∥0, Z×R = ∥f∥0, ΩE .

Denote the components of v0 as v
(j)
0 , for j = 1,2,3. Computing derivatives, assuming

∂v
∂z = 0,

F (∇× v0) = 2iπ(µFv
(3)
0 ,−σFv

(3)
0 , σFv

(2)
0 − µFv

(1)
0 ),

F (∇ ⋅ v0) = 2iπ(σFv
(1)
0 + µFv

(2)
0 ).

Furthermore,

∥F(
∂v
(j)
0

∂y
)∥

2
0, Z×R = ∥2iπµFv

(j)
0 ∥

2
0, Z×R,

∥F(
∂v
(j)
0

∂x
)∥

2
0, Z×R = ∥2iπσFv

(j)
0 ∥

2
0, Z×R,

and

∥F (∇× v0)∥
2
0, Z×R + ∥F (∇ ⋅ v0)∥

2
0, Z×R =
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∞
∑

σ=−∞
∫

∞

−∞
(F (∇× v0) ⋅ (F (∇× v0)) + (F (∇ ⋅ v0))(F (∇ ⋅ v0)))dµ,

with

F (∇× v0) ⋅F (∇× v0) = 4π2
((µFv

(3)
0 )

2
+ (σFv

(3)
0 )

2
+ (σFv

(2)
0 )

2
+ (µFv

(1)
0 )

2

− 2σµFv
(1)
0 Fv

(2)
0 ),

(F (∇ ⋅ v0))(F (∇ ⋅ v0)) = 4π2
((µFv

(2)
0 )

2
+ (σFv

(1)
0 )

2
+ 2σµFv

(1)
0 Fv

(2)
0 ) .

So,

F (∇× v0) ⋅F (∇× v0) + (F (∇ ⋅ v0))(F (∇ ⋅ v0)) =

4π2
((µFv

(2)
0 )

2
+ (σFv

(1)
0 )

2
+ (µFv

(3)
0 )

2
+ (σFv

(3)
0 )

2

+ (σFv
(2)
0 )

2
+ (µFv

(1)
0 )

2
).

This implies that

∥F (∇×v0)∥
2
0, Z×R+∥F (∇⋅v0)∥

2
0, Z×R =

3

∑
k=1

∥F(
∂v
(k)
0

∂y
)∥

2
0, Z×R+

3

∑
j=1

∥F(
∂v
(j)
0

∂x
)∥

2
0, Z×R.

Hence,

∥F(
∂v
(j)
0

∂x
)∥

2
0, Z×R ≤ ∥F (∇× v0)∥

2
0, Z×R + ∥F (∇ ⋅ v0)∥

2
0, Z×R

= ∥∇ ⋅ v0∥
2
0, ΩE + ∥∇× v0∥0, ΩE

= ∥∇ ⋅ v∥
2
0 + ∥∇× v∥

2
0.

Similarly,

∥F(
∂v
(j)
0

∂y
)∥

2
0, Z×R ≤ ∥∇ ⋅ v∥

2
0 + ∥∇× v∥

2
0.

Therefore, there exists a Cp > 0 such that

∥∇v∥
2
0 = ∥∇v∥

2
0, ΩE ≤ Cp(∥∇ ⋅ v∥

2
0 + ∥∇× v∥

2
0),
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and

∥v∥
2
1 ≤ (Cp + 1)(∥v∥

2
0 + ∥∇ ⋅ v∥

2
0 + ∥∇× v∥

2
0). ◻

It is important to note that this proof generalizes to non-slab domain cases.

3.5.1 Discrete System Preliminaries

Performing the outlined Newton iterations for free-elastic effects necessitates solving

the Newton systems, discussed above, to obtain update functions δn and δλ. Thus,

finite elements are used to numerically approximate the updates. Finite-dimensional

spaces Vh ⊂H
DC
0 (Ω) and Πh ⊂ L

2(Ω) are considered, yielding the discrete variational

problem

a(δnh,vh) + b(vh, δλh) = F (vh), ∀vh ∈ Vh, (3.31)

b(δnh, γh) = G(γh), ∀γh ∈ Πh. (3.32)

Throughout the rest of this section, the developed theory applies exclusively to

discrete spaces. Therefore, except when necessary for clarity, we drop the subscript

h along with the notation δn and δλ. For instance, we write a(u,v) to indicate the

bilinear form in (3.31) operating on the discrete space Vh × Vh.

Let {Th}, 0 < h ≤ 1, be a family of quadrilateral subdivisions of Ω, such that

max{diam T ∶ T ∈ Th} ≤ h diam Ω. (3.33)

Further, assume that {Th} is quasi-uniform so that there exists a ρ > 0, such that

min{diam BT ∶ T ∈ Th} ≥ ρ h diam Ω, (3.34)

for all h ∈ (0,1], where BT is the largest ball contained in T , such that T is star-

shaped with respect to BT [16]. Denote the measure of any T ∈ Th as ∣T ∣. Further-

more, let Qp denote piecewise C0 polynomials of degree p ≥ 1 on Th and P0 denote
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the space of piecewise constants on Th. Next, define a bubble space

V b
h = {v ∈ Cc(Ω̄)

3
∶ v∣T = aT bTnk∣T ,∀T ∈ Th},

where Cc(Ω̄) denotes the space of compactly supported continuous functions on

the closure of Ω, bT is the bi- or tri-quadratic bubble function [99], depending on

dimension, that vanishes on ∂T ∈ Th, and aT is a constant coefficient associated with

bT . The bubble functions are constructed [104], such that

∫
T
bT dV = 1, ∀T ∈ Th, (3.35)

bT > 0, ∀x ∈ T. (3.36)

Then, we consider the pair of spaces

Πh = P0, (3.37)

Vh = {v ∈ Qm ×Qm ×Qm ⊕ V b
h ∶ v = 0 on ∂Ω}. (3.38)

In the following sections, to demonstrate the existence and uniqueness of solu-

tions to the system given by (3.31) and (3.32), we show that a(u,v) is a coercive

and continuous bilinear form and that b(v, γ) is a continuous and weakly coercive

bilinear form [7,12,14,16] for the above spaces, Vh and Πh. We further assume that

nk ∈ Qp ×Qp ×Qp, for some p ≥ 1, so that Vh ⊂ Ql ×Ql ×Ql for l = max(m,p + 2).

3.5.2 Discrete Continuity

In this section, we show that the right-hand-sides of (3.31) and (3.32) are continuous

linear functionals and that the bilinear forms a(u,v) and b(v, γ) are continuous for

the assumptions discussed above.

Lemma 3.5.6 Under Assumption 3.5.1, F and G are bounded linear functionals

on Vh and Πh, respectively.
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Proof: A simple application of the Cauchy-Schwarz inequality shows that G(γ) is a

bounded linear functional.

For F (v), observe that

∣F (v)∣ ≤K1∣⟨∇ ⋅ nk,∇ ⋅ v⟩0∣ +K3∣⟨Z(nk)∇× nk,∇× v⟩0∣

+ ∣K2 −K3∣∣⟨nk ⋅ ∇ × nk,v ⋅ ∇ × nk⟩0∣ + ∣∫
Ω
λk(nk,v)dV ∣ , (3.39)

by the triangle inequality. Applying Cauchy-Schwarz inequalities to (3.39), one

obtains

∣F (v)∣ ≤K1∥∇ ⋅ nk∥0∥∇ ⋅ v∥0 +K3∥Z(nk)∇× nk∥0∥∇× v∥0

+ ∣K2 −K3∣∣⟨nk ⋅ ∇ × nk,v ⋅ ∇ × nk⟩0∣ + ∥λknk∥0∥v∥0

≤K1∥∇ ⋅ nk∥0∥v∥DC +K3∥Z(nk)∇× nk∥0∥v∥DC

+ ∣K2 −K3∣∣⟨nk ⋅ ∇ × nk,v ⋅ ∇ × nk⟩0∣ + ∥λknk∥0∥v∥DC . (3.40)

In order to bound ∣F (v)∣, consider the final three summands separately. Note that

since ∣Z(nk)∣ ≤ Λ, where Λ is the relevant upper bound from Lemma 3.4.1, it is

evident that

∥Z(nk)∇× nk∥0 ≤ Λ∥∇× nk∥0, (3.41)

and that

∥λknk∥
2
0 ≤ β ∫

Ω
λ2
k dV = C2

1 , (3.42)

where β is the upper bound in (3.9). Finally, consider

∣⟨nk ⋅ ∇ × nk,v ⋅ ∇ × nk⟩0∣ = ∣⟨(nk ⋅ ∇ × nk)∇× nk,v⟩0∣.

Applying the Cauchy-Schwarz inequality,

∣⟨(nk ⋅ ∇ × nk)∇× nk,v⟩0∣ ≤ ∥(nk ⋅ ∇ × nk)∇× nk∥0∥v∥0
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≤ ∥(nk ⋅ ∇ × nk)∇× nk∥0∥v∥DC . (3.43)

Next, note that

(nk ⋅ ∇ × nk)∇× nk ⋅ (nk ⋅ ∇ × nk)∇× nk = (nk ⋅ ∇ × nk)
2
(∇× nk ⋅ ∇ × nk)

≤ (∣nk∣ ⋅ ∣∇× nk∣)
2
(∇× nk ⋅ ∇ × nk)

≤ β ⋅ (∇× nk ⋅ ∇ × nk)
2. (3.44)

Furthermore, ∇×nk is a vector of piecewise polynomials. Therefore, ∇×nk ⋅∇×nk ∈

L2(Ω). Employing (3.44) and letting ∥∇× nk ⋅ ∇ × nk∥0 = C2,

∥(nk ⋅ ∇ × nk)∇× nk∥0 ≤
√
β(∫

Ω
(∇× nk ⋅ ∇ × nk)

2 dV )
1/2

≤
√
βC2. (3.45)

Therefore, using (3.40)-(3.43), and (3.45),

∣F (v)∣ ≤K1∥∇ ⋅ nk∥0∥v∥DC +K3Λ∥∇× nk∥0∥v∥DC

+ ∣K2 −K3∣
√
βC2∥v∥DC +C1∥v∥DC ,

implying F (v) is a bounded linear functional on Vh. ◻

Lemma 3.5.7 Under Assumption 3.5.1, a(u,v) and b(v, γ) are continuous.

Proof: First consider

∣b(v, γ)∣ = ∣∫
Ω
γ(v,nk)dV ∣

≤ ∥γ∥0∥v ⋅ nk∥0

≤ ∥γ∥0

√
β∥v∥0,

by Hölder’s inequality and (3.9). Therefore, b(v, γ) is a continuous bilinear form.
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For the continuity of a(u,v), observe that

∣a(u,v)∣ ≤K1∣⟨∇ ⋅ u,∇ ⋅ v⟩0∣ +K3∣⟨Z(nk)∇× u,∇× v⟩0∣

+ ∣K2 −K3∣(∣⟨u ⋅ ∇ × v,nk ⋅ ∇ × nk⟩0∣ + ∣⟨nk ⋅ ∇ × v,u ⋅ ∇ × nk⟩0∣

+ ∣⟨nk ⋅ ∇ × nk,v ⋅ ∇ × u⟩0∣ + ∣⟨nk ⋅ ∇ × u,v ⋅ ∇ × nk⟩0∣

+ ∣⟨u ⋅ ∇ × nk,v ⋅ ∇ × nk⟩0∣) + ∣∫
Ω
λk(u,v)dV ∣ , (3.46)

by the triangle inequality. For simplicity, consider the components of the sum above.

Note that

∣⟨∇ ⋅ u,∇ ⋅ v⟩0∣ ≤ ∥∇ ⋅ u∥0∥∇ ⋅ v∥0 ≤ ∥u∥DC∥v∥DC . (3.47)

Considering ∣⟨Z(nk)∇× u,∇× v⟩0∣, using (3.41) implies that

∣⟨Z(nk)∇× u,∇× v⟩0∣ ≤ ∥∇× v∥0∥Z(nk)∇× u∥0

≤ Λ∥v∥DC∥∇× u∥0

≤ Λ∥v∥DC∥u∥DC . (3.48)

By the Cauchy-Schwarz inequality,

∣⟨u ⋅ ∇ × v,nk ⋅ ∇ × nk⟩0∣ = ∣⟨(nk ⋅ ∇ × nk)u,∇× v⟩0∣

≤ ∥(nk ⋅ ∇ × nk)u∥0∥∇× v∥0. (3.49)

Note that

(nk ⋅ ∇ × nk)
2
≤ ∣nk∣

2
∣∇× nk∣

2
≤ β∣∇× nk∣

2.

Furthermore, since ∇×nk is a vector of piecewise polynomials, ∣∇×nk∣
2 is bounded.

Letting Csup = sup
x∈Ω

∣∇× nk∣
2,

∥(nk ⋅ ∇ × nk)u∥0 = (∫
Ω
(nk ⋅ ∇ × nk)

2
(u ⋅ u)dV )

1/2

≤
√
β (∫

Ω
∣∇× nk∣

2
(u ⋅ u)dV )

1/2
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≤
√
βCsup∥u∥0.

Hence,

∣⟨u ⋅ ∇ × v,nk ⋅ ∇ × nk⟩0∣ ≤
√
βCsup∥u∥DC∥v∥DC . (3.50)

The next summand from (3.46) is

∣⟨nk ⋅ ∇ × v,u ⋅ ∇ × nk⟩0∣ ≤ ∥nk ⋅ ∇ × v∥0∥u ⋅ ∇ × nk∥0,

with

∥nk ⋅ ∇ × v∥0 ≤
√
β∥v∥DC .

Furthermore,

∥u ⋅ ∇ × nk∥0 ≤
√
Csup∥u∥0.

Therefore,

∣⟨nk ⋅ ∇ × v,u ⋅ ∇ × nk⟩0∣ ≤
√
βCsup∥v∥DC∥u∥DC . (3.51)

Now consider ∣⟨nk ⋅ ∇ × nk,v ⋅ ∇ × u⟩0∣ and note that this inner product is the same

as that in (3.49) with the roles of u and v reversed. Since u and v are from the

same space, the steps for deriving (3.50) are equally valid. Thus,

∣⟨nk ⋅ ∇ × nk,v ⋅ ∇ × u⟩0∣ ≤
√
βCsup∥u∥DC∥v∥DC . (3.52)

Similarly, the inequality for ∣⟨nk ⋅∇×u,v ⋅∇×nk⟩0∣ is derived in an analogous manner

to that of (3.51). Thus,

∣⟨nk ⋅ ∇ × u,v ⋅ ∇ × nk⟩0∣ ≤
√
βCsup∥v∥DC∥u∥DC . (3.53)

Next, examine

∣⟨u ⋅ ∇ × nk,v ⋅ ∇ × nk⟩0∣ ≤ ∥u ⋅ ∇ × nk∥0∥v ⋅ ∇ × nk∥0.
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Since ∇× nk is a vector of piecewise polynomials,

∥u ⋅ ∇ × nk∥0 ≤
√
Csup∥u∥0,

∥v ⋅ ∇ × nk∥0 ≤
√
Csup∥v∥0.

Thus,

∣⟨u ⋅ ∇ × nk,v ⋅ ∇ × nk⟩0∣ ≤ Csup∥u∥DC∥v∥DC . (3.54)

Finally, since λk is piecewise constant, λ2
k is bounded. Letting Cλ = sup

x∈Ω
λ2
k,

∣∫
Ω
λk(u,v)dV ∣ ≤ ∥λku∥0∥v∥0

≤
√
Cλ∥u∥0∥v∥DC

≤
√
Cλ∥u∥DC∥v∥DC . (3.55)

Combining (3.47), (3.48), and (3.50)-(3.55),

a(u,v) ≤ (K1 +K3Λ + ∣K2 −K3∣(4
√
βCsup +Csup) +

√
Cλ)∥u∥DC∥v∥DC . ◻

3.5.3 Discrete Coercivity

In this section, two proofs of the coercivity of a(u,v) are given. The first is for

the case when κ = K2/K3 = 1. The second addresses coercivity when κ lies in a

neighborhood of unity. For both proofs, we use the additional assumption that the

approximation is close enough to the solution such that the Lagrange multiplier, λk,

is pointwise non-negative. This assumption is reasonable since at the solution, n∗,

λ∗ may be chosen arbitrarily.

Lemma 3.5.8 Under Assumption 3.5.1 and the assumption that λk is pointwise

non-negative, if κ = 1, there exists an α0 > 0 such that α0∥v∥2
DC ≤ a(v,v) for all

v ∈ Vh.
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Proof: Note that since κ = 1, (K2 −K3) = 0, and

a(v,v) =K1⟨∇ ⋅ v,∇ ⋅ v⟩0 +K3⟨∇× v,∇× v⟩0 + ∫
Ω
λk(v,v)dV.

Thus, it remains to show that there exists α0 > 0 such that

α0∥v∥
2
DC ≤K1⟨∇ ⋅ v,∇ ⋅ v⟩0 +K3⟨∇× v,∇× v⟩0 + ∫

Ω
λk(v,v)dV.

From Remark 2.7 in [56], there exists C3 > 0 such that

∥∇v∥
2
0 ≤ C

2
3(∥∇ ⋅ v∥

2
0 + ∥∇× v∥

2
0).

Moreover, recall that ∥v∥2
0 ≤ C4∥∇v∥2

0 by the classical Poincaré-Friedrichs’ inequality.

Hence, for C = C4C
2
3 > 0,

∥v∥
2
0 ≤ C(∥∇ ⋅ v∥

2
0 + ∥∇× v∥

2
0). (3.56)

Since ∥v∥2
DC = ∥v∥2

0 + ∥∇ ⋅ v∥2
0 + ∥∇× v∥2

0, then

∥v∥
2
DC ≤ (C + 1)(∥∇ ⋅ v∥

2
0 + ∥∇× v∥

2
0).

Letting K = min(K1,K3) > 0 and α0 =K/(C + 1), it follows that

α0∥v∥
2
DC ≤K(∥∇ ⋅ v∥

2
0 + ∥∇× v∥

2
0) ≤K1∥∇ ⋅ v∥

2
0 +K3∥∇× v∥

2
0. (3.57)

Finally, it was assumed that λk is pointwise non-negative, implying

∫
Ω
λk(v,v)dV ≥ 0.

Therefore, (3.57) implies that

α0∥v∥
2
DC ≤K1⟨∇ ⋅ v,∇ ⋅ v⟩0 +K3⟨∇× v,∇× v⟩0 + ∫

Ω
λk(v,v)dV. ◻
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The assumption that κ = 1 is a common modeling approach. In fact, this sup-

position represents a weaker constraint than is seen in the many models that utilize

the one-constant approximation, cf. [25, 105, 117, 127]. However, it is possible to

loosen the restriction that κ = 1 and still maintain the coercivity of a(u,v) with a

small data type assumption on κ. That is, we assume that κ varies within a certain,

possibly small, range of unity. Small data assumptions are common, for instance,

in the study of solutions to the Navier-Stokes’ equations [52, 77, 93], where bounds

are imposed on certain norms of the initial data in order to demonstrate existence

and uniqueness of solutions.

Lemma 3.5.9 (Small Data) Under Assumption 3.5.1 and the assumption that λk

is pointwise non-negative, there exists ε1, ε2 > 0, dependent on β = max ∣nk∣
2, such

that if κ ∈ (1 − ε2,1 + ε1), then a(u,v) is coercive.

Proof: Since Z(nk) is USPD by assumption,

ηK3⟨∇× v,∇× v⟩0 ≤K3⟨Z(nk)∇× v,∇× v⟩0,

where η is the relevant lower bound from Lemma 3.4.1. DefiningK ′ = min(K1, ηK3) >

0 and α1 =K
′/(C + 1), where C = C4C

2
3 is the constant defined in (3.56), then,

α1∥v∥
2
DC ≤K1⟨∇ ⋅ v,∇ ⋅ v⟩0 + ηK3⟨∇× v,∇× v⟩0.

Thus, using the assumption that λk is pointwise non-negative,

α1∥v∥
2
DC ≤K1⟨∇ ⋅ v,∇ ⋅ v⟩0 +K3⟨Z(nk)∇× v,∇× v⟩0 + ∫

Ω
λk(v,v)dV. (3.58)

It should be noted that the constant η may depend on κ. Thus, the following three

cases are considered.

Case 1. κ = 1 + ε1, for ε1 > 0.

If this case holds, then η = 1. Hence, α1, defined for (3.58), is independent of κ.
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Since K2 −K3 =K3(κ − 1), the discrete bilinear form of (3.12) becomes

a(v,v) =K1⟨∇ ⋅ v,∇ ⋅ v⟩0 +K3⟨Z(nk)∇× v,∇× v⟩0

+ ε1K3(2⟨v ⋅ ∇ × v,nk ⋅ ∇ × nk⟩0 + 2⟨nk ⋅ ∇ × v,v ⋅ ∇ × nk⟩0

+ ⟨v ⋅ ∇ × nk,v ⋅ ∇ × nk⟩0) + ∫
Ω
λk(v,v)dV. (3.59)

Observe that from (3.58),

α1∥v∥
2
DC ≤K1⟨∇ ⋅ v,∇ ⋅ v⟩0 +K3⟨Z(nk)∇× v,∇× v⟩0 + ∫

Ω
λk(v,v)dV

+ ε1K3⟨v ⋅ ∇ × nk,v ⋅ ∇ × nk⟩0. (3.60)

Consider the magnitude of the terms in (3.59) not bounded from below in (3.60),

denoted as G(v,v),

∣G(v,v)∣ = ∣2ε1K3(⟨v ⋅ ∇ × v,nk ⋅ ∇ × nk⟩0 + ⟨nk ⋅ ∇ × v,v ⋅ ∇ × nk⟩0)∣

≤ 2ε1K3(∣⟨v ⋅ ∇ × v,nk ⋅ ∇ × nk⟩0∣ + ∥nk ⋅ ∇ × v∥0∥v ⋅ ∇ × nk∥0).

Using bounds derived in the proof of Lemma 3.5.7,

∣G(v,v)∣ ≤4ε1K3

√
βCsup∥v∥

2
DC .

Denoting α3 = 4K3

√
βCsup, then

∣G(v,v)∣ ≤ ε1α3∥v∥
2
DC .

Utilizing (3.60),

a(v,v) ≥ α1∥v∥
2
DC − ε1α3∥v∥

2
DC = (α1 − ε1α3)∥v∥

2
DC .

It is, thus, sufficient to have ε1 < α1/α3, guaranteeing that (α1 − ε1α3) > 0.

Case 2. κ = 1 − ε2 > 0, for ε2 > 0, and K1 <K3.
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Since κ < 1, η = 1+(κ−1)β = (1−ε2β). For K1 <K3, there exists an ε2 small enough,

such that K1 < (1 − ε2β)K3. This implies that, for small enough ε2,

α1 =
min(K1, (1 − ε2β)K3)

(C + 1)
=

K1

(C + 1)
.

Therefore, α1 is again independent of κ. Since K2 −K3 = K3(κ − 1), the discrete

bilinear form of (3.12) becomes

a(v,v) =K1⟨∇ ⋅ v,∇ ⋅ v⟩0 +K3⟨Z(nk)∇× v,∇× v⟩0

− ε2K3(2⟨v ⋅ ∇ × v,nk ⋅ ∇ × nk⟩0 + 2⟨nk ⋅ ∇ × v,v ⋅ ∇ × nk⟩0

+ ⟨v ⋅ ∇ × nk,v ⋅ ∇ × nk⟩0) + ∫
Ω
λk(v,v)dV. (3.61)

The terms of (3.61), not already bounded from below in (3.58), are bounded as

∣G(v,v)∣ = ∣ε2K3(2⟨v ⋅ ∇ × v,nk ⋅ ∇ × nk⟩0

+ 2⟨nk ⋅ ∇ × v,v ⋅ ∇ × nk⟩0 + ⟨v ⋅ ∇ × nk,v ⋅ ∇ × nk⟩0)∣

≤ ε2K3(2∣⟨v ⋅ ∇ × v,nk ⋅ ∇ × nk⟩0∣

+ 2∥nk ⋅ ∇ × v∥0∥v ⋅ ∇ × nk∥0 + ∥v ⋅ ∇ × nk∥0∥v ⋅ ∇ × nk∥0).

Again using the bounds derived in the proof of Lemma 3.5.7,

∣G(v,v)∣ ≤ ε2K3(4
√
βCsup +Csup)∥v∥

2
DC .

Denoting α4 =K3(4
√
βCsup +Csup), then,

∣G(v,v)∣ ≤ ε2α4∥v∥
2
DC .

Using (3.58) implies,

a(v,v) ≥ α1∥v∥
2
DC − ε2α4∥v∥

2
DC = (α1 − ε2α4)∥v∥

2
DC .
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Thus, possibly requiring ε2 to be even smaller, ε2 < α1/α4, so that (α1 − ε2α4) > 0.

In the case that κ < 1, the additional restriction that β < 1
1−κ for Z to be USPD

is necessary, which implies that ε2β < 1 is required. Therefore, for any fixed choice

of β, ε2 must also be taken small enough to satisfy this condition. Hence,

ε2 < min(
α1

α4
,
K3 −K1

βK3
,

1

β
) .

Case 3. κ = 1 − ε2 > 0, for ε2 > 0, and K3 ≤K1.

Here, again, η = (1 − ε2β). For this case, it is clear that (1 − ε2β)K3 <K1. Thus,

α1 =
(1 − ε2β)K3

(C + 1)
.

Using the same α4 as in the previous case and similar arguments,

a(v,v) ≥ α1∥v∥
2
DC − ε2α4∥v∥

2
DC = (α1 − ε2α4)∥v∥

2
DC .

Hence, in order for (α1 − ε2α4) > 0 to hold, it is necessary that

ε2 <
K3

K3β + α4(C + 1)
.

Finally, ε2 must still be chosen sufficiently small with respect to β such that ε2β < 1,

as in Case 2. Therefore,

ε2 < min(
K3

K3β + α4(C + 1)
,

1

β
) .

Thus, if ε1, ε2 > 0 satisfy the applicable conditions in the cases above, then at

each Newton iteration, a(u,v) is coercive for κ ∈ (1 − ε2,1 + ε1). ◻

Remark 3.5.10 The size of the interval about κ = 1 depends, in part, on Csup. At

each iteration, Csup is a well-defined constant for the variational problem given in

(3.31)-(3.32). However, no uniformity is guaranteed without stronger assumptions;
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notably, if the iterates, nk, approach a function with singular curl, then Csup may

grow either as the iteration proceeds or with grid refinement. To achieve uniformity,

an assumption that the true solution, n∗, is suitably smooth is needed. By the

Sobolev Imbedding Theorem [1], if Ω is a bounded, Lipschitz domain in R2 or

R3 and n∗ ∈ H3(Ω)3, then ∇ × n∗ is continuous and bounded. However, further

assumptions would be necessary to ensure that the Newton iterations remain in a

neighborhood of n∗ where their curls could be uniformly bounded. ♢

3.5.4 Discrete Weak Coercivity

For this section, we consider the weak coercivity of b(⋅, ⋅), under Assumption 3.5.1,

with the restriction that Ω is a polyhedral domain. That is, we show that there

exists a ζ > 0 such that

ζ∥γ∥0 ≤ sup
v∈Vh

∣b(v, γ)∣

∥v∥DC
, ∀γ ∈ Πh. (3.62)

Before proving the weak coercivity result for Vh and Πh, we prove two critical

lemmas. Let N = 2,3 denote the dimension of Ω.

Lemma 3.5.11 For the bubble functions, bT , satisfying (3.35) and (3.36) on a

rectangle T , sup
x∈T

bT = Cd/∣T ∣, where Cd = (3
2)
N .

Proof: For N = 2, without loss of generality, assume that T is a rectangle at the

origin given by [0, a] × [0, b]. Let b̄T = xy(a − x)(b − y) on T and zero elsewhere.

Note that b̄T is the bubble function on T that has not been normalized such that

(3.35) holds. Integrating over T yields

∫
T
b̄T dV =

∣T ∣3

36
. (3.63)

Computing the maximum value of b̄T shows that sup
x∈T

b̄T =
∣T ∣2

16
. Normalizing b̄T ,

using (3.63), to define bT implies that

sup
x∈T

bT =
∣T ∣2/16

∣T ∣3/36
=

9

4∣T ∣
.
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The case for N = 3 is derived analogously for T , the rectangular box [0, a] × [0, b] ×

[0, c], and b̄T = xyz(a − x)(b − y)(c − z). The corresponding bT satisfies

sup
x∈T

bT =
∣T ∣2/64

∣T ∣3/216
=

27

8∣T ∣
. ◻

Following the notation in [16], consider two finite elements (T,P,N ) and (T̂ , P̂, N̂ ),

where T and T̂ are element domains, P and P̂ are the respective sets of basis func-

tions, and N and N̂ are the associated dual bases. We say that (T̂ , P̂, N̂ ) is affine

equivalent to (T,P,N ) if there exists an affine mapping, G ∶ T → T̂ , such that for

x ∈ T

Gx = x0 +Mx,

with non-singular matrix M , satisfying

• G(T ) = T̂ ,

• G∗P̂ = P, and

• G∗N = N̂ .

Here, the pullback G∗ is defined by G∗(f̂) ∶= f̂ ○ G, and the push-forward G∗ is

defined by (G∗N)(f̂) ∶= N(G∗(f̂)).

Lemma 3.5.12 Consider a rectangular reference element (T,P,N ), where P is

the basis of shape functions for T associated with Vh ×Πh, defined above. If, for all

T̂ ∈ Th, (T̂ , P̂, N̂ ) is affine equivalent to (T,P,N ), then sup
x̂∈T̂

bT̂ = Cd/∣T̂ ∣, where bT̂

is the normalized bubble function satisfying (3.35) and (3.36) on T̂ .

Proof: Note that the non-normalized bubble function on T̂ , b̄T̂ , is given by

b̄T̂ = bT ○G
−1,

where bT is the normalized bubble function on T . Therefore, the maximum value

for b̄T̂ corresponds to the maximum value for bT , which, as shown in Lemma 3.5.11,
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is Cd/∣T ∣. Observe that

∫
T̂
b̄T̂ dV = ∫

T
bT ∣detM ∣dV

= ∣detM ∣,

where detM denotes the determinant of the matrix M . Thus, bT̂ is given by dividing

b̄T̂ by ∣detM ∣. Therefore,

sup
x̂∈T̂

bT̂ =
1

∣detM ∣
sup
x∈T

bT

=
Cd

∣detM ∣∣T ∣

=
Cd

∣T̂ ∣
. ◻

In the following, we make use of the second set of assumptions below when

necessary.

Assumption 3.5.13 Let {Th} be a family of quadrilateral subdivisions of a polyhe-

dral domain Ω satisfying (3.33) and (3.34). Moreover, assume that for each T ∈ Th,

the element (T,PT ,NT ) is affine equivalent to a rectangular reference element for

all h.

Prior to considering the following lemma, recall that α and β are the bounds on

the length of n in (3.9), ρ is the quasi-uniform mesh parameter defined in (3.34),

and Cd is the constant derived in Lemma 3.5.11 depending on N , the dimension of

Ω.

Lemma 3.5.14 Under Assumptions 3.5.1 and 3.5.13, Vh and Πh constitute a pair

satisfying (3.62) with constant ζ = h [
2αρN

9CfC∗
√
βCd

], for Cf and C∗ defined below.

Proof: Since Vh ⊂ Ql×Ql×Ql, by [16, Theorem 4.5.11] there exists C∗ > 0 depending

only on ρ such that

∥v∥1 ≤ C∗h−1
∥v∥0.
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Furthermore, using the fact that ∥v∥DC ≤ Cf∥v∥1,

sup
v∈Vh

∣b(v, γ)∣

∥v∥DC
≥ sup

v∈Vh

∣b(v, γ)∣

Cf∥v∥1
≥ sup

v∈Vh

∣b(v, γ)∣

CfC∗h−1∥v∥0
. (3.64)

Therefore, (3.62) is reduced to finding ζ > 0 such that

ζ∥γ∥0 ≤ sup
v∈Vh

∣b(v, γ)∣

CfC∗h−1∥v∥0
, ∀γ ∈ Πh.

Now consider constructing v0 on each T ∈ Th by letting aT = γ∣T , where this

denotes the restriction of γ to the element T , and defining

v0∣T = aT bTnk∣T .

Observe that, as defined, v0 ∈ Vh. Let Cm = maxT ∈Th ∣T ∣. Then,

b(v0, γ) = ∑
T ∈Th
∫
T
γ(v0,nk) ≥ α ∑

T ∈Th
γ2
∫
T
bT dV

= α ∑
T ∈Th

γ2
≥

α

Cm
∥γ∥2

0. (3.65)

It is also the case that

∥v0∥
2
0 = ∑

T ∈Th
∫
T
a2
T b

2
T (nk,nk)dV ≤ β ∑

T ∈Th
γ2
∫
T
b2T dV.

Since the bubble functions are fixed, let

Cb = max
T ∈Th ∫T

b2T dV, CT = min
T ∈Th

∣T ∣.

Thus,

∥v0∥
2
0 ≤ βCb ∑

T ∈Th
γ2

≤
βCb
CT

∥γ∥2
0. (3.66)
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Therefore, combining (3.65) and (3.66),

sup
v∈Vh
∫Ω γ(v,nk)dV

∥v∥0
≥
∫Ω γ(v0,nk)dV

∥v0∥0

≥

α
Cm

∥γ∥2
0

√
βCb
CT

∥γ∥0

=
α
√
CT

Cm
√
βCb

∥γ∥0. (3.67)

Note that the final constant in (3.67) is mesh dependent. Let N = 2,3 denote the

dimension of Ω. Observe that

Cb ≤ max
T ∈Th

sup
x∈T

bT ∫
T
bT dV = max

T ∈Th
sup
x∈T

bT .

From Lemma 3.5.12, for arbitrary T ∈ Th,

sup
x∈T

bT = Cd/∣T ∣,

where Cd depends only on the dimension of Ω. Therefore,

max
T ∈Th

sup
x∈T

bT =
Cd
CT

.

Hence,
√
CT

Cm
√
Cb

≥
CT

Cm
√
Cd
. (3.68)

Define the constants

C2,1 =
π

4
, C2,2 = π, for N = 2,

C3,1 =
π

6
, C3,2 =

3π

4
, for N = 3.

Using Properties (3.33) and (3.34) with the constants above, it is straightforward

to show that

CT ≥ CN,1(min{diam BT ∶ T ∈ Th})
N
≥ CN,1ρ

N
(hdiam Ω)

N ,

Cm ≤ CN,2(max{diam T ∶ T ∈ Th})
N
≤ CN,2(hdiam Ω)

N .
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Therefore,

CT
Cm

≥
CN,1ρ

N

CN,2
. (3.69)

Utilizing (3.68) and (3.69)

α
√
CT

Cm
√
βCb

∥γ∥0 ≥
αCN,1ρ

N

CN,2
√
βCd

∥γ∥0 ≥
2αρN

9
√
βCd

∥γ∥0,

where Cd depends only on the dimension of Ω. Hence, (3.62) is satisfied with

constant ζ = h [
2αρN

9CfC∗
√
βCd

]. Thus, Vh and Πh represent a pair of spaces on which

b(⋅, ⋅) is weakly coercive. ◻

For nk ∈ Qp, with Vh ⊂ Qm ×Qm ×Qm ⊕ V b
h , as in (3.38), and l = max(m,p + 2), the

above lemma yields an immediate corollary.

Corollary 3.5.15 Under Assumptions 3.5.1 and 3.5.13, nk ∈ Qp implies that b(⋅, ⋅)

is weakly coercive for the pair Ql–P0. The special case that nk ∈ P0 implies that

b(⋅, ⋅) is weakly coercive on the pair Qmax(m,2)–P0.

Proof: Note that if nk ∈ Qp, the bubble space defined above satisfies V b
h ⊂ Qp+2 ×

Qp+2×Qp+2, since bT ∈ Q2. This implies that Vh ⊂ Ql×Ql×Ql. Therefore, since b(⋅, ⋅)

is weakly coercive for the pair Vh–P0, weak coercivity must also hold for the pair Ql–

P0. If nk ∈ P0, then V b
h ⊂ Q2×Q2×Q2. Hence, Vh ⊂ Qmax(m,2)×Qmax(m,2)×Qmax(m,2).

The lemma above is equally valid for nk ∈ P0. Therefore, b(⋅, ⋅) is weakly coercive

on the pair Qmax(m,2)–P0 for the given nk. ◻

In light of the lemmas discussed above, verification of weak coercivity allows for

the formulation and proof of the following theorem.

Theorem 3.5.16 Under Assumptions 3.5.1 and 3.5.13, existence of discrete solu-

tions (δnh, δλh) for each Newton linearization are guaranteed for the pair Vh–Πh.

In the case that κ = 1 or that κ satisfies the small data conditions of Lemma 3.5.9,

such solutions are unique.
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Proof: Following a mixed formulation approach based on [12,14,16], Lemmas 3.5.6

and 3.5.7 guarantee the existence of a solution to the system given by (3.31) and

(3.32). In the event that κ = 1 or that κ satisfies the small data assumptions, Lemma

3.5.8 or 3.5.9 coupled with Lemma 3.5.14 implies that the solution is also unique.◻

3.6 Error Analysis

In the previous section, the derived weak coercivity constant depends on the mesh

parameter h. Therefore, as h approaches zero so too does the weak coercivity con-

stant for the pair Vh and Πh. However, the convergence of the scheme for the en-

riched Lagrangian finite-element spaces composing Vh is only slightly compromised.

In this section, we derive approximation error bounds for the discrete update so-

lution. Throughout this section, it is assumed that Assumptions 3.5.1 and 3.5.13

apply. Let (u, q) represent a solution to the continuum variational system given by

(3.10) and (3.11) and (uh, qh) be the unique solution to the discrete system in (3.31)

and (3.32). As above, denote the dimension of Ω by N = 2,3.

Theorem 3.6.1 Let Πh and Vh be defined as in (3.37) and (3.38) with m = 2.

Under Assumptions 3.5.1 and 3.5.13, for u ∈ H3(Ω)3 and q ∈ H1(Ω) there exists

Ca > 0 such that

∥u − uh∥DC ≤ Cah(∥u∥3 + ∥q∥1). (3.70)

Proof: Let α0 denote the coercivity constant from either Lemma 3.5.8 or 3.5.9. Fur-

thermore, let ζ denote the h-dependent weak coercivity constant derived in Lemma

3.5.14. By Theorem 5.2.2 in [12],

∥u − uh∥DC ≤
4CACB
α0ζ

Eu +
CB
α0

Eq, (3.71)

where CA and CB are the continuity constants associated with a(⋅, ⋅) and b(⋅, ⋅),

respectively, and

Eu = inf
vh∈Vh

∥u − vh∥DC , Eq = inf
γh∈Πh

∥q − γh∥0.
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Note that

inf
vh∈Vh

∥u − vh∥DC ≤ Cf inf
vh∈Vh

∥u − vh∥1,

where Cf is the constant used in (3.64). Let Ihf denote the global interpolant of

f over the appropriate finite-element space. Since {Th} is quasi-uniform, it is, in

particular, non-degenerate. Therefore, applying [16, Theorem 4.4.24] to the discrete

space Vh, there exists a C5 > 0, such that

⎛

⎝
∑
T ∈Th

∥v − Ihv∥
2
H1(T )

⎞

⎠

1/2
= ∥v − Ihv∥1 ≤ C5h

2
∥v∥3, ∀v ∈H3

(Ω).

This implies that if u ∈H3(Ω)3, then

inf
vh∈Vh

∥u − vh∥DC ≤ CfC5h
2
∥u∥3. (3.72)

For Πh, Theorem 3.1.6 in [23] implies that there exists a C6 > 0 such that

∥γ − Ihγ∥0 ≤ C6h∥γ∥1, ∀γ ∈H1
(Ω).

Hence, if q ∈H1(Ω),

inf
γh∈Πh

∥q − γh∥0 ≤ C6h∥q∥1. (3.73)

Combining (3.72) and (3.73) with (3.71) produces the error estimate

∥u − uh∥DC ≤
4CACB
α0ζ

CfC5h
2
∥u∥3 +

CB
α0

C6h∥q∥1

=
18CACBC

2
fC∗

√
βCdC5

αρNα0
h∥u∥3 +

CBC6

α0
h∥q∥1.

Taking Ca = max(
18CACBC

2
fC∗
√
βCdC5

αρNα0
, CBC6

α0
), (3.70) is obtained. ◻

Thus, the approximation is convergent for Vh–Πh but with an order of sub-

optimality, due to the weak coercivity constant’s dependence on the mesh parameter.

Use of a discrete H−1(Ω) norm for the space Πh is being considered as a means of

eliminating this mesh dependence. However, preliminary numerical results have
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suggested that such an approach may not be viable.

Remark 3.6.2 The constant CA is dependent on Csup and, therefore, complexities

across iterations similar to those discussed in Remark 3.5.10 may arise. The error

analysis presented above deals with a fixed nk across grids and a variational prob-

lem with true Newton correction u. It demonstrates that, for the fixed variational

problem, the solution on successively finer grids converges to u with order h. As-

sumptions similar to those in Remark 3.5.10 would be needed to ensure uniformity

across iterations or grid refinements. ♢

3.7 Numerical Results

In this section, we present numerical results for the energy-minimization finite-

element method discussed above. The algorithm to perform the minimization dis-

cussed in previous sections has three stages; see Algorithm 1. The outermost phase

is nested iteration (NI) [94, 116], which begins on a specified coarsest grid level.

Newton iterations are performed on each grid, updating the current approximation

after each step. The stopping criterion for the Newton iterations at each level is

based on a specified tolerance for the current approximation’s conformance to the

first-order optimality conditions in the standard Euclidean l2-norm. For the numer-

ical experiments in this section, this tolerance is held fixed at 10−4. The resulting

approximation is then interpolated to a finer grid. The current implementation

performs uniform grid refinement after each set of Newton iterations.

The Newton iteration systems are constructed by applying finite-element dis-

cretizations on each grid. The resulting, relatively sparse, matrix has the anticipated

saddle-point block structure,
⎡
⎢
⎢
⎢
⎢
⎢
⎣

A B

BT 0

⎤
⎥
⎥
⎥
⎥
⎥
⎦

.

The matrix is inverted using LU decomposition in order to solve for the discrete

updates δnh and δλh. Finally, a damped Newton correction is performed. That is,
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the new iterates are given by

⎡
⎢
⎢
⎢
⎢
⎢
⎣

nk+1

λk+1

⎤
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡
⎢
⎢
⎢
⎢
⎢
⎣

nk

λk

⎤
⎥
⎥
⎥
⎥
⎥
⎦

+ ω

⎡
⎢
⎢
⎢
⎢
⎢
⎣

δnh

δλh

⎤
⎥
⎥
⎥
⎥
⎥
⎦

, (3.74)

where ω ≤ 1. This is to ensure relatively strict adherence to the constraint manifold,

which is necessary for the well-posedness discussed above. For the algorithm applied

in this section, ω is chosen to begin at 0.2 on the coarsest grid and increases by 0.2,

to a maximum of 1, after each grid refinement, so that as the approximation con-

verges, larger Newton steps are taken. For complicated boundary conditions, such

damped Newton steps are important in preventing method divergence. More sophis-

ticated methods for choosing the Newton step size are discussed in the next chapter.

The grid management and discretizations are implemented using the deal.II finite-

element library, which is an aggressively optimized and parallelized open-source

library widely used in scientific computing [8, 9].

Algorithm 1: Newton’s method minimization algorithm with NI

0. Initialize (n0, λ0) on coarse grid.

while Refinement limit not reached do

while First-order optimality conformance threshold not satisfied do

1. Set up discrete linear system (3.5) on current grid, H.

2. Solve for δnH and δλH .

3. Compute nk+1 and λk+1 as in (3.74).

end

4. Uniformly refine the grid.

5. Interpolate nH → nh and λH → λh.

end

3.7.1 Practical Choice of Finite Elements

The bubble enrichment discussed above is non-standard in its incorporation of nk

in the construction of the bubbles. Therefore, during numerical implementation, it
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was desirable to find an experimentally stable, standard, finite-element pair closely

related to the spaces discussed above. It was observed that Q1–Q1 finite-element

discretizations resulted in singular matrices. This implies that Q1–Q1 is not a pair

for which b(⋅, ⋅) is weakly coercive. Such a phenomenon is not unique. For example,

instabilities arise for equal order elements in Galerkin approaches to both the Stokes’

equations [41] and the Navier-Stokes’ equations [49].

On the other hand, in the numerical experiments to be discussed below, mixed

finite-element approaches, such as Q2–P0 discretizations, experimentally appear to

admit weak coercivity without the need for rising order finite-element implementa-

tions or bubble enrichments. In addition, Corollary 3.5.15 implies that for a piece-

wise constant initial iterate, the update element space Q2–P0 implies weak coercivity

for the first Newton iteration. With this assurance, coupled with the empirical weak

coercivity evidence for Q2–P0, we employ Q2–P0 spaces to approximate δnh and δλh

for all iterations in the experiments of this section. In the event that instabilities

occur for the Q2–P0 discretization of a particular problem, the bubble enriched

finite-element pair Vh–Πh, defined in (3.37) and (3.38), may be implemented and is

particularly attractive because the rising order of the bubble functions, bTnk∣T , on

each element does not increase the number of unknowns at each Newton iteration.

3.7.2 Free Elastic Numerical Results

The general test problem in this section considers a classical domain with two parallel

substrates placed at distance d = 1 apart. The substrates run parallel to the xz-

plane and perpendicular to the y-axis. It is assumed that this domain represents

a uniform slab in the xy-plane. That is, n may have a nonzero z component but

∂n
∂z = 0. Hence, we consider the 2-D domain Ω = {(x, y) ∣ 0 ≤ x, y ≤ 1}. The problem

assumes periodic boundary conditions at the edges x = 0 and x = 1. Dirichlet

boundary conditions are enforced on the y-boundaries. As discussed above, the

simplification outlined in (2.4) is relevant for this domain and boundary conditions.

In this chapter, we introduce work units (WUs) to quantify the efficiency of NI. For

our numerical results, WUs are measured in terms of assembling and solving a single
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linearization on the finest grid of a NI hierarchy and are computed by summing the

number of non-zeroes in each matrix across all grids and dividing by the number of

non-zeroes in the (fixed) sparsity pattern at the finest level. Assuming the presence

of solvers that scale linearly with the number of non-zeroes in the matrix, WUs offer

a metric for cost comparisons against runs without NI.

(a) (b)

Figure 3.1: (a) Initial guess on 4 × 4 mesh with initial free energy of 5.467 and (b)
resolved solution on 512 × 512 mesh (restricted for visualization) with final free energy of 0
for a uniformly aligned boundary.

The first numerical experiment is run on one of the simplest configurations of

this type. Along each of the substrates the liquid crystal rods are uniformly aligned

parallel to the x-axis. The relevant Frank constants are K1 =K2 =K3 = 1. It should

be noted that for the parameters defined throughout this thesis, the unit of length

is taken to be microns. The problem is solved on a 4 × 4 coarse grid with seven

successive uniform refinements resulting in a 512 × 512 fine grid. The initial guess

and computed, converged solution are displayed in Figure 3.1.

The final minimized functional energy is F1 = 0, compared to the initial guess

energy of 5.467. In Table 3.1, the number of Newton iterations per grid is detailed

as well as the conformance of the solution to the first-order optimality conditions

after the first and final Newton steps, respectively, on each grid. The total work

required in these iterations is approximately 1.33 WUs. In contrast, without nested

iteration, the algorithm requires 27 damped Newton steps on the 512 × 512 finest

grid alone, to satisfy the tolerance limit. The application of damped Newton steps

becomes even more important when beginning on finer grids with a rough initial

guess, as divergence can be more prevalent. Table 3.1 also reveals the performance
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of the algorithm with respect to the pointwise constraint, presenting the progres-

sively tighter minimum and maximum director deviations from unit length at the

quadrature nodes. The computed equilibrium solution behaves as expected with the

rods uniformly aligning parallel to the x-axis.

Grid Dim. Newton Iter. Init. Res. Final Res. Deviation in ∣n∣2 Final Energy
4 × 4 22 4.34e-00 5.69e-05 8.00e-07, 7.19e-06 8.298e-10
8 × 8 1 3.16e-05 1.26e-05 1.62e-07, 2.92e-06 1.328e-10

16 × 16 1 7.10e-06 1.42e-06 1.63e-08, 5.89e-07 5.311e-12
32 × 32 1 8.32e-07 2.28e-13 0, 7.23e-13 2.239e-24
64 × 64 1 1.31e-13 5.57e-14 -4.00e-16, 1.00e-15 0

128 × 128 1 1.22e-13 1.01e-13 -4.00e-16, 0 0
256 × 256 1 2.18e-13 1.91e-13 -4.00e-16, 0 0
512 × 512 1 4.46e-13 3.97e-13 -4.00e-16, 0 0

Table 3.1: Grid and solution progression for uniform free-elastic boundary conditions
with initial and final residuals for the first-order optimality conditions, minimum and
maximum director deviations from unit length at the quadrature nodes, and final
functional energy on each grid.

The second test, run for the free-elastic slab problem, incorporates twist bound-

ary conditions and unequal Frank constants. On the lower slab, along y = 0, the

nematic rods are aligned parallel to the x-axis. For the upper slab, the rods are

uniformly aligned parallel to the z-axis. The relevant constants for this run are

K1 = 1, K2 = 1.2, and K3 = 1. This implies that κ = K2/K3 > 1. The solves are

again performed on a 4× 4 coarse grid, uniformly ascending to a 512× 512 fine grid.

The expected configuration for such boundary conditions is a twisted equilibrium

solution along the y-axis. Indeed, the numerically resolved solution in Figure 3.2,

displayed alongside the initial guess, demonstrates such a twist. The final minimized

functional energy is F1 = 1.480, compared to the initial guess energy of 12.534. Table

3.2 enumerates the algorithm run attributes.

As in Table 3.1 above, a sizable majority of the Newton iteration computations

are isolated to the coarsest grids, with the finest grids requiring only one Newton

iteration to reach the residual tolerance limit. Therefore, most of the computational

cost is also isolated to the cheaper coarse grids rather than the finer levels. Here,

the total work required is approximately 1.36 WUs. Without nested iteration, 28

damped Newton steps are required on the finest grid to compute the solution.
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(a) (b)

Figure 3.2: (a) Initial guess on 4 × 4 mesh with initial free energy of 12.534 and (b)
resolved solution on 512 × 512 mesh (restricted for visualization) with final free energy of
1.480 for a twist boundary.

Grid Dim. Newton Iter. Init. Res. Final Res. Deviation in ∣n∣2 Final Energy
4 × 4 23 6.71e-00 5.15e-05 -5.98e-05, 4.40e-05 1.481
8 × 8 7 1.80e-02 2.95e-05 -3.82e-06, 1.79e-06 1.480

16 × 16 4 4.51e-03 7.22e-06 -2.39e-07, 1.10e-07 1.480
32 × 32 2 1.13e-03 2.16e-14 -1.47e-08, 6.88e-09 1.480
64 × 64 2 2.82e-04 4.10e-14 -9.21e-10, 4.30e-10 1.480

128 × 128 1 7.05e-05 1.35e-12 -5.75e-11, 2.69e-11 1.480
256 × 256 1 1.76e-05 1.63e-13 -3.60e-12, 1.68e-12 1.480
512 × 512 1 4.41e-06 3.09e-13 -2.25e-13, 1.05e-13 1.480

Table 3.2: Grid and solution progression for the free-elastic problem and twist boundary
conditions with initial and final residuals for the first-order optimality conditions,
minimum and maximum director deviations from unit length at the quadrature nodes, and
final functional energy on each grid.

In the final numerical run, letting r = 0.25 and s = 0.95, the boundary conditions

considered are

n1 = 0, (3.75)

n2 = cos (r(π + 2 tan−1
(Xm) − 2 tan−1

(Xp))), (3.76)

n3 = sin (r(π + 2 tan−1
(Xm) − 2 tan−1

(Xp))), (3.77)

where Xm =
−s sin(2π(x+r))

−s cos(2π(x+r))−1 and Xp =
−s sin(2π(x+r))

−s cos(2π(x+r))+1 . Such boundary conditions

are meant to simulate nano-patterned surfaces important in current research [5, 6].

Even in the absence of electric fields, such patterned surfaces result in complicated

director configurations throughout the interior of Ω.
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A similar grid progression to the cases above is applied. The Frank elastic con-

stants for the experiment are K1 = 1, K2 = 0.62903, and K3 = 1.32258. This results

in κ < 1. The final solution, as well as the initial guess, are displayed in Figure

3.3. Table 3.3, again, details the relevant computation data. The computed equilib-

rium configuration demonstrates the expected alignment and symmetries given the

patterned surfaces.

(a) (b)

Figure 3.3: (a) Initial guess on 4 × 4 mesh with initial free energy of 13.242 and (b)
resolved solution on 512 × 512 mesh (restricted for visualization) with final free energy of
3.890 for a nano-patterned boundary.

The minimized functional energy is F1 = 3.890, compared to the initial guess

free energy of 13.242. The work required is approximately 2.75 WUs. On the other

hand, without nested iterations, 28 damped Newton steps are required on the finest

grid. Therefore, in all cases discussed, nested iteration is successful in significantly

reducing the computational work necessary to compute an equilibrium solution.

Grid Dim. Newton Iter. Init. Res. Final Res. Deviation in ∣n∣2 Final Energy
4 × 4 24 7.04e-00 3.67e-05 -9.09e-02, 4.67e-02 2.521
8 × 8 12 1.20e-00 2.01e-05 -8.20e-02, 4.58e-02 3.194

16 × 16 7 1.06e-00 1.34e-05 -6.69e-02, 3.96e-02 3.674
32 × 32 3 8.22e-01 3.41e-12 -4.31e-02, 2.78e-02 3.885
64 × 64 3 5.04e-01 4.56e-14 -1.73e-02, 1.26e-02 3.900

128 × 128 3 2.24e-01 9.12e-14 -3.51e-03, 2.81e-03 3.890
256 × 256 2 6.94e-02 1.49e-10 -4.63e-04, 3.63e-04 3.890
512 × 512 2 1.78e-02 7.39e-13 -6.92e-05, 5.89e-05 3.890

Table 3.3: Grid and solution progression for patterned boundary conditions with initial
and final residuals for the first-order optimality conditions, minimum and maximum
director deviations from unit length at the quadrature nodes, and final functional energy
on each grid.
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Chapter 4

A Penalty Method and Trust Regions

In the previous chapter, a theoretically supported energy-minimization finite-element

approach using Newton linearization and a Lagrange multiplier for the pointwise

constraint was developed. The approach effectively enforces the unit-length con-

straint while converging to energy-minimizing configurations. However, alternative

approaches to efficiently impose unit-length conformance exist, such as the renor-

malized Newton method presented in [53]. Penalty methods have also been ap-

plied to liquid crystal equilibrium problems [5, 57, 64] and are utilized extensively

to simplify the Ericksen-Leslie equations [44, 78] in nematohydrodynamics simula-

tions [83, 85, 86]. In addition, penalty methods are used for unit-length constraints

in certain ferromagnetic problems [73].

In this chapter, we aim to compare the performance of techniques enforcing the

unit-length constraint via Lagrange multipliers or with penalty methods employing

augmentations to the free-elastic energy functional. Due to their broad use, the

accuracy and efficiency of penalty methods, relative to the Lagrange multiplier ap-

proach outlined above, are of great interest in the context of our energy-minimization

algorithm. The constraint enforcement approaches are discussed and well-posedness

for the intermediate Newton linearizations that arise in the penalty method formu-

lation is established. In the numerical experiments to follow, we compare the cost

and precision of the constraint techniques in order to determine the most effective

approach.

In addition, several tailored trust-region methods are investigated in order to

consider improvements to the damped Newton stepping method discussed in Sec-

tion 3.7. These trust-region approaches include one- and two-dimensional subspace

minimization techniques [18, 19, 100]. In the context of optimization, trust-region

methods are quite successful at increasing convergence robustness while generally
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improving precision and time to solution. A modified penalty method, which nor-

malizes the director after each step, is also introduced in this section. The resulting

algorithms are tested on three benchmark free-elastic problems. Throughout this

chapter, we utilize the null Lagrangian simplification discussed in Equation (2.4).

4.1 Penalty Method Energy Minimization

In order to define the penalty approach, the free-energy functional in (2.5) is aug-

mented with a positive-definite term to form the functional

P(n) =K1⟨∇ ⋅ n,∇ ⋅ n⟩0 +K3⟨Z∇× n,∇× n⟩0 + ζ⟨n ⋅ n − 1,n ⋅ n − 1⟩0, (4.1)

where ζ > 0 represents a constant weight, energetically penalizing deviations of

the solution from the unit-length constraint. Thus, in the limit of large ζ values,

unconstrained minimization of (4.1) is equivalent to the constrained minimization

of (2.5). In order to minimize P(n), we compute the Gâteaux derivative of P(n)

with respect to n in the direction v ∈ HDC0 (Ω). Hence, the first-order optimality

condition is

Pn[v] =
∂

∂n
P(n)[v] = 0, ∀v ∈H

DC
0 (Ω).

Computation of this derivative produces the variational problem

Pn[v] = 2K1⟨∇ ⋅ n,∇ ⋅ v⟩0 + 2K3⟨Z∇× n,∇× v⟩0

+ 2(K2 −K3)⟨n ⋅ ∇ × n,v ⋅ ∇ × n⟩0 + 4ζ⟨v ⋅ n,n ⋅ n − 1⟩0 = 0,

for all v ∈HDC0 (Ω).

As with the Lagrangian formulation, the variational problem above contains non-

linearities. Therefore, Newton iterations are again applied, requiring computation

of the second-order Gâteaux derivative with respect to n. Let nk be the current

approximation for n and δn = nk+1 − nk be the update that we seek to compute.
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Then, the Newton linearizations are written

∂

∂n
(Pn(nk)[v]) [δn] = −Pn(nk)[v], ∀v ∈H

DC
0 (Ω), (4.2)

where

∂

∂n
(Pn(nk)[v]) [δn] = 2K1⟨∇ ⋅ δn,∇ ⋅ v⟩0 + 2K3⟨Z(nk)∇× δn,∇× v⟩0

+ 2(K2 −K3)(⟨δn ⋅ ∇ × v,nk ⋅ ∇ × nk⟩0

+ ⟨nk ⋅ ∇ × v, δn ⋅ ∇ × nk⟩0 + ⟨nk ⋅ ∇ × nk,v ⋅ ∇ × δn⟩0

+ ⟨nk ⋅ ∇ × δn,v ⋅ ∇ × nk⟩0 + ⟨δn ⋅ ∇ × nk,v ⋅ ∇ × nk⟩0)

+ 4ζ(⟨nk ⋅ nk − 1,v ⋅ δn⟩0 + 2⟨δn ⋅ nk,v ⋅ nk⟩0). (4.3)

Completing (4.2) with the above second-order derivative computation yields a lin-

earized variational system. For each iteration, we compute δn satisfying (4.2) for

all v ∈HDC0 (Ω) with the current approximation nk.

4.2 Well-Posedness of the Penalty Linearizations

Here, we adapt the well-posedness results established for the Lagrange multiplier

method in Section 3.5 to the discrete form of the penalty method linearizations in

Equation (4.2).

Let a(δn,v) denote the bilinear form defined in (4.3) for fixed nk and F (v) be

the linear functional on the right-hand-side of the linearization in (4.2). Using finite

elements to approximate the desired update, δn, and considering a discrete space

Vh ⊂H
DC
0 (Ω) yields the discrete linearized system,

a(δnh,vh) = F (vh), ∀vh ∈ Vh. (4.4)

Throughout the rest of this section, the developed theory applies exclusively to

discrete spaces. Therefore, except when necessary for clarity, we drop the subscript

h along with the notation, δn. For instance, we write a(u,v) to indicate the bilinear
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form in (4.4) operating on the discrete space Vh × Vh. While the theory below, ex-

plicitly concerns full Dirichlet boundary conditions, the theory is equally applicable

to mixed Dirichlet and periodic boundary conditions on a rectangular domain.

In order to establish the well-posedness of (4.4), we show that the functional,

F (v), is continuous and that the bilinear form, a(u,v), is continuous and coercive.

Decomposing the bilinear form, a(u,v), and the linear form, F (v), into terms that

contain the penalty term and those that do not, â(u,v) and F̂ (v),

a(u,v) = â(u,v) + 2ζ(⟨nk ⋅ nk − 1,v ⋅ u⟩0 + 2⟨u ⋅ nk,v ⋅ nk⟩0),

F (v) = F̂ (v) + 2ζ⟨v ⋅ nk,nk ⋅ nk − 1⟩0.

We then extend the results in Section 3.5.

Lemma 4.2.1 Under Assumption 3.5.1, F is a bounded linear functional on Vh.

Proof: From the bounds derived in Lemma 3.5.6 and an application of the Cauchy-

Schwarz inequality,

∣F (v)∣ ≤ ∣F̂ (v)∣ + 2ζ∥nk ⋅ nk − 1∥0∥nk ⋅ v∥0

≤ CF ∥v∥DC + 2ζ∥nk ⋅ nk − 1∥0∥nk ⋅ v∥0,

where CF is the constant independent of mesh size, defined by Lemma 3.5.6. Note

that by assumption α ≤ nk ⋅ nk ≤ β, where 0 < α ≤ 1 ≤ β. Then, letting Cµ =

max(1 − α,β − 1),

∥nk ⋅ nk − 1∥2
0 = ∫

Ω
(nk ⋅ nk − 1)2 dV ≤ C2

µ∫
Ω
dV = C2

µ∣Ω∣.

Hence, ∥nk ⋅ nk − 1∥0 ≤ Cµ∣Ω∣
1
2 . In addition,

∥nk ⋅ v∥0 ≤
√
β∥v∥0 ≤

√
β∥v∥DC .



62

Thus,

∣F (v)∣ ≤ CF ∥v∥DC + 2ζCµ∣Ω∣
1
2

√
β∥v∥DC . ◻

Lemma 4.2.2 Under Assumption 3.5.1, a(u,v) is continuous.

Proof: Applying the triangle inequality,

∣a(u,v)∣ ≤ ∣â(u,v)∣ + 2ζ(∣⟨nk ⋅ nk − 1,u ⋅ v⟩0∣ + 2∣⟨u ⋅ nk,v ⋅ nk⟩0∣)

≤ CA∥u∥DC∥v∥DC + 2ζ(∣⟨nk ⋅ nk − 1,u ⋅ v⟩0∣ + 2∣⟨u ⋅ nk,v ⋅ nk⟩0∣),

where CA is the continuity constant defined in Lemma 3.5.7. Note that,

∣⟨nk ⋅ nk − 1,u ⋅ v⟩0∣ = ∣⟨(nk ⋅ nk − 1)u,v⟩0∣ ≤ ∥(nk ⋅ nk − 1)u∥0∥v∥0.

Furthermore,

∥(nk ⋅ nk − 1)u∥
2
0 = ∫

Ω
(nk ⋅ nk − 1)2

(u ⋅ u)dV ≤ C2
µ∥u∥

2
0.

This implies that

∥(nk ⋅ nk − 1)u∥0 ≤ Cµ∥u∥0,

and

∣⟨nk ⋅ nk − 1,u ⋅ v⟩0∣ ≤ Cµ∥u∥DC∥v∥DC .

Noting that

∣⟨u ⋅ nk,v ⋅ nk⟩0∣ ≤ β∥u∥DC∥v∥DC ,

we bound

a(u,v) ≤ (CA + 2ζ(Cµ + 2β))∥u∥DC∥v∥DC . ◻

Following the theory established in Section 3.5.3, two coercivity lemmas for a(u,v)

are proved. The first proof addresses the case when κ = 1. The second considers
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coercivity when κ lies in a neighborhood of unity, κ ∈ (1 − ε2,1 + ε1). Let α0 > 0 be

the coercivity constant from Lemma 3.5.8.

Lemma 4.2.3 Under Assumption 3.5.1, if κ = 1 and 2ζ ∣α − 1∣ < α0, there exists a

β0 > 0 such that β0∥v∥2
DC ≤ a(v,v) for all v ∈ Vh.

Proof:

a(v,v) = â(v,v) + 2ζ⟨nk ⋅ nk − 1,v ⋅ v⟩0 + 4ζ⟨v ⋅ nk,v ⋅ nk⟩0

Using the coercivity of â(v,v) from Lemma 3.5.8 and the fact that ⟨v⋅nk,v⋅nk⟩0 ≥ 0,

α0∥v∥
2
DC ≤ â(v,v) + 4ζ⟨v ⋅ nk,v ⋅ nk⟩0.

Observe that

⟨nk ⋅ nk − 1,v ⋅ v⟩0 = ∫
Ω
(nk ⋅ nk − 1)(v ⋅ v)dV.

If α ≤ nk ⋅ nk ≤ β for all x ∈ Ω with 0 < α ≤ 1 ≤ β, then (α − 1) ≤ 0, and

⟨nk ⋅ nk − 1,v ⋅ v⟩0 ≥ (α − 1)∫
Ω

v ⋅ v dV ≥ (α − 1)∥v∥
2
DC . (4.5)

Letting β0 = α0 − 2ζ ∣α − 1∣,

β0∥v∥
2
DC ≤ â(v,v) + 4ζ⟨v ⋅ nk,v ⋅ nk⟩0 + 2ζ⟨nk ⋅ nk − 1,v ⋅ v⟩0.

Hence, if 2ζ ∣α − 1∣ < α0, then β0 > 0. ◻

Therefore, a(u,v) is coercive for κ = 1 if ζ is not so large in comparison to the

pointwise lower bound on the director length as to overwhelm α0.

As in Section 3.5.3, the assumption that κ = 1 can be loosened to include some

anisotropy and retain coercivity of a(u,v). Let C > 0 such that ∥v∥2
0 ≤ C(∥∇ ⋅v∥2

0 +

∥∇×v∥2
0) (see Lemma 3.5.8). Further, let α1 > 0 be defined as in the proof of Lemma

3.5.9, where K ′ = min(K1, ηK3) and α1 =
K′

(C+1) . The following extends the results

of Lemma 3.5.9 to the penalty method.
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Lemma 4.2.4 (Small Data) Under Assumption 3.5.1, if

β1 =
min(K1,K3)

C + 1
− 2ζ ∣α − 1∣ > 0,

there exists ε1, ε2 > 0, dependent on β = max ∣nk∣
2, such that for κ ∈ (1 − ε2,1 + ε1),

a(u,v) is coercive.

Proof: Let

ã(v,v) =K1⟨∇ ⋅ v,∇ ⋅ v⟩0 +K3⟨Z(nk)∇× v,∇× v⟩0 + 4ζ⟨v ⋅ nk,v ⋅ nk⟩0

+ 2ζ⟨nk ⋅ nk − 1,v ⋅ v⟩0.

From the proof of Lemma 3.5.9, the fact that ζ > 0, and (4.5),

(α1 − 2ζ ∣α − 1∣)∥v∥
2
DC ≤ ã(v,v). (4.6)

The USPD lower bound for Z(nk), η, may depend on κ; see Lemma 3.4.1. Thus,

the proof is split into three cases.

Case 1. κ = 1 + ε1, for ε1 > 0.

If this case holds, then η = 1. Hence, α1, defined for (4.6), is independent of κ. Since

K2 −K3 =K3(κ − 1), the discrete bilinear form of (4.3) becomes

a(v,v) =ã(v,v) + ε1K3(2⟨v ⋅ ∇ × v,nk ⋅ ∇ × nk⟩0 + 2⟨nk ⋅ ∇ × v,v ⋅ ∇ × nk⟩0

+ ⟨v ⋅ ∇ × nk,v ⋅ ∇ × nk⟩0). (4.7)

Observe that from (4.6),

(α1 − 2ζ ∣α − 1∣) ≤ ã(v,v) + ε1K3⟨v ⋅ ∇ × nk,v ⋅ ∇ × nk⟩0. (4.8)

Consider the magnitude of the terms in (4.7) not bounded from below in (4.8),
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denoted as G(v,v). As in the proof of Lemma 3.5.9,

∣G(v,v)∣ ≤ε1α3∥v∥
2
DC , (4.9)

where α3 is a constant defined in Lemma 3.5.9. Utilizing (4.8) and (4.9),

a(v,v) ≥ α1∥v∥
2
DC − 2ζ ∣α − 1∣∥v∥

2
DC − ε1α3∥v∥

2
DC = (β1 − ε1α3)∥v∥

2
DC .

It is, thus, sufficient to have ε1 < β1/α3, guaranteeing that (β1 − ε1α3) > 0.

Case 2. κ = 1 − ε2 > 0, for ε2 > 0, and K1 <K3.

Since κ < 1, η = 1+(κ−1)β = (1−ε2β). For K1 <K3, there exists an ε2 small enough,

such that K1 < (1 − ε2β)K3. This implies that, for small enough ε2,

α1 =
min(K1, (1 − ε2β)K3)

(C + 1)
=

K1

(C + 1)
.

Therefore, α1 is again independent of κ. Since K2 −K3 = K3(κ − 1), the discrete

bilinear form of (4.3) becomes

a(v,v) =ã(v,v) − ε2K3(2⟨v ⋅ ∇ × v,nk ⋅ ∇ × nk⟩0 + 2⟨nk ⋅ ∇ × v,v ⋅ ∇ × nk⟩0

+ ⟨v ⋅ ∇ × nk,v ⋅ ∇ × nk⟩0). (4.10)

The terms of (4.10), not already bounded from below in (4.6), are bounded, utilizing

Lemma 3.5.9, as

∣G(v,v)∣ ≤ ε2α4∥v∥
2
DC , (4.11)

where α4 is a constant defined in Lemma 3.5.9. Using (4.6) and (4.11) implies that

a(v,v) ≥ α1∥v∥
2
DC − 2ζ ∣α − 1∣∥v∥

2
DC − ε2α4∥v∥

2
DC ≥ (β1 − ε2α4)∥v∥

2
DC .

Thus, possibly requiring ε2 to be smaller, choose ε2 < β1/α4, so that (β1 − ε2α4) > 0.
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In the case that κ < 1, the additional restriction that β < 1
1−κ for Z to be USPD

is necessary, which implies that ε2β < 1 is required. Therefore, for any fixed β, ε2

must also be taken small enough to satisfy this condition. Hence,

ε2 < min(
β1

α4
,
K3 −K1

βK3
,

1

β
) .

Case 3. κ = 1 − ε2 > 0, for ε2 > 0, and K3 ≤K1.

Here, again, η = (1 − ε2β). For this case, it is clear that (1 − ε2β)K3 <K1. Thus,

α1 =
(1 − ε2β)K3

(C + 1)
.

Using the same α4 as in the previous case and similar arguments,

a(v,v) ≥ α1∥v∥
2
DC − 2ζ ∣α − 1∣∥v∥

2
DC − ε2α4∥v∥

2
DC

= (
K3

C + 1
− 2ζ ∣α − 1∣ −

ε2βK3

C + 1
− ε2α4) ∥v∥

2
DC

≥ (β1 −
ε2βK3

C + 1
− ε2α4) ∥v∥

2
DC .

Hence, in order for (β1 −
ε2βK3

C+1 − ε2α4) > 0 to hold, it is necessary that

ε2 <
β1(C + 1)

K3β + α4(C + 1)
.

Finally, ε2 must still be chosen sufficiently small with respect to β such that ε2β < 1,

as in Case 2. Therefore,

ε2 < min(
β1(C + 1)

K3β + α4(C + 1)
,

1

β
) .

◻

Although the bounds on ε1 and ε2 are complicated, the only constant therein that

depends on ζ is β1. The remainder of the constants are independent of ζ.

The above lemmas allow for the formulation of the following summary theorem.



67

Theorem 4.2.5 Under Assumption 3.5.1, if the conditions of Lemma 4.2.3 or

Lemma 4.2.4 are satisfied, the discrete variational problem in (4.4) is well-posed.

Proof: Lemmas 4.2.1 and 4.2.2 imply that F (v) and a(u,v) are continuous, re-

spectively. Lemmas 4.2.3 or 4.2.4 imply that a(u,v) is coercive. Therefore, by the

Lax-Milgram Theorem [14], (4.4) is a well-posed discrete variational problem. ◻

Therefore, the discretization of the linearizations arising in the penalty method are

always well-posed under the assumption of small anisotropy in the system coefficients

and sufficient conformance to the unit-length constraint. However, the penalty

parameter must be chosen appropriately to achieve accurate representation of the

unit-length constraint. If ζ is too small, constraint conformance becomes poor and

the functional minimum does not accurately represent the constrained minimum.

Alternatively, if ζ is too large, the solvability of the intermediate variational systems

degrades in two possible ways. The neighborhood admitting coercivity around κ = 1

shrinks and the system becomes increasingly ill-conditioned due to a decreasing

coercivity constant, or coercivity is lost entirely and the possibility of non-invertible

matrices appears. On the other hand, the proof of such well-posedness does not

require establishing an inf-sup condition that necessitates subtle choices of finite-

element spaces, as used for the Lagrange multiplier approach.

4.3 Robust Newton Step Methods

The Newton method applied to the Lagrange multiplier formulation discussed in

Chapter 3 employs näıve damped Newton stepping. That is, for a computed Newton

update direction, δn, a constant damping factor, 0 < ω ≤ 1, is applied such that

the new iterate is given as nk+1 = nk + ωδn. Such an approach aims to improve

convergence robustness when dealing with an inaccurate initial guess on coarse grids.

However, this procedure may miss opportunities to take larger steps in “good”

descent directions that effectively reduce the free energy.

Trust-region techniques are specifically designed to improve the robustness and

efficiency of iterative procedures such as Newton’s method. Updates are confined
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to a neighborhood, known as a trust region, where the accuracy of the linearized

first-order optimality conditions is “trusted”. These neighborhoods are expanded

or contracted based on a measure of the model fidelity for a computed update. Sig-

nificant research has produced both theoretical support and practical applications

of such techniques [100]. This section discusses the use of constrained and uncon-

strained trust-region methods for the Lagrangian and penalty approaches. For a

general overview of trust-region methods, see [100].

4.3.1 Trust-Region Approaches for the Penalty Formulation

Using the penalty functional in (4.1), the desired energy minimization is uncon-

strained. For this subsection, we denote the discretized forms of ∂
∂n (Pn(nk)[v]) [δn]

and Pn(nk)[v] as Uk and fk, respectively. The quadratic model of the penalty func-

tional, for a given nk, is written

Mk(δn) = P(nk) + fTk δn +
1

2
δnTUkδn. (4.12)

As a consequence of the well-posedness theory developed in Section 4.2, the matrix

Uk is positive definite for each iteration. Therefore, we follow the methodology

in [19,113], computing steps by solving a trust-region minimization problem.

We seek an efficiently computable correction, δn, that approximately minimizes

the model in (4.12). In the following, we introduce two approaches to computing a

step length and direction for this problem. The performance of these techniques is

vetted in the numerical experiments below.

Damped Newton stepping is equivalent to taking a small step in the descent

direction, −U−1
k fk. As seen in the previous chapter, this is an effective means of

finding energy minimizing solutions for both the penalty and Lagrangian methods.

Therefore, in the first approach, a simple step selection technique is used in which

the step is chosen satisfying the constrained minimization problem

δn(∆k) = argmin{P(nk) + fTk δn +
1

2
δnTUkδn ∶ ∣δn∣ ≤ ∆k, δn = µU−1

k fk}, (4.13)
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where ∆k indicates the trust-region radius for iterate nk. Candidate solutions of

(4.13) are easily computed to be −U−1
k fk, the full Newton step, which may or may

not be inside the trust region, and ±
∆k

∣U−1
k

fk ∣U
−1
k fk, representing steps to the trust

region boundary.

An important aspect of trust-region methods is the adjustment of the trust-

region radius and application of a computed step. This typically involves a measure

of a computed step’s merit. For a computed step, δn, we compute the ratio,

ρk =
P(nk) −P(nk + δn)

Mk(0) −Mk(δn)
,

of the actual to the predicted reduction in P due to the computed step. The closer

ρk is to 1, the more accurately the quadratic model behavior matches that of the

true functional.

If the ratio, ρk, is deemed acceptable, the step is applied and the trust region

expands, remains static, or shrinks depending on the specific value of ρk. If ρk is

too small, the step is rejected, the trust-region radius is shrunk, and the process

repeated. To quantify, let 0 < η3 < η1 < η2 be positive constants, along with 0 <

C1 < 1 < C3. Further, let ∆̄ be a maximum limit on the trust-region size. Using

these parameters, the specific decision trees for accepting the step, and subsequently

adjusting the trust region, are given in Procedures 2 and 3, respectively.

Procedure 2: Solution update.

if ρk > η3 then

Accept step: nk+1 = nk + δn.

else

Reject step: nk+1 = nk.

end

Procedure 3: TR size adjustment.

if ρk < η1 then

Shrink region: ∆k+1 = C1∆k.

else if ρk > η2 and ∣δn∣ = ∆k then

Expand region:

∆k+1 = min(C3∆k, ∆̄).

else

Keep region constant:

∆k+1 = ∆k.

end
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For our algorithm, if the components of the ratio, ρk, are very small and the

computed step lies on the interior of the trust region, representing a full step to-

wards satisfying the first-order optimality conditions, we choose to apply the step

regardless of ρk and the trust region remains static. In this way, the trust-region

minimization approach is used until we trust in the application of full Newton steps

to obtain the first-order optimality conditions. A set of typical values for the trust-

region parameters discussed above are listed in Table 4.1 and used in the numerical

methods below.

A number of well-founded techniques improving trust-region step selection ex-

ist, including dogleg and two-dimensional (2D) subspace methods [19, 48, 100, 115].

Because the 2D-subspace method subsumes both the simple step selection approach

above and dogleg methods, it is chosen as the alternative step selection computation

here. Steps are computed by solving

δn(∆k) = argmin{P(nk) + fTk δn +
1

2
δnTUkδn ∶

∣δn∣ ≤ ∆k, δn = µ1fk + µ2U
−1
k fk}. (4.14)

Again, the candidate solutions for (4.14) are efficiently computable, amounting to

solving for the zeroes of a fourth-order polynomial. Say that δn = µ1fk + µ2U
−1
k fk.

Let

a1 = ∣fk∣
2, a2 = (fk, Ukfk),

a3 = (fk, U
−1
k fk), a4 = ∣U−1

k fk∣
2.

Computing candidate solutions for the minimization problem in (4.14) yields

µ1 =
2a2

3γ − 2a1a4γ

−a2
1 − 2a1a3γ + a3a2 − 4a2

3γ
2 + 2a4γ(a2 + 2a1γ)

,

µ2 =
−a2a3 + a

2
1

−a2
1 − 2a1a3γ + a3a2 − 4a2

3γ
2 + 2a4γ(a2 + 2a1γ)

,

where γ is a Lagrange multiplier for the constrained minimization and is a real root
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of the fourth order polynomial

16∆2
kγ

4
(a4

3 + a
2
1a

2
4 − 2a1a

2
3a4) + 16∆2

kγ
3
(a1a

3
3 + a1a2a

2
4 − a2a

2
3a4 − a

2
1a3a4)

+ 4γ2
(∆2

k(a
2
2a

2
4 − 2a2a

3
3 + 3a2

1a
2
3 − 2a3

1a4) − a1(a
2
3 − a1a4)

2
)

+ 4γ(∆2
k(a

3
1a3 − a1a2a

2
3 − a

2
1a2a4 + a

2
2a3a4) − a3(a

2
3 − a1a4)(a

2
1 − a3a2))

+ (∆2
k(a

4
1 + a

2
2a

2
3 − 2a2

1a2a3)) − a4(a
2
1 − a3a2)

2
= 0.

4.3.1.1 A Renormalization Penalty Method

In addition to the standard penalty method discussed above, a modification is also

considered in the numerical experiments below. Once the approximation to the solu-

tion has been updated with a computed and accepted step, the new approximation

is renormalized at the finite-element nodes. That is, the updated approximation

is projected onto the unit sphere at each finite-element node. This procedure is

similar to that presented in [53] for a Lagrange multiplier formulation. There, the

approach is derived within a nullspace method framework using the one-constant

approximation. Here, renormalization is applied to the penalty method, with and

without trust regions and nested iteration, for anisotropic Frank constants.

This renormalization aims at improving unit-length conformance for solutions

computed by the penalty method. The expectation is that this will lead to enhanced

constraint conformance at lower penalty weights. However, unless the renormaliza-

tion scaling is relatively uniform across nodes, the Newton direction may be sig-

nificantly altered. Throughout this chapter, this modification is referred to as the

“renormalization” penalty method.

4.3.2 Trust-Regions for the Lagrange Multiplier Approach

Applications of trust-region techniques to optimization problems with nonlinear

constraints have also been developed. However, certain challenges arise in the theory

and practical use of such methods [92]. Here, we consider existing trust-region

approaches in the context of finite-element methods. For this subsection, let Wk
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be the matrix associated with a finite-element discretization of the second-order

derivative of (2.5) (i.e., the functional without the Lagrange multiplier term), given

by ∂
∂n (Fn(nk)[v]) [δn]. For the trust-region approach, write the constraint

c(n) = ⟨n ⋅ n − 1,n ⋅ n − 1⟩0 = 0. (4.15)

The Gâteaux derivative of (4.15) is

∂

∂n
c(n)[v] = 4⟨n ⋅ n − 1,n ⋅ v⟩0. (4.16)

Finally, let ck be the column vector representing the finite-element discretized form

of (4.16) at iterate nk.

One of the significant advantages of finite-element discretizations is the inherent

sparsity of the resulting matrices. Trust-region algorithms in the Byrd-Omojokun

family [18, 102, 118] require computation of the generally non-sparse matrix Nk,

whose columns form an orthonormal basis for the orthogonal complement of ck,

as well as the formation and inversion of the matrix NT
k WkNk. In general, the

matrix NT
k WkNk is quite large and dense, as Wk has dimension m × m and Nk

is m × (m − 1), where m is the number of discretization degrees of freedom for n.

Storage and computation with these dense matrices proves to be prohibitive, even

on relatively small grids. Therefore, any advantages garnered by the use of these

trust regions is outweighed by loss of the finite-element sparsity. Similarly, trust-

region methods based on the fundamental work in [123] suffer from sparsity fill-in

issues for large matrices in the context of finite-element methods.

To preserve sparsity properties, while still maintaining some advantages of a

trust-region approach, we implement a simple trust-region method specifically fit-

ted to the Lagrange multiplier formulation of the minimization problem. For the

Lagrange multiplier approach in Section 3.3, we compute a Newton update direc-

tion, δχ = [δn δλ]T . This update is meant to bring nk and λk closer to satisfying

the first-order optimality conditions. Let L0(nk, λk) represent the finite-element
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discretized form of the right-hand-side of Equation (3.4) for nk and λk. Define the

proportions wk and wlim, such that 0 < wlim ≤ wk ≤ 1, where wlim is a lower bound

for wk. For a given step, wkδχ, the expected change in ∣L0(nk, λk)∣ is equal to

wk∣L0(nk, λk)∣. Therefore, we define the ratio

ρk =
∣L0(nk, λk)∣ − ∣L0(nk +wkδn, λk +wkδλ)∣

wk∣L0(nk, λk)∣
.

This ratio compares the change in L0(n, λ) predicted by the linearized model to the

true change in L0(n, λ) for a computed step.

Procedure 4: Solution update.

if ρk > η2 or wk = wlim then

Accept step:

[nk+1 λk+1]
T = [nk λk]

T +wkδχ.

else

Reject step:

[nk+1 λk+1]
T = [nk λk]

T .

end

Procedure 5: TR size adjustment.

if ρk < η2 then

Shrink region:

wk+1 = max(wlim,wk −wdec).

else if η2 < ρk < η1 then

Keep region constant:

wk+1 = wk.

else

Expand region:

wk+1 = min(wk +winc,1).

end

Let 0 < η2 < η1 and winc,wdec ∈ (0,1]. Since wk is a scaling factor, rather than

a radius length, step selection and trust-region adjustment differ slightly from the

procedures discussed above and are given in Procedures 4 and 5, respectively.

4.4 Numerical Results

In this section, we compare the performance of the methods outlined above for three

benchmark equilibrium problems. The general algorithm utilized by each method

is similar to that outlined in Algorithm 1; see Algorithm 6. The outer stage again

uses nested iteration (NI). The iterative solution updates are computed via one of

the methods described in the previous sections. In general, the iteration stopping
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criterion, on a given level, is based on a set tolerance for the approximation’s con-

formance to the first-order optimality conditions in the standard Euclidean l2-norm.

For the renormalization penalty method, the Newton iteration tolerance is based on

the reduction of the ratio of the energy from the previous step to the current step

rather than conformance to the first-order optimality conditions. In the numerical

experiments carried out below, both tolerances are held at 10−4. As with the numer-

ical experiments above, the nested grid hierarchy is formed by uniform refinements

of the initial coarse grid. However, adaptive refinement could also be performed.

The components of the variational problems in Equations (3.4) and (4.2) are

discretized with finite elements on each grid. Both formulations use Q2 ×Q2 ×Q2

elements for n, while the Lagrange multiplier approach uses P0 elements for λ, as

in Section 3.7. In this section, the arising matrices are again inverted using the

UMFPACK LU decomposition [32–35]. The algorithm’s discretizations and grid

management are performed with the deal.II library.

Algorithm 6: General minimization algorithm with NI

0. Initialize solution approximation on coarse grid.

while Refinement limit not reached do

while Nonlinear iteration tolerance not satisfied do

1. Assemble discrete components of System (3.4) or (4.2) on current

grid, H.

2. Compute correction to current approximation.

3. Update current approximation.

end

4. Uniformly refine the grid to size h.

5. Interpolate solution uH → uh.

end

Each of the problems below is posed on a unit-square domain in the xy-plane,

such that Ω = {(x, y) ∣ 0 ≤ x, y ≤ 1}. As in Section 3.7.2, we assume a slab domain

such that n may have nonzero z-component but ∂n
∂z = 0. Dirichlet boundary condi-

tions are applied at the y-edges and periodic boundary conditions are assumed at
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the boundaries x = 0 and x = 1. The experiments to follow consider an 8 × 8 coarse

mesh ascending in six uniform refinements to a 512 × 512 mesh.

For the numerical experiments, each of the trust-region methods discussed above

is applied. For the penalty trust-region methods, the initial trust-region radius is

set to ∆init. At each refinement level, the trust-region radius is reset to ∆init plus

an incremental increase, ∆inc, with a maximum of ∆̄. The Lagrangian trust-region

approach sets the initial value of wk to winit. After each refinement, wk is reset to

winit plus wlev, up to a maximum of 1. These increments are due to the increasing

accuracy of the iterates at each grid level. These constants are outlined in Tables

4.1 and 4.2

η1 = 0.25 η2 = 0.75 η3 = 0.125 C1 = 0.5

C3 = 1.3 ∆inc = 0.3 ∆̄ = 100 ∆init = 0.3

Table 4.1: Trust-region parameters for the penalty formulation.

η1 = 0.5 η2 = 0.25 winc = 0.1 wdec = 0.1
wlev = 0.1 wmin = 0.1 winit = 0.2 −

Table 4.2: Trust-region parameters for the Lagrangian formulation.

The non-trust-region, damped Newton stepping approach is also performed for

both formulations as a comparison benchmark with an initial ω = 0.2, increasing by

0.2 at each refinement to a maximum of 1. The performance of each of these methods

is then compared. Note that in the results to follow, all reported free energies are

computed using only the free elastic quantities without any augmentations, such as

the penalty terms.

4.4.1 Twist Equilibrium Configuration

The first set of boundary conditions induce a classical twist equilibrium configuration

similar to the one seen in the second numerical experiment of Section 3.7. For this

experiment, and the tilt-twist experiment in the next subsection, let the general

form of the solution be

n = ( cos(θ(y)) cos(φ(y)), cos(θ(y)) sin(φ(y)), sin(θ(y))). (4.17)
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Note that the known analytical solutions have a one-dimensional structure, but the

numerical experiments below are full two-dimensional simulations. For the twist

configuration, let θ0 =
π
8 . At the boundaries θ(0) = −θ0, θ(1) = θ0, and φ(0) = φ(1) =

0. The Frank constants for this problem are K1 = 1.0, K2 = 1.2, and K3 = 1.0. The

analytical equilibrium solution for these boundary conditions and Frank constants

is derived, under a rotated coordinate system, in [117]. The solution is given by

n = (cos(θ0(2y − 1)),0, sin(θ0(2y − 1))),

with true free-elastic energy 2K2θ
2
0. This corresponds to an expected free energy

of 0.37011. The existence of an analytical solution for this problem allows for the

computation of an L2-error for each computed approximation.

Type Free Energy L2-error Min. Dev. Max Dev. Cost TR Cost

Lagrangian 0.370110 2.076e-11 −1.43e-14 7.00e-15 1.350 1.340

Pen. ζ = 101 0.358832 1.589e-02 −3.96e-02 −3.59e-05 1.371 1.354
Pen. ζ = 102 0.368481 1.993e-03 −4.32e-03 −1.16e-05 1.376 1.355
Pen. ζ = 103 0.369931 2.107e-04 −4.32e-04 −3.68e-06 1.440 1.418
Pen. ζ = 104 0.370092 2.143e-05 −4.32e-05 −1.14e-06 1.448 1.420
Pen. ζ = 105 0.370108 2.154e-06 −4.32e-06 −3.32e-07 1.447 1.426
Pen. ζ = 106 0.370110 2.157e-07 −4.32e-07 −7.27e-08 − 1.436
Pen. ζ = 107 0.370110 2.158e-08 −5.05e-08 −9.98e-09 − 1.465
Pen. ζ = 108 0.370110 2.158e-09 −5.18e-09 −1.06e-09 − 1.516
Pen. ζ = 109 0.370110 2.168e-10 −5.19e-10 −1.06e-10 − 1.639

Table 4.3: Statistics for the twist equilibrium solution with the different formulations and
penalty weights. Included is the system free energy, the computed L2-error on the finest
grid, and the minimum and maximum deviations from unit director length at the
quadrature nodes. Approximations of the cost in WUs for the corresponding method with
no trust regions and simple trust regions are included. Dashes in the columns indicate
divergence.

Table 4.3 compares the performance of the Lagrange multiplier method to the

penalty method without renormalization. The runs were performed with nested it-

eration and the approximate work, measured in WUs, is given for the corresponding

method with no trust regions and the simple trust region approaches, respectively.

Observe that the non-trust-region, damped Newton stepping discussed above di-

verged for penalty parameters of ζ = 106 and greater. However, smaller damping

parameters may yield convergence. Both penalty-method trust-region approaches
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converged without modification.

The table demonstrates the superior performance of the Lagrange multiplier

method for this problem across all statistics with lower error, cost, and tighter

conformance to the constraint. The penalty method does not match the free energy

obtained by the Lagrangian formulation until reaching a penalty weight of 106 and,

without trust regions, encounters divergence issues for these large penalty weights.

While trust regions do not significantly reduce overall computations costs, Table 4.3

suggests that they significantly improve robustness.

No Trust Region Simple Trust Region 2D Trust Region
Type L2-error Cost L2-error Cost L2-error Cost

Pen. ζ = 101 1.457e-02 1.338 1.457e-02 1.334 1.457e-02 1.334
Pen. ζ = 102 8.932e-05 1.338 8.931e-05 1.334 8.931e-05 1.334
Pen. ζ = 103 3.358e-06 1.339 3.357e-06 1.334 3.357e-06 1.335
Pen. ζ = 104 1.523e-07 1.340 1.116e-07 1.336 1.116e-07 1.336
Pen. ζ = 105 6.260e-08 8.113 3.595e-09 1.364 3.592e-09 1.340
Pen. ζ = 106 6.356e-06 81.120 1.688e-02 73.052 1.098e-07 2.731

Table 4.4: A comparison of renormalization penalty methods, with and without
trust-region approaches, for the twist solution. For each algorithm, the computed L2-error
on the finest grid and an approximation of the cost in WUs is included.

Type Free Energy L2-error Min. Dev. Max Dev. 2D TR Cost
Pen. ζ = 101 0.370168 1.457e-02 −4.58e-11 4.58e-11 1.334
Pen. ζ = 102 0.370111 8.931e-05 −1.68e-11 1.68e-11 1.334
Pen. ζ = 103 0.370110 3.357e-06 −5.18e-12 5.16e-12 1.335
Pen. ζ = 104 0.370110 1.116e-07 −1.45e-12 1.43e-12 1.336
Pen. ζ = 105 0.370110 3.592e-09 −3.16e-13 2.98e-13 1.340
Pen. ζ = 106 0.370110 1.098e-07 −4.04e-14 2.20e-14 2.731

Table 4.5: Statistics for the twist equilibrium solution with different penalty weights.
Here, the penalty method with renormalization and 2D-subspace minimization is
considered. Included is the system free energy, the computed L2-error on the finest grid,
the minimum and maximum deviations from unit director length at the quadrature nodes,
and an approximation of the cost in WUs for the corresponding method.

The results in Tables 4.4 and 4.5 show the performance of the renormalization

penalty method with and without trust regions. Table 4.5 provides additional statis-

tics for the 2D-subspace minimization trust-region approach discussed in Table 4.4.

For the twist equilibrium solution, the renormalization penalty method obtains bet-

ter error values for smaller penalty weights than the unmodified penalty method.

In Table 4.5, using the 2D-subspace minimization trust-region approach, we obtain
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an error of 3.592e-09 with a penalty weight of only ζ = 105. Moreover, the minimum

and maximum deviation of the director at the quadrature nodes is closer to that of

the Lagrangian method. However, the performance improvements rely more heavily

on the penalty parameter. While an error measure closer to the Lagrange multiplier

formulation is achieved for ζ = 105, performance degrades at ζ = 106, with notable

jumps in costs for all methods recorded in Table 4.4. The increases in error are due

to the algorithm beginning to emphasize the unit-length constraint over proper di-

rector orientation. Correctly selecting the penalty weight represents a fundamental

difficulty for this method.

Figure 4.1a displays the number of iterations required to reach the specified itera-

tion tolerance within a nested iteration scheme alongside the final solution computed

by the Lagrange multiplier formulation in Figure 4.1b. Counts for both the Lagrange

multiplier approach and penalty formulation, with and without renormalization, for

a penalty parameter ζ = 103 are shown. In general, the trust-region methods sig-

nificantly reduce iteration counts on the coarse grids. However, on the finer grids,

this reduction is not sustained due to the efficiency of nested iteration. Because the

improved iteration counts are confined to the coarsest grids, overall cost reduction

is generally small. For example, the approximate cost for the Lagrange multiplier

method was reduced very slightly from 1.350 WUs to 1.340 WUs, resulting in only

a one second drop in overall time to solution.

Table 4.6 summarizes both the efficiency of nested iteration and highlights the

strengths of certain applications of trust-region methods. For all of the constraint

enforcement formulations, nested iteration offers very clear cost improvements. Cou-

pling nested iteration with the Lagrange multiplier method for this problem is quite

powerful, yielding the fastest overall run time and highest accuracy. Trust regions

have a clear impact on time to solution in the absence of nested iteration but offer

modest time to solution improvements when coupled with NI.

If the penalty method is used, pairing nested iteration with trust regions in-

creases robustness and cost consistency. For example, the use of trust regions for
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Figure 4.1: (a) Number of iterations required to reach iteration tolerance for each method
with NI. The penalty weight for the penalty formulation was ζ = 1000. Only the
2D-subspace minimization trust-region approach is displayed, as the behavior of simple
trust regions is similar. (b) The final computed solution for the Lagrangian formulation on
a 512 × 512 mesh (restricted for visualization).

Lagrangian

Method Solve Cost Run Time
No NI No TR 61 17,975s

NI No TR 1.350 550s
No NI TR 10 3,071s

NI TR 1.340 548s

Renormalization Penalty: ζ = 105

Method Solve Cost Run Time
No NI No TR 38 11,838s

NI No TR 8.113 2,272s
No NI TR 29 9,172s
No NI TR 2D 32 10,147s

NI TR 1.364 585s
NI TR 2D 1.340 584s

Unmodified Penalty: ζ = 105

Method Solve Cost Run Time
No NI No TR 142 41,013s

NI No TR 1.474 593s
No NI TR 63 18,425s
No NI TR 2D 64 19,287s

NI TR 1.426 569s
NI TR 2D 1.424 574s

Unmodified Penalty: ζ = 109

Method Solve Cost Run Time
No NI No TR − −

NI No TR − −

No NI TR 1,016 294,349s
No NI TR 2D 1,736 511,874s

NI TR 1.639 641s
NI TR 2D 1.958 764s

Table 4.6: Twist statistics comparison for NI and trust region combinations. The solve
cost column displays an approximation of the work in WUs for the corresponding method.
The overall time to solution is also presented. Dashes in the columns indicate divergence.

the unmodified penalty method with ζ = 109 overcomes prominent divergence is-

sues. In addition to the improved error performance in Table 4.4, for ζ = 105, the

renormalization penalty method is generally faster than the unmodified penalty ap-

proach with the same penalty weight. The slightly slower overall run times, in spite

of the small WU costs, when NI is paired with trust regions, in comparison with the



80

unmodified penalty method, are due to the work involved in normalizing the direc-

tor after each iteration. As discussed above, a shortcoming of the renormalization

penalty method is sensitivity to parameter choice.

4.4.2 Tilt-Twist Equilibrium Configuration

For this problem, n retains the form in (4.17) and the same boundary conditions are

applied with θ0 =
π
4 and Frank constants of K1 = 1.0, K2 = 3.0, and K3 = 1.2. Twist

solutions incorporating a nonplanar tilt deviating from parallel alignment with the

xz-plane are investigated in [81, 82]. It is shown that nonplanar twist solutions

become energetically optimal at a computable threshold. This threshold is satisfied

for the chosen parameters. The analytical, energy-minimizing, tilt-twist solution is

defined implicitly for a rotated coordinate system in [81,117].

For the coordinate system and boundary conditions here, let φm represent the

maximum nonplanar tilt in the domain and define the functions

f(φ) =K1 cos2 φ +K3 sin2 φ,

g(φ) = (K2 cos2 φ +K3 sin2 φ) cos2 φ.

The following set of equations determine the analytical solution values of φ(y) and

θ(y) implicitly for a given value 0 ≤ y ≤ 1
2 . The corresponding values for 1

2 < y ≤ 1

are computed by symmetry as θ(y) = θ(1 − y) and φ(y) = φ(1 − y). First the value

of φm is determined by solving the equation

θ0 =
√
g(φm)∫

φm

0

⎛

⎝

f(u)

g(u)(g(u) − g(φm))

⎞

⎠

1/2
du.

Using the computed value of φm, an intermediate value, b, is computed as

b = 2
√
g(φm)∫

φm

0
(

g(u)f(u)

g(u) − g(φm)
)

1/2
du.

Using the values b and φm, the value of φ(y), for a given value of y, is determined
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by solving the implicit equation

by =
√
g(φm)∫

φ

0
(

g(u)f(u)

g(u) − g(φm)
)

1/2
du, 0 ≤ y ≤

1

2
,

for φ. Finally, the value for θ(y) is computed, using the calculated φ, as

θ = −θ0 +
√
g(φm)∫

φ

0

⎛

⎝

f(u)

g(u)(g(u) − g(φm))

⎞

⎠

1/2
du, 0 ≤ y ≤

1

2
.

The free energy associated with the nonplanar twist solution is minimizing if

b2 < 4K2θ
2
0g(φm).

This inequality is satisfied for the chosen parameters and the associated analytical,

free-elastic energy is 3.59294.

For the tilt-twist equilibrium solution, the damped Newton stepping approach

converged for all of the penalty weights considered. Table 4.7 details the statistics

for the unmodified penalty method compared with the Lagrange multiplier method.

Again, the Lagrange multiplier method outperforms the penalty method in each

category. The free energy of the Lagrange multiplier method is not obtained by the

penalty method until ζ reaches 108.

Type Free Energy L2-error Min. Dev. Max Dev. Cost TR Cost

Lagrangian 3.59294 4.717e-07 −7.89e-10 7.88e-10 1.463 1.447

Pen. ζ = 101 2.15620 4.403e-01 −4.78e-01 −2.62e-04 1.458 1.333
Pen. ζ = 102 3.38037 4.597e-02 −5.01e-02 −1.17e-04 1.732 1.665
Pen. ζ = 103 3.56953 4.565e-03 −4.97e-03 −3.88e-05 1.732 1.665
Pen. ζ = 104 3.59052 4.606e-04 −5.00e-04 −1.21e-05 2.735 2.665
Pen. ζ = 105 3.59269 4.590e-05 −5.00e-05 −3.56e-06 2.743 2.667
Pen. ζ = 106 3.59291 4.253e-06 −5.01e-06 −8.05e-07 2.782 2.678
Pen. ζ = 107 3.59293 2.735e-07 −5.83e-07 −1.14e-07 2.809 2.723
Pen. ζ = 108 3.59294 4.340e-07 −6.00e-08 −1.22e-08 2.885 2.747
Pen. ζ = 109 3.59294 4.676e-07 −6.01e-09 −1.24e-09 3.218 2.879

Table 4.7: Statistics for the tilt-twist equilibrium solution with the different formulations
and penalty weights. Included is the system free energy, the computed L2-error on the
finest grid, and the minimum and maximum deviations from unit director length at the
quadrature nodes. Approximations of the cost in WUs for the corresponding method with
no trust regions and simple trust regions are included.
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It should be noted that the behavior of the error for the Lagrangian method, as

well as the penalty method for weights greater than 107, is affected by the complexity

of the equations, described above, implicitly defining the true solution. To compute

the error, the equations describing the analytical solution are solved approximately

at the appropriate quadrature points using Mathematica. Solving these equations

involves successive root finding for complicated integral equations where the un-

knowns are limits of integration. Hence, approximation error creates an artificial

limit for the computed solution error at accuracies smaller than 10−7.

Considering Tables 4.8 and 4.9, the renormalization penalty method does not

perform as well as in the previous problem. Note that Table 4.9 details additional

statistics for the 2D-subspace minimization trust-region approach discussed in Table

4.8. Compared to the unmodified penalty method, computational costs remain

steadier, with the exception of the run without trust regions and a penalty weight

of 106, and adherence to the unit-length constraint is improved. However, the

method fails to reach an equivalent accuracy before performance degrades. As with

the simpler twist problem, performance of the renormalization method is sensitive

to an appropriate choice of penalty weight.

No Trust Region Simple Trust Region 2D Trust Region
Type L2-error Cost L2-error Cost L2-error Cost

Pen. ζ = 101 4.354e-01 1.384 4.319e-01 1.337 4.424e-01 1.377
Pen. ζ = 102 3.691e-02 1.335 3.635e-02 1.333 3.578e-02 1.333
Pen. ζ = 103 4.708e-03 1.335 4.533e-03 1.332 4.493e-03 1.332
Pen. ζ = 104 1.085e-03 1.335 8.662e-04 1.332 8.536e-04 1.333
Pen. ζ = 105 1.650e-03 1.336 9.487e-04 1.333 7.012e-04 1.333
Pen. ζ = 106 9.414e-01 87.362 5.375e-04 1.341 7.344e-04 1.341

Table 4.8: A comparison of renormalization penalty methods, with and without
trust-region approaches, for the tilt-twist solution. For each algorithm, the computed
L2-error on the finest grid and an approximation of the cost in WUs is included.

The method with renormalization does find the true free energy at a lower

penalty weight than the approach without renormalization. At a penalty weight

of ζ = 104, the penalty method without renormalization has a slightly lower error

measure, but has not fully matched the true energy. While the unmodified method
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Type Free Energy L2-error Min. Dev. Max Dev. 2D TR Cost
Pen. ζ = 101 3.92827 4.424e-01 −4.62e-09 4.62e-09 1.377
Pen. ζ = 102 3.59611 3.578e-02 −1.15e-09 1.14e-09 1.333
Pen. ζ = 103 3.59298 4.493e-03 −7.77e-10 7.76e-10 1.332
Pen. ζ = 104 3.59294 8.536e-04 −7.87e-10 7.85e-10 1.333
Pen. ζ = 105 3.59294 7.012e-04 −7.91e-10 7.90e-10 1.333
Pen. ζ = 106 3.59294 7.344e-04 −7.87e-10 7.86e-10 1.341

Table 4.9: Statistics for the tilt-twist equilibrium solution with varying penalty weights.
Here, the penalty method with renormalization and 2D-subspace minimization is shown.
Included is the system free energy, the computed L2-error on the finest grid, the minimum
and maximum deviations from unit director length at the quadrature nodes, and an
approximation of the cost in WUs for the corresponding method.

more accurately resolves the orientation of the director in comparison with the renor-

malization method, it slightly shrinks the director length to attain the moderately

smaller free energy.
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Figure 4.2: (a) Number of iterations required to reach iteration tolerance for each method
with NI. The penalty weight for the penalty formulation was ζ = 1000. Only the
2D-subspace minimization trust-region approach is displayed, as the behavior of simple
trust regions is similar. (b) The final computed solution for the Lagrangian formulation on
a 512 × 512 mesh (restricted for visualization).

Figure 4.2a presents similar behavior to Figure 4.1a, in that trust regions pro-

ductively reduce the number of iterations on the coarsest grids but have less effect

on iteration counts on the finest grids. This is again due to the efficiency of nested

iteration. Figure 4.2b displays the solution computed by the Lagrange multiplier

approach. Note that the solution correctly exhibits a non-planar tilt in addition to

the simple planar twist. For the unmodified penalty method with NI and a penalty

weight of ζ = 109, trust regions only reduce the computational cost from 3.218 WUs
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to 2.879 WUs. This results in only an 8.9% decrease in overall time to solution.

As shown in Table 4.10, improvements from the trust regions for the Lagrange

multiplier method are minor, decreasing computational costs from 1.463 WUs to

1.447 WUs and reducing overall time to solution by only 0.82%. Here, the renormal-

ization penalty method is faster than the unmodified approach and, in some cases,

even slightly outpaces the Lagrange multiplier formulation. However, as shown in

Tables 4.7 and 4.9 the associated error convergence is not comparable. In Table

4.10, results for ζ = 109 are not reported due to untenably large run times without

nested iteration.

Lagrangian

Method Solve Cost Run Time
No NI No TR 33 9,853s

NI No TR 1.463 584s
No NI TR 9 2,812s

NI TR 1.447 579s

Renormalization Penalty: ζ = 105

Method Solve Cost Run Time
No NI No TR 16 5,119s

NI No TR 1.336 586s
No NI TR 18 5,658s
No NI TR 2D 18 5,817s

NI TR 1.333 575s
NI TR 2D 1.333 591s

Unmodified Penalty ζ = 105

Method Solve Cost Run Time
No NI No TR 39 11,606s

NI No TR 2.743 939s
No NI TR 22 6,598s
No NI TR 2D 22 6,680s

NI TR 2.667 920s
NI TR 2D 2.667 949s

Table 4.10: Tilt-twist statistics comparison for NI and trust region combinations. The
solve cost column displays an approximation of the work in WUs for the corresponding
method. The overall time to solution is also presented.

4.4.3 Nano-Patterned Boundary Conditions

In this numerical experiment, we use Frank constants K1 = 1.0, K2 = 0.62903, and

K3 = 1.32258. The applied boundary conditions are the same as those defined in

Equations (3.75)-(3.77). These boundary conditions are pictured in Figure 4.3b.

The result is a sharp transition from vertical to planar-aligned rods followed by a

rapid transition back to vertical alignment. Such boundary conditions produce con-

figuration distortions throughout the interior of the domain. Due to the boundary

condition complexity, no analytical solution currently exists.
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The more complicated nature of the nano-patterned boundary conditions is re-

flected in the data of Table 4.11. The overall approximate costs for the methods

with and without trust regions are larger than previous examples and the unit-length

constraint is more difficult to capture. Nonetheless, the Lagrange multiplier method

provides an accurate and cost effective approach. The penalty method without trust

regions diverges for penalty weights greater than ζ = 104. At higher penalty weights,

even the trust-region approach suffers jumps in computational costs. At ζ = 109, the

system becomes over constrained and accuracy begins to degrade. Hence, results

for this weight are not included.

Type Free Energy Min. Dev. Max Dev. Cost TR Cost

Lagrangian 3.89001 −6.92e-05 5.89e-05 2.864 2.779

Pen. ζ = 101 3.83657 −8.84e-02 1.96e-03 2.864 2.748
Pen. ζ = 102 3.86896 −4.01e-02 4.40e-03 2.864 2.749
Pen. ζ = 103 3.88331 −1.80e-02 7.32e-03 2.868 2.749
Pen. ζ = 104 3.88819 −6.58e-03 5.81e-03 2.886 2.757
Pen. ζ = 105 3.88965 −1.60e-03 2.01e-03 − 2.805
Pen. ζ = 106 3.88996 −2.90e-04 4.55e-04 − 3.736
Pen. ζ = 107 3.89001 −7.92e-05 1.01e-04 − 4.797
Pen. ζ = 108 3.89001 −6.76e-05 5.83e-05 − 22.328

Table 4.11: Statistics for the nano-patterned equilibrium solution with the different
formulations and penalty weights. Included is the system free energy and the minimum
and maximum deviations from unit director length at the quadrature nodes.
Approximations of the cost in WUs for the corresponding method with no trust regions
and simple trust regions are included. Dashes in the columns indicate divergence.

As with the tilt-twist equilibrium solution, the renormalization penalty method

approaches the Lagrangian formulation’s free energy and unit-length bounds earlier

than the unmodified penalty method. It also yields a lower computational cost

for most penalty weights. However, as was seen in the tilt-twist data, matching

the energy earlier than the unmodified penalty approach does not directly indicate

higher accuracy in resolving the correct orientation of the director. Moreover, in

Table 4.12, divergence issues are apparent for the renormalization method at high

penalty weights.

When considered with Table 4.11, Table 4.12 reinforces the conclusion that trust

regions positively influence the robustness of penalty method approaches. While

the simple trust-region approach works most effectively for the non-renormalization
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penalty method, the 2D-subspace minimization approach is more favorable for the

renormalization penalty formulation. Note that Table 4.13 details additional statis-

tics for the 2D-subspace minimization trust-region approach discussed in Table 4.12.

No Trust Region Simple Trust Region 2D Trust Region
Type Free Energy Cost Free Energy Cost Free Energy Cost

Pen. ζ = 101 3.89319 1.680 3.89351 1.518 3.89308 1.686
Pen. ζ = 102 3.89049 1.681 3.89051 1.666 3.89049 1.666
Pen. ζ = 103 3.89006 1.682 3.89006 1.666 3.89006 1.666
Pen. ζ = 104 3.89002 1.683 3.89002 1.669 3.89002 1.669
Pen. ζ = 105 − − 3.89001 2.133 3.89001 2.433
Pen. ζ = 106 − − − − 3.89001 5.418

Table 4.12: A comparison of renormalization penalty methods, with and without
trust-region approaches, for the nano-pattern solution. For each algorithm, the computed
free energy on the finest grid and an approximation of the cost in WUs is included. Dashes
in the columns indicate divergence.

Type Free Energy Min. Dev. Max Dev. 2D TR Cost
Pen. ζ = 101 3.89308 −7.06e-05 6.02e-05 1.686
Pen. ζ = 102 3.89049 −7.07e-05 6.02e-05 1.666
Pen. ζ = 103 3.89006 −7.09e-05 6.01e-05 1.666
Pen. ζ = 104 3.89002 −7.09e-05 6.01e-05 1.669
Pen. ζ = 105 3.89001 −7.08e-05 6.00e-05 2.433
Pen. ζ = 106 3.89001 −7.07e-05 5.98e-05 5.418

Table 4.13: Statistics for the nano-patterned equilibrium solution with the different
formulations and penalty weights. Here, the penalty method with renormalization and
2D-subspace minimization is used. Included is the system free energy, the minimum and
maximum deviations from unit director length at the quadrature nodes, and an
approximation of the cost in WUs for the corresponding method.

Figure 4.3a displays the iteration counts as a function of grid size for both the

Lagrange multiplier formulation and the penalty method, with and without renor-

malization, at a penalty weight of ζ = 103. The solution computed by the Lagrange

multiplier method is shown in Figure 4.3b. Similar to the previous problems, trust

regions reduce iteration counts on the coarsest grids with reduced efficacy at the

finer levels, due to NI. The cost savings from trust regions within a nested itera-

tion scheme are slightly higher for this problem but persist as small improvements

overall.

Table 4.14 reiterates the efficacy of nested iteration for efficient computation and

trust regions for robustness. For this problem, Table 4.14 additionally shows that
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Figure 4.3: (a) Number of iterations required to reach iteration tolerance for each method
with NI. The penalty weight for the penalty formulation was ζ = 1000. Only the
2D-subspace minimization trust-region approach is displayed, as the behavior of simple
trust regions is similar. (b) The final computed solution for the Lagrangian formulation on
a 512 × 512 mesh (restricted for visualization).

the renormalization penalty method with nested iteration and trust regions has a

somewhat shorter overall run time than that of the Lagrange multiplier approach.

Moreover, the renormalization approach matches the free energy and unit-length

conformance of the Lagrangian formulation, see Tables 4.11 and 4.13. However,

while the overall run time and approximate cost of the approach is slightly larger,

the accuracy of the Lagrange multiplier formulation is expected to be much higher.

For the Lagrange multiplier approach, the l2-norm of the first-order optimality condi-

tions is 7.386e-13, whereas the same measure for the renormalization penalty method

is 1.603e-02. As with the corresponding tilt-twist table, Table 4.14 does not report

runs with ζ = 109.

In all of the experiments above, the accuracy per unit cost of the Lagrange

multiplier method convincingly outperforms that of either of the penalty methods.

Moreover, the experimental results imply that nested iteration should be used when

considering any of the methods, as it proves to be exceedingly effective at reducing

computational costs for all problems and approaches. While trust regions offer very

slight improvements in computation time, they readily improve robustness of the

penalty method. Due to their limited cost, it would be advantageous to include them

for either method. The simple trust-region approach works best for the unmodified
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Lagrangian

Method Solve Cost Run Time
No NI No TR 63 18,861s

NI No TR 2.864 983s
No NI TR 10 3,113s

NI TR 2.779 960s

Renormalization Penalty: ζ = 105

Method Solve Cost Run Time
No NI No TR 35 10,918s

NI No TR − −

No NI TR 32 9,893s
No NI TR 2D 34 10,976s

NI TR 2.133 789s
NI TR 2D 2.433 901s

Unmodified Penalty ζ = 105

Method Solve Cost Run Time
No NI No TR 169 49,654s

NI No TR − −

No NI TR 73 21,415s
No NI TR 2D 75 22,366s

NI TR 2.805 958s
NI TR 2D 3.530 1,202s

Table 4.14: Nano-pattern statistics comparison for NI and trust region combinations.
The solve cost column displays an approximation of the work in WUs for the
corresponding method. The overall time to solution is also presented. Dashes in the
columns indicate divergence.

penalty method with stopping tolerances based on the first-order optimality con-

ditions, whereas the 2D-subspace minimization trust regions are most effective for

the renormalization penalty method with an energy reduction based stopping toler-

ance. Though larger penalty weights are generally necessary, the unmodified penalty

method offers more consistent error reduction and performance with respect to an

increasing weight.

Since the Lagrange multiplier method coupled with nested iteration is the most

accurate and efficient approach for enforcing the unit-length constraint, it is ex-

clusively considered in the chapters to follow. The chapter to follow extends the

Lagrange multiplier method and theory to include electric effects due to external

and internal electric fields.
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Chapter 5

Electric Effects

In Chapter 3, a general approach for computing the equilibrium state for n under

free-elastic effects is derived. We apply this methodology to the augmented elastic-

electric free energy. As in the free elastic setting, the director equilibrium state

corresponds to the configuration which minimizes the system free energy subject

to the local constraint that n is of unit length throughout the sample volume, Ω.

As discussed above, liquid crystals strongly interact with externally applied electric

fields and are capable of producing internal electric fields due to flexoelectric effects,

sometimes also referred to as piezoelectricity in the context of certain materials.

Free-energy models were discussed for applied electric fields and flexoelectric effects

in Sections 2.2 and 2.3, respectively. Here, we first derive the energy-minimization

finite-element approach with Lagrange multipliers for the applied electric field case

and then move to the flexoelectric model.

5.1 Applied Electric Fields

Recall that the functional to be minimized, in the presence of an applied electric

field, is

F3(n, φ) = (K1 −K2 −K4)∥∇ ⋅ n∥
2
0 +K3⟨Z∇× n,∇× n⟩0

+ (K2 +K4)(⟨∇n1,
∂n

∂x
⟩0 + ⟨∇n2,

∂n

∂y
⟩0 + ⟨∇n3,

∂n

∂z
⟩0)

− ε0ε⊥⟨∇φ,∇φ⟩0 − ε0εa⟨n ⋅ ∇φ,n ⋅ ∇φ⟩0, (5.1)

where E = −∇φ. As discussed in Section 2.2, using a potential function guarantees

that Faraday’s law is trivially satisfied.

In the presence of full Dirichlet boundary conditions or a rectangular domain
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with mixed Dirichlet and periodic boundary conditions, the functional to be mini-

mized is significantly simplified to

F5(n, φ) =K1∥∇ ⋅ n∥
2
0 +K3⟨Z∇× n,∇× n⟩0

− ε0ε⊥⟨∇φ,∇φ⟩0 − ε0εa⟨n ⋅ ∇φ,n ⋅ ∇φ⟩0, (5.2)

by the application of (2.4). However, the functional still contains nonlinear terms

introduced by, for instance, the presence of Z = Z(n).

We proceed with the functional in (5.1) in building a framework for minimization

under general boundary conditions. However, in the treatment of existence and

uniqueness theory, we assume the application of full Dirichlet or mixed Dirichlet

and periodic boundary conditions and, therefore, appeal to the simplified form in

Equation (5.2).

Let

H1,g
(Ω) = {f ∈H1

(Ω) ∶ B1(f) = g},

where H1(Ω) represents the classical Sobolev space and B1(f) = g is an appropriate

boundary condition expression for φ. Using Functional (5.1), the desired minimiza-

tion becomes

n0, φ0 = argmin
n,φ∈(S2∩HDC(Ω))×H1,g(Ω)

F3(n, φ).

5.1.1 First-Order Optimality and Newton Linearization

Constructing the Lagrange multiplier formulation in a similar fashion to Section 3.3,

the Lagrangian is written

L(n, φ, λ) = F3(n, φ) + ∫
Ω
λ(x)((n,n) − 1)dV,

where λ ∈ L2(Ω). In order to minimize (5.1), we compute the Gâteaux derivatives

of L with respect to n, φ, and λ in the directions v ∈ HDC0 (Ω), ψ ∈ H1,0(Ω),

and γ ∈ L2(Ω), respectively. Hence, necessary continuum first-order optimality
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conditions are derived as

Ln[v] =
∂

∂n
L(n, φ, λ)[v] = 0, ∀v ∈H

DC
0 (Ω),

Lφ[ψ] =
∂

∂φ
L(n, φ, λ)[ψ] = 0, ∀ψ ∈H1,0

(Ω),

Lλ[γ] =
∂

∂λ
L(n, φ, λ)[γ] = 0, ∀γ ∈ L2

(Ω).

Computing these derivatives yields the variational system,

Ln[v] = 2(K1 −K2 −K4)⟨∇ ⋅ n,∇ ⋅ v⟩0 + 2K3⟨Z∇× n,∇× v⟩0

+ 2(K2 −K3)⟨n ⋅ ∇ × n,v ⋅ ∇ × n⟩0 + 2(K2 +K4)(⟨∇n1,
∂v

∂x
⟩0

+ ⟨∇n2,
∂v

∂y
⟩0 + ⟨∇n3,

∂v

∂z
⟩0) − 2ε0εa⟨n ⋅ ∇φ,v ⋅ ∇φ⟩0

+ 2∫
Ω
λ(n,v)dV = 0, ∀v ∈H

DC
0 (Ω),

Lφ[ψ] = −2ε0ε⊥⟨∇φ,∇ψ⟩0 − 2ε0εa⟨n ⋅ ∇φ,n ⋅ ∇ψ⟩0 = 0, ∀ψ ∈H1,0
(Ω),

Lλ[γ] = ∫
Ω
γ((n,n) − 1)dV = 0, ∀γ ∈ L2

(Ω).

Note that Lφ[ψ] = 0, in the system above, is, in fact, the weak form of Gauss’

law. Therefore, at the functional minimum both Gauss’ and Faraday’s laws are

satisfied.

The system above is nonlinear; therefore, Newton iterations are again employed

by computing a generalized first-order Taylor series expansion. Let nk, φk, and

λk be the current approximations for n, φ, and λ, respectively. Additionally, let

δn = nk+1 − nk, δφ = φk+1 − φk, and δλ = λk+1 − λk be updates to the current

approximations that we seek to compute. Then, the Newton iterations are denoted

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

Lnn Lnφ Lnλ

Lφn Lφφ Lφλ

Lλn Lλφ Lλλ

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

δn

δφ

δλ

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

= −

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

Ln

Lφ

Lλ

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, (5.3)

where each of the system components are evaluated at nk, φk, and λk. As above,

the matrix-vector multiplication indicates the direction that the derivatives in the
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Hessian are taken. For instance, Lφn[ψ] ⋅ δn = ∂
∂n

(Lφ(nk, λk)[ψ]) [δn], where the

partials indicate Gâteaux derivatives in the respective variables. Note that Lλλ =

Lλφ = Lφλ = 0. Hence, the Hessian in (5.3) simplifies to a 3 × 3 saddle-point system

given by
⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

Lnn Lnφ Lnλ

Lφn Lφφ 0

Lλn 0 0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

δn

δφ

δλ

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

= −

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

Ln

Lφ

Lλ

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

. (5.4)

This block structure is common in constrained problems involving electric and

magnetic fields. For instance, certain systems arising in the context of magnetohy-

drodynamics (MHD) have similar saddle-point structures [2, 28, 98]. In Chapter 6,

multigrid approaches tailored to the 3×3 block matrices arising from a finite-element

discretization of the Hessian in (5.4) are discussed and implemented.

Considering the remaining six components of the Hessian, the derivatives involv-

ing λ are

Lλn[γ] ⋅ δn = 2∫
Ω
γ(nk, δn)dV, Lnλ[v] ⋅ δλ = 2∫

Ω
δλ(nk,v)dV.

The second-order terms involving φ are

Lφφ[ψ] ⋅ δφ = −2ε0ε⊥⟨∇δφ,∇ψ⟩0 − 2ε0εa⟨nk ⋅ ∇δφ,nk ⋅ ∇ψ⟩0,

Lφn[ψ] ⋅ δn = −2ε0εa⟨nk ⋅ ∇φk, δn ⋅ ∇ψ⟩0 − 2ε0εa⟨δn ⋅ ∇φk,nk ⋅ ∇ψ⟩0,

Lnφ[v] ⋅ δφ = −2ε0εa⟨nk ⋅ ∇φk,v ⋅ ∇δφ⟩0 − 2ε0εa⟨nk ⋅ ∇δφ,v ⋅ ∇φk⟩0.

Finally, the second-order derivative with respect to n is

Lnn[v] ⋅ δn = 2(K1 −K2 −K4)⟨∇ ⋅ δn,∇ ⋅ v⟩0 + 2K3⟨Z(nk)∇× δn,∇× v⟩0

+ 2(K2 −K3)(⟨δn ⋅ ∇ × v,nk ⋅ ∇ × nk⟩0

+ ⟨nk ⋅ ∇ × v, δn ⋅ ∇ × nk⟩0 + ⟨nk ⋅ ∇ × nk,v ⋅ ∇ × δn⟩0

+ ⟨nk ⋅ ∇ × δn,v ⋅ ∇ × nk⟩0 + ⟨δn ⋅ ∇ × nk,v ⋅ ∇ × nk⟩0)
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+ 2(K2 +K4)(⟨∇δn1,
∂v

∂x
⟩0 + ⟨∇δn2,

∂v

∂y
⟩0 + ⟨∇δn3,

∂v

∂z
⟩0)

− 2ε0εa⟨δn ⋅ ∇φk,v ⋅ ∇φk⟩0 + 2∫
Ω
λk(δn,v)dV.

Completing (5.4) with the above Hessian computations yields a linearized vari-

ational system. For these iterations, we compute δn, δφ, and δλ satisfying (5.4) for

all v ∈ HDC0 (Ω), ψ ∈ H1,0(Ω), and γ ∈ L2(Ω) with the current approximations nk,

φk, and λk. If we are considering a system with full or mixed Dirichlet boundary

conditions, as described above, we eliminate the (K2 +K4) terms from (5.4). This

produces a simplified, but non-trivial, linearization. Both the full and simplified

electric linearized variational systems are fully expanded in Appendix A.2.

5.1.2 Well-Posedness of the Discrete Systems

Performing the outlined Newton iterations necessitates solving the above linearized

systems for the update functions δn, δφ, and δλ. Finite elements are used to numer-

ically approximate these updates as δnh, δφh, and δλh. Throughout this section,

we assume that full Dirichlet boundary conditions are enforced for n and φ. How-

ever, the theory to follow is also applicable for a rectangular domain with mixed

Dirichlet and periodic boundary conditions. Such a domain is considered for the

numerical experiments presented in the next chapter. Furthermore, the developed

theory exclusively concerns discrete forms. Hence, we forgo the h notation.

We write the bilinear form defined by −Lφφ[ψ] ⋅δφ as c(δφ,ψ) = ε0ε⊥⟨∇δφ,∇ψ⟩0+

ε0εa⟨nk ⋅∇δφ,nk ⋅∇ψ⟩0 and the form associated with Lλn[γ] ⋅δn as b(δn, γ). Further,

we decompose the bilinear form defined by Lnn[v] ⋅ δn into a free-elastic term,

ã(δn,v), and an electric component as

a(δn,v) = ã(δn,v) − ε0εa⟨δn ⋅ ∇φk,v ⋅ ∇φk⟩0.

Note then that ã(δn,v) represents the discrete version of the free-elastic bilinear

form in (3.12).
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Lemma 5.1.1 Let Ω be a connected, open, bounded domain. If εa ≥ 0, then c(δφ,ψ)

is a coercive bilinear form. For εa < 0, if ∣nk∣
2 ≤ β < ε⊥/∣εa∣, then c(δφ,ψ) is a coercive

bilinear form.

Proof: The proof is split into two cases.

Case 1. εa ≥ 0.

Note that δφ,ψ ∈ H1,0(Ω), with homogeneous Dirichlet boundary conditions. By

the classical Poincaré-Friedrichs’ inequality, there exists a Ce > 0 such that for all

ξ ∈H1
0(Ω), ∥ξ∥2

0 ≤ Ce∥∇ξ∥
2
0. Therefore,

∥ξ∥2
1 ≤ (Ce + 1)∥∇ξ∥2

0.

This implies that, for ξ ≠ 0,

c(ξ, ξ) = ε0ε⊥⟨∇ξ,∇ξ⟩0 + ε0εa⟨nk ⋅ ∇ξ,nk ⋅ ∇ξ⟩0

≥
ε0ε⊥
Ce + 1

∥ξ∥2
1 > 0.

Case 2. εa < 0.

Observe that pointwise,

(nk ⋅ ∇ξ)
2
≤ ∣nk∣

2
∣∇ξ∣2 ≤ β∣∇ξ∣2.

This implies that ⟨nk ⋅ ∇ξ,nk ⋅ ∇ξ⟩0 ≤ β⟨∇ξ,∇ξ⟩0. Therefore,

c(ξ, ξ) ≥ ε0(ε⊥ − β∣εa∣)⟨∇ξ,∇ξ⟩0.

Recall that ε⊥ > 0. Therefore, β < ε⊥/∣εa∣ implies that ε⊥ − β∣εa∣ > 0. Thus, again

applying the Poincaré-Friedrichs’ inequality above for ξ ≠ 0,

c(ξ, ξ) ≥
ε0(ε⊥ − β∣εa∣)

Ce + 1
∥ξ∥2

1 > 0.

In either case, c(⋅, ⋅) is a coercive bilinear form. ◻
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There are a number of discretization space triples commonly used to discretize

systems such as the one defined in (5.4), including equal order or mixed finite ele-

ments. Discretizing the Hessian in (5.4) with finite elements leads to the 3×3 block

matrix

Me =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

A B1 B2

BT
1 −C̃ 0

BT
2 0 0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

. (5.5)

Lemma 5.1.2 Under the assumptions in Lemma 5.1.1, if the bilinear forms a(⋅, ⋅)

and b(⋅, ⋅), defined above, are coercive and weakly coercive, respectively, on the rele-

vant discrete spaces, the matrix in (5.5) is invertible.

Proof: Denoting B = [B1 B2 ] (where B2 is associated with b(⋅, ⋅)), and C = [ C̃ 0
0 0

],

the matrix in (5.5) is written as

⎡
⎢
⎢
⎢
⎢
⎢
⎣

A B

BT −C

⎤
⎥
⎥
⎥
⎥
⎥
⎦

.

By assumption, a(⋅, ⋅) is coercive, and it is clearly symmetric. Therefore, the asso-

ciated discretization block, A, is symmetric and positive definite. By Lemma 5.1.1,

C̃ is symmetric and positive definite, and, therefore, −C is symmetric and negative

semi-definite. Thus, by [10, Theorem 3.1], if kerC ∩ kerB = {0}, then the matrix in

(5.5) is invertible. Observe that

⎡
⎢
⎢
⎢
⎢
⎢
⎣

C̃ 0

0 0

⎤
⎥
⎥
⎥
⎥
⎥
⎦

⎡
⎢
⎢
⎢
⎢
⎢
⎣

y

z

⎤
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡
⎢
⎢
⎢
⎢
⎢
⎣

C̃y

0

⎤
⎥
⎥
⎥
⎥
⎥
⎦

= 0

if and only if y = 0. Then, if [ y z ]
T
∈ kerC ∩ kerB, y = 0. However, note that

[ B1 B2 ]

⎡
⎢
⎢
⎢
⎢
⎢
⎣

0

z

⎤
⎥
⎥
⎥
⎥
⎥
⎦

= B2z.

Since b(⋅, ⋅) is weakly coercive, B2z = 0 if and only if z = 0. So kerC ∩ kerB = {0}.◻
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Let Cφ = sup
x∈Ω

∣∇φk∣. Using the spaces and assumptions established in Section 3.5,

the following theorem is formulated.

Theorem 5.1.3 Under the assumptions of Lemmas 3.5.8 or 3.5.9, for κ = 1 or κ

satisfying the small data assumptions in Lemma 3.5.9, respectively, let α0 > 0 be

such that ã(v,v) ≥ α0∥v∥2
DC . With the assumptions of Lemma 3.5.14 and those of

Lemma 5.1.1, if εa ≤ 0 or (α0 − ε0εaC
2
φ) > 0, then the matrix defined by (5.5) is

invertible.

Proof: If κ = 1, Lemma 3.5.8 implies that such an α0 > 0 exists. Similarly, if κ

satisfies the small data assumptions of Lemma 3.5.9, then such an α0 > 0 also exists.

If εa ≤ 0, clearly this implies that a(⋅, ⋅) is coercive. For εa > 0, note that

⟨v ⋅ ∇φk,v ⋅ ∇φk⟩0 = ∫
Ω
(v ⋅ ∇φk)

2 dV ≤ ∫
Ω
∣v∣

2
∣∇φk∣

2 dV

≤ C2
φ∫

Ω
∣v∣

2 dV

≤ C2
φ∥v∥

2
DC . (5.6)

Hence,

∣ε0εa⟨v ⋅ ∇φk,v ⋅ ∇φk⟩0∣ ≤ ε0εaC
2
φ∥v∥

2
DC . (5.7)

Therefore,

a(v,v) ≥ α0∥v∥
2
DC − ε0εaC

2
φ∥v∥

2
DC

= (α0 − ε0εaC
2
φ)∥v∥

2
DC .

Thus, if (α0 − ε0εaC
2
φ) > 0, a(⋅, ⋅) is coercive.

Finally, Lemma 3.5.14 asserts that b(⋅, ⋅) is weakly coercive. Hence, Lemma 5.1.2

implies that Me, as defined in (5.5), is invertible. ◻

Theorem 5.1.3 implies that no additional inf-sup condition for φ is necessary

to guarantee uniqueness of the solution to the system in (5.4). Moreover, the dis-

cretization space for φ may be freely chosen without concern for stability.
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5.2 Flexoelectricity

The flexoelectric effect in liquid crystals continues to generate new and innovative

research [30, 62, 74]. We now derive and analyze the variational systems arising

within our energy-minimization framework in the context flexoelectric effects. The

full form of the free-energy functional for flexoelectric free energy discussed in Section

2.3 is

F4(n, φ) = (K1 −K2 −K4)∥∇ ⋅ n∥
2
0 +K3⟨Z∇× n,∇× n⟩0

+ (K2 +K4)(⟨∇n1,
∂n

∂x
⟩0 + ⟨∇n2,

∂n

∂y
⟩0 + ⟨∇n3,

∂n

∂z
⟩0)

− ε0ε⊥⟨∇φ,∇φ⟩0 − ε0εa⟨n ⋅ ∇φ,n ⋅ ∇φ⟩0 + 2es⟨∇ ⋅ n,n ⋅ ∇φ⟩0

+ 2eb⟨n ×∇ × n,∇φ⟩0, (5.8)

where, again, E = −∇φ to satisfy Faraday’s law. In the presence of appropriate

boundary conditions, using (2.4) implies that this functional simplifies to

F6(n, φ) =K1∥∇ ⋅ n∥
2
0 +K3⟨Z∇× n,∇× n⟩0 − ε0ε⊥⟨∇φ,∇φ⟩0

− ε0εa⟨n ⋅ ∇φ,n ⋅ ∇φ⟩0 + 2es⟨∇ ⋅ n,n ⋅ ∇φ⟩0 + 2eb⟨n ×∇ × n,∇φ⟩0. (5.9)

As in the previous cases, we use Functional (5.8) to build a framework for min-

imization under general boundary conditions, while in the treatment of existence

and uniqueness theory, we assume the application of full Dirichlet or mixed Dirich-

let and periodic boundary conditions and utilize the functional in (5.9).

5.2.1 First-Order Optimality and Newton Linearization

The flexoelectric Lagrangian is constructed as

L̂(n, φ, λ) = F4(n, φ) + ∫
Ω
λ((n,n) − 1)dV. (5.10)

As in the sections above, in order to minimize (5.10), Gâteaux derivatives for

L̂(n, φ, λ) must be computed. Derivation of this variational system is identical to
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that of the applied electric case in Section 5.1.1, with the exception of the derivative

calculations for the additional flexoelectric energy terms. Therefore, the flexoelectric

variational system is written compactly as

L̂n[v] = Ln[v] + 2es(⟨∇ ⋅ n,v ⋅ ∇φ⟩0 + ⟨∇ ⋅ v,n ⋅ ∇φ⟩0)

+ 2eb(⟨n ×∇ × v,∇φ⟩0 + ⟨v ×∇ × n,∇φ⟩0) = 0, ∀v ∈H
DC
0 (Ω),

L̂φ[ψ] = Lφ[ψ] + 2es⟨∇ ⋅ n,n ⋅ ∇ψ⟩0 + 2eb⟨n ×∇ × n,∇ψ⟩0 = 0, ∀ψ ∈H1,0
(Ω),

L̂λ[γ] = Lλ[γ] = 0, ∀γ ∈ L2
(Ω).

Constructing the Newton iterations to address the nonlinearities, as above, yields

a Newton linearization system with the same saddle-point structure as the electric

field case. These Newton iterations are denoted

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

L̂nn L̂nφ L̂nλ

L̂φn L̂φφ 0

L̂λn 0 0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

δn

δφ

δλ

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

= −

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

L̂n

L̂φ

L̂λ

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

. (5.11)

Since the flexoelectric energy terms are first-order with respect to φ and do not

depend on λ, many of the second-order derivatives are the same as the simple

electric case. On the other hand, the mixed partial derivatives involving φ contain

additional terms,

L̂φn[ψ] ⋅ δn = Lφn[ψ] ⋅ δn + 2es(⟨∇ ⋅ δn,nk ⋅ ∇ψ⟩0 + ⟨∇ ⋅ nk, δn ⋅ ∇ψ⟩0)

+ 2eb(⟨nk ×∇ × δn,∇ψ⟩0 + ⟨δn ×∇ × nk,∇ψ⟩0),

L̂nφ[v] ⋅ δφ = Lnφ[v] ⋅ δφ + 2es(⟨∇ ⋅ nk,v ⋅ ∇δφ⟩0 + ⟨∇ ⋅ v,nk ⋅ ∇δφ⟩0)

+ 2eb(⟨nk ×∇ × v,∇δφ⟩0 + ⟨v ×∇ × nk,∇δφ⟩0).

Finally, the second-order derivative with respect to n also contains additional terms,

L̂nn[v] ⋅ δn = Lnn[v] ⋅ δn + 2es(⟨∇ ⋅ δn,v ⋅ ∇φk⟩0 + ⟨∇ ⋅ v, δn ⋅ ∇φk⟩0)

+ 2eb(⟨δn ×∇ × v,∇φk⟩0 + ⟨v ×∇ × δn,∇φk⟩0).
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Note that Lφn[ψ] ⋅δn, Lnφ[v] ⋅δφ, and Lnn[v] ⋅δn are second-order derivatives from

the applied electric field Hessian computed in Section 5.1.1.

Completing the system in (5.11) with the above Hessian and right-hand-side

computations yields the flexoelectric linearized variational system. For these it-

erations, we again compute δn, δφ, and δλ satisfying (5.11) for all v ∈ HDC0 (Ω),

ψ ∈ H1,0(Ω), and γ ∈ L2(Ω) with the current approximations nk, φk, and λk. If

we are considering a system with full or mixed Dirichlet boundary conditions, as

described above, we eliminate the (K2 +K4) terms from (5.11). This produces a

moderately simplified flexoelectric linearization. Appendix A.3 expands both the

full and simplified flexoelectric linearized variational systems.

5.2.2 Well-Posedness of the Discrete Systems

As with the simple electric linearization, finite elements are used to numerically

approximate the updates as δnh, δφh, and δλh. For simplicity, throughout this

section we assume that full Dirichlet boundary conditions are enforced for n and

φ. However, the theory is, as above, also applicable for a rectangular domain with

mixed Dirichlet and periodic boundary conditions. As in the simple electric case,

we define bilinear forms to represent relevant components of the computed Hessian.

The bilinear forms associated with −L̂φφ[ψ] ⋅δφ and L̂λn[γ] ⋅δn are denoted c(δφ,ψ)

and b(δn, γ), respectively, and are identical to the corresponding components of

the simple electric case above. We again decompose the bilinear form defined by

L̂nn[v] ⋅ δn into a free elastic term, ã(δn,v), and a flexoelectric component as

a(δn,v) = ã(δn,v) − ε0εa⟨δn ⋅ ∇φk,v ⋅ ∇φk⟩0

+ es(⟨∇ ⋅ δn,v ⋅ ∇φk⟩0 + ⟨∇ ⋅ v, δn ⋅ ∇φk⟩0)

+ eb(⟨δn ×∇ × v,∇φk⟩0 + ⟨v ×∇ × δn,∇φk⟩0).

Recalling that Cφ = sup
x∈Ω

∣∇φk∣, we formulate the following lemma.

Lemma 5.2.1 Under the assumptions of Lemma 3.5.8 or 3.5.9, let α0 > 0 be such

that ã(v,v) ≥ α0∥v∥2
DC . If εa ≤ 0 and α0 > 2Cφ(∣eb∣ + ∣es∣) or εa > 0 and α0 >
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ε0εaC
2
φ + 2Cφ(∣eb∣ + ∣es∣), then there exists an α1 > 0 such that a(v,v) ≥ α1∥v∥2

DC .

Proof: The proof is split into two cases.

Case 1. εa ≤ 0.

Since ε0 > 0 and ⟨v ⋅ ∇φk,v ⋅ ∇φk⟩0 is clearly positive definite,

ã(v,v) − ε0εa⟨v ⋅ ∇φk,v ⋅ ∇φk⟩0 ≥ α0∥v∥
2
DC . (5.12)

Note that

∣2es⟨∇ ⋅ v,v ⋅ ∇φk⟩0∣ ≤ 2∣es∣∥∇ ⋅ v∥0∥v ⋅ ∇φk∥0

≤ 2∣es∣∥v∥DC∥v ⋅ ∇φk∥0.

Furthermore, from (5.6),

∥v ⋅ ∇φk∥
2
0 ≤ C

2
φ∥v∥

2
DC .

Hence,

∣2es⟨∇ ⋅ v,v ⋅ ∇φk⟩0∣ ≤ 2Cφ∣es∣∥v∥
2
DC . (5.13)

Bounding the second relevant term,

∣2eb⟨v ×∇ × v,∇φk⟩0∣ ≤ 2∣eb∣∣⟨v, (∇× v) ×∇φk⟩0∣

≤ 2∣eb∣∥v∥0∥(∇× v) ×∇φk∥0.

Pointwise,

∣(∇× v) ×∇φk∣
2
≤ ∣∇× v∣

2
∣∇φk∣

2.

Therefore,

∥(∇× v) ×∇φk∥
2
0 = ∫

Ω
∣(∇× v) ×∇φk∣

2 dV ≤ ∫
Ω
∣∇× v∣

2
∣∇φk∣

2 dV
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≤ C2
φ∫

Ω
∣∇× v∣

2 dV

≤ C2
φ∥∇× v∥

2
0 ≤ C

2
φ∥v∥

2
DC .

Thus,

∣2eb⟨v ×∇ × v,∇φk⟩0∣ ≤ 2Cφ∣eb∣∥v∥0∥∇× v∥0 ≤ 2Cφ∣eb∣∥v∥
2
DC . (5.14)

Gathering the bounds in (5.13)-(5.14),

a(v,v) ≥ α0∥v∥
2
DC − 2∣eb∣Cφ∥v∥

2
DC − 2∣es∣Cφ∥v∥

2
DC

= (α0 − 2Cφ(∣eb∣ + ∣es∣))∥v∥
2
DC .

Then, set α1 = α0 − 2Cφ(∣eb∣ + ∣es∣) > 0.

Case 2. εa > 0.

In this case the additional term, ⟨v ⋅∇φk,v ⋅∇φk⟩0, is important. Recall, from (5.7),

that

∣ε0εa⟨v ⋅ ∇φk,v ⋅ ∇φk⟩0∣ ≤ ε0εaC
2
φ∥v∥

2
DC . (5.15)

Employing the bounds in (5.13)-(5.15),

a(v,v) ≥ α0∥v∥
2
DC − ε0εaC

2
φ∥v∥

2
DC − 2Cφ(∣eb∣ + ∣es∣)∥v∥

2
DC

= (α0 − (ε0εaC
2
φ + 2Cφ(∣eb∣ + ∣es∣)))∥v∥

2
DC .

Thus, let α1 = α0 − (ε0εaC
2
φ + 2Cφ(∣eb∣ + ∣es∣)) > 0. ◻

When discretizing the flexoelectric linearization, the 3 × 3 saddle-point block

structure,

Mf =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

Ā B̄1 B2

B̄T
1 −C̃ 0

BT
2 0 0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, (5.16)
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described in (5.5) resurfaces. Blocks B2 and C̃ are identical to those in (5.5) as they

are discretizations of the same bilinear forms in the simple electric case. Again, mak-

ing use of the discretization spaces defined in (3.37) and (3.38) above, the following

theorem holds.

Theorem 5.2.2 Under the assumptions of Lemma 3.5.14 and Lemmas 5.1.1 and

5.2.1, Mf is invertible.

Proof: Lemma 3.5.14 implies that the bilinear form b(δn, γ), associated with B2,

is weakly coercive and Lemma 5.2.1 implies that a(δn,v) is coercive. Therefore,

Lemma 5.1.2 implies that Mf is invertible. ◻

Therefore, as in the simple electric case above, Theorem 5.2.2 implies that no

additional inf-sup condition for φ is necessary to guarantee uniqueness of the solution

to the system in (5.11), and the discretization space for φ may be freely chosen

without concern for stability.

We postpone discussion of numerical implementation and results for the electri-

cally augmented problems discussed above until Section 6.3 in Chapter 6. Chapter 6

begins by discussing the construction and implementation of a number of multigrid

relaxation techniques tailored to the electrically-coupled linear systems described in

(5.5) and (5.16). Such methods are incorporated into the algorithms designed to

carry out the energy minimization in the presence of electric fields.
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Chapter 6

Multigrid

To efficiently solve large-scale linear systems, geometric multigrid methods utilize

complementary techniques consisting of fine-grid relaxation schemes to reduce highly

oscillatory error and coarse-grid corrections to eliminate smooth error modes. Relax-

ation techniques are iterative methods designed to repeatedly reduce solution error

each time they are applied. The Jacobi [65] and Gauss-Seidel methods [112], as well

as the many methods branching from these two approaches, are widely applied in

multigrid frameworks as iterative relaxation schemes. These schemes aggressively

reduce highly oscillatory error. Figure 6.1 depicts error in the solution approxima-

tion for the linear system arising from a finite-element discretization of the Laplace

equation. The error shown in Figure 6.1a, after 5 relaxation iterations of Red-Black

Gauss-Seidel, remains relatively oscillatory while the error in Figure 6.1b, after 30

iterations, is quite smooth. As the error becomes smoother, however, convergence

slows for many stationary iterative methods [120].

(a) (b)

Figure 6.1: The solution error resulting from (a) 5 and (b) 30 iterations of Red-Black
Gauss-Seidel on a finite-element discretization of the Laplace equation.

To alleviate this stagnating convergence, the problem is transferred to a coarser

grid where the smooth errors appear more oscillatory. Relaxation is then performed
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on the coarser problem in order to compute a correction to the current approximation

on the finer grid. This process may be performed recursively, forming the basis of

a multigrid framework. These recursive coarsening and correction procedures take

a number of forms. Figure 6.2 depicts a standard V-cycle approach, which is used

in our multigrid implementations to be discussed below, and Figure 6.3 outlines a

typical F-cycle. For more thorough overviews of multigrid methods, see [17,120]

Relax

Coarsen

Relax

Coarsen

Relax

Coarsen

Exact Solve

Prolongate/Correct

Relax

Prolongate/Correct

Relax

Prolongate/Correct

Relax h

2h

4h

8h

Figure 6.2: Geometric multigrid V-cycle with four grid levels and an exact solve on the
coarsest grid.

h

2h

4h

8h

Figure 6.3: Geometric multigrid F-cycle with four grid levels and exact solves on the
coarsest grid. Arrows traveling down grids imply solution restriction. Arrows traveling up
grids indicate solution interpolation and coarse-grid correction.

Significant research surrounding multigrid methods for saddle-point linear sys-

tems has been pursued [10, 42, 121]. The design of proper relaxation procedures

for fluid systems arising from the discretization of the Stokes and Navier-Stokes

problems is challenging [15, 122], as traditional relaxation techniques, such as pure

Gauss-Seidel or Jacobi, cannot be applied due to the non-positive-definite nature

of the matrices resulting from discretization of the problems. Therefore, a number
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of efficient relaxation schemes specifically addressing the fluid systems’ saddle-point

block structure have been designed and implemented [69,70,121].

In the sections below, we discuss generalizations of Vanka- and Braess-Sarazin-

type relaxation schemes to the electric systems in (5.5) and (5.16). This choice of

schemes is motivated by the performance and robustness studies of such methods for

the block linear systems pertaining to incompressible flows in [68,75], as well as the

numerical success of similar generalizations for the incompressible, resistive MHD

equations in [2]. In this case, we are investigating the performance of these multigrid

methods as preconditioners for Krylov subspace methods, specifically GMRES.

In the multigrid methods to be discussed, we assume that Q2–Q2–P0 finite ele-

ments are used to approximate δnh, δφh, and δλh, respectively, on each grid. Note

that the lemmas proved in Chapter 5 demonstrate that the discretization space for

δφ, in both the electric and flexoelectric models, may be arbitrarily chosen without

regard for stability.

6.1 Vanka-type Relaxation

In this section, we discuss the implementation and associated studies of a coupled

multigrid method with Vanka-type relaxation. Numerical studies have demonstrated

the accuracy and efficiency of Vanka-type relaxation schemes for fluid systems.

Furthermore, the relaxation and convergence properties of element-wise Vanka-

type relaxation techniques have been studied analytically for the Poisson, Stokes,

and Navier-Stokes equations in [89, 91, 97, 111, 114]. Finally, these methods have

been shown to achieve desirable convergence rates for coupled-physics systems with

saddle-point structures such as those in (5.5) and (5.16) [2]. In this section, we write

the general system to be solved as

M
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⎢
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,
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where M represents a matrix arising for either the electric or flexoelectric models.

Vanka-type relaxation schemes aim at forming small, easily inverted matrices

based on the local coupling of the finite-element nodes. The idea is to relax nodes

based on cheaply computed solutions to local problems. Due to the use of cell-

centered, discontinuous finite elements for the Lagrange multiplier, the Vanka-type

relaxation techniques herein, originally formulated in [122] for finite-difference dis-

cretizations, are mesh-cell oriented. Therefore, in the construction of the Vanka-type

relaxation block associated with each Lagrange multiplier degree of freedom, all di-

rector and electric potential degrees of freedom associated with the same cell are

considered. Let Nh, Eh, and Qh denote the director, electric potential, and La-

grange multiplier degrees of freedom, respectively. Define Vhj = Nhj ∪ Ehj ∪Qhj to

be the set of degrees of freedom associated with mesh cell j. LetMj be the block of

matrix M formed by extracting the rows and columns of M corresponding to the

degrees of freedom in Vhj . Hence,

Mj =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

Aj B1,j B2,j

BT
1,j −C̃j 0

BT
2,j 0 0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, (6.1)

with dimension ∣Vhj ∣×∣Vhj ∣. Solution values for degrees of freedom in Vhj are updated

as
⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

ni+1

φi+1
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⎥
⎥
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⎢
⎣

ni

φi

λi

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
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⎜
⎝

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

fn

fφ

fλ

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

−M

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

ni

φi

λi

⎤
⎥
⎥
⎥
⎥
⎥
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⎥
⎥
⎦

⎞
⎟
⎟
⎟
⎟
⎟
⎠
j

, (6.2)

where the subscript j restricts the vectors to the appropriate rows. Thus, a single

relaxation step consists of a loop over all mesh elements in the domain. With the use

of Q2 elements for the components of δn and δφ and P0 elements for δλ, the Vanka

blocks, Mj , are matrices of dimension 37 × 37 and, while relatively dense, quite

fast to invert. In this thesis, we refer to this relaxation scheme as full Vanka-type

relaxation.
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Within the underlying multigrid method, we use standard finite-element inter-

polation operators and Galerkin coarsening. The multigrid cycles used are V (1,1).

The numerical problems to which the multigrid methods presented herein are applied

have periodically constrained boundary conditions. Therefore, special care must be

taken in the construction of the prolongation operators and coarsening to preserve

the periodic structure. For additional details on the numerical implementation of

the multigrid method and associated relaxation schemes, see [2].

In addition to the coupled, mesh-cell oriented Vanka-type relaxation technique

above, a so-called coupled, economy Vanka-type relaxation approach is considered.

This relaxation approach is an extension of the diagonal Vanka smoothers, discussed

in [68, 75], aimed at preserving the electric coupling effects present in the problems

under consideration, while further reducing the cost of the matrix inversions. The

modification results in a block-diagonal relaxation technique rather than a strictly

diagonal relaxation matrix as in [68,75]. In order to formulate the economy Vanka-

type relaxation method, the matrix, Mj , in (6.1) is further reduced.

As discussed above, Q2 finite elements are used for the components of n and the

electric potential, φ. Therefore, at each Q2 finite-element node on mesh cell j, there

are four collocated degrees of freedom corresponding to the three components of n

and the scalar component φ. Thus, 4 × 4 blocks are constructed from the matrix

entries associated with the interaction of these degrees of freedom. Permuting the

matrix entries appropriately yields a block-diagonal Vanka-type relaxation matrix

M
E
j =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

A
(1)
j 0 . . . B

(1)
2,j

0 A
(2)
j . . . B

(2)
2,j

⋮ ⋮ ⋱ ⋮

(B
(1)
2,j )

T (B
(2)
2,j )

T . . . 0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

where A
(l)
j represents the 4×4 block associated with the degrees of freedom grouping

for node l on mesh cell j. Note that the blocks B2,j and BT
2,j in (6.1) are not

modified with the exception of proper permutations. This economy Vanka-type



108

relaxation preserves a portion of the coupling between the director and the electric

field, which is lost in a strictly diagonal relaxation implementation, while reducing

the relaxation matrix structure to a block-diagonal form. The iterative relaxation

steps discussed in (6.2) remain valid for the economy relaxation technique with the

appropriate permutations included to reflect those performed in the construction

of ME
j . This economy Vanka-type relaxation approach has been shown to provide

effective relaxation and improved time per iteration compared with the full Vanka-

type relaxation method for the MHD equations [2].

6.1.1 Parameter and Timing Studies

In the following section, we perform parameter studies to determine the optimal

value of ξ in (6.2) for both full and economy Vanka-type relaxation. The studies

are performed using a flexoelectrically coupled nano-patterened boundary condition

problem. Using the same problem, the performance of the multigrid methods using

the full and economy Vanka-type relaxation are compared against that of applying

UMFPACK LU decomposition [32–35], linked through the deal.II library, as an

exact solver.

The test problem for these studies considers the same slab domain described in

Section 3.7.2. Therefore the domain remains 2-D with Ω = {(x, y) ∣ 0 ≤ x, y ≤ 1}. As

before, the problem assumes periodic boundary conditions at the edges x = 0 and

x = 1. Dirichlet boundary conditions are enforced on the y-boundaries.

Elastic Constants K1 = 1 K2 = 4 K3 = 1 κ = 4 –
Electric Constants ε∥ = 7 ε⊥ = 7 ε0 = 1.42809 es = 0.5 eb = 0.5

Table 6.1: Relevant liquid crystal constants for the Vanka-type relaxation studies.

The relevant constants for the flexoelectric problem used in the studies are de-

tailed in Table 6.1. Note that here, and in subsequent sections, we have scaled

the appropriate constants by the K1 scalar value of 5CB, a common liquid crys-

tal, mainly for convenience in adjusting relative sizes of the parameters. We apply

the same nano-patterned boundary conditions as in (3.75)-(3.77). The nonlinear

residual tolerance is held constant at 10−4 for these studies. In Figure 6.4, the final
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computed solution for the test problem is displayed alongside the flexoelectrically

induced electric potential.

(a) (b)

Figure 6.4: (a) The final computed solution for the test problem on a 512 × 512 mesh
(restricted for visualization). (b) The flexoelectrically induced electric potential.
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Figure 6.5: The average number of multigrid iterations for varying ξ relaxation
parameters on a 512 × 512 grid for (a) full Vanka and (b) economy Vanka.

In this first set of studies, we focus on determining the optimal Vanka relaxation

parameter ξ. For these numerical experiments, the multigrid convergence tolerance,

which is based on the ratio of the current solution’s residual to that of the initial

guess, is 10−6 for each grid level and Newton step. The relaxation parameter for

the full Vanka approach is varied from ξ = 0.1 to ξ = 1.1, while the economy Vanka

relaxation parameter varied from ξ = 0.1 to ξ = 1.0, each in increments of 0.05. The
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corresponding average multigrid iteration counts for a 512×512 grid and a selection

of ξ values is displayed in Figure 6.5a and 6.5b for full and economy Vanka-type

relaxation, respectively.

For the figure, relaxation parameters smaller than 0.3 are not included, as they

resulted in iteration counts of over 100 before the multigrid residual tolerance was

satisfied. The studies indicate that a relaxation parameter of ξ = 1.00 for full Vanka-

type relaxation and an under-relaxation parameter ξ = 0.85 for economy are optimal

for convergence. Note that, in all cases, economy Vanka relaxation required more

iterations to reach the convergence tolerance. However, each iteration individually

requires less time than an iteration of the full Vanka relaxation approach.

The second set of numerical experiments compares the system solve times for the

multigrid solver with both Vanka-type relaxation techniques against the performance

of the UMFPACK LU decomposition solver utilized by deal.II. The experiments

compare the linear solvers, on the above problem, with full nested iteration beginning

on an 8 × 8 grid uniformly refining to a 512 × 512 mesh. For all solvers considered,

we report the total time to solution, including both the setup and solve phases of

the algorithms, but neglect some overhead associated with converting data formats

and interfacing libraries. The optimal relaxation parameters, ξ = 1.00 and ξ = 0.85,

are used for the full and economy Vanka-type relaxation techniques, respectively.

We consider multigrid methods using standard residual-based stopping tolerances,

fixed on all grids, of reduction in the linear residual by factors of 10−8, 10−6, and

10−4.

Table 6.2 displays the average time to solution for the linear systems arising on

successive grids. In the table, each of the multigrid solve timings are scaling nearly

perfectly with grid size, while the LU decomposition solve times are growing at a

faster rate. For the present timings, the LU decomposition solver is approximately

scaling with a factor of 5, and has an expected asymptotic scaling factor of 8. The

table also displays a clear confluence of the solve time for LU decomposition and the

multigrid solvers. For a multigrid residual tolerance of 10−4, the time to solution for

the full Vanka-type relaxation becomes nearly equal to that of the LU decomposition
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Solver\Grid 8 × 8 16 × 16 32 × 32 64 × 64 128 × 128 256 × 256 512 × 512
LU 0.02 0.11 0.57 2.67 12.03 55.78 275.86

Full 1e-8 0.05 0.23 1.17 4.87 20.18 82.77 337.84
Full 1e-6 0.05 0.20 0.91 3.78 16.72 66.38 276.91
Full 1e-4 0.04 0.17 0.74 3.06 13.13 54.39 214.14

Econ. 1e-8 0.06 0.31 1.54 6.53 27.19 109.50 439.61
Econ. 1e-6 0.05 0.26 1.21 5.13 20.81 85.87 344.45
Econ. 1e-4 0.04 0.19 0.90 3.77 15.56 64.41 251.56

Table 6.2: Comparison of average time to solution (in seconds) with LU decomposition
(LU), full Vanka relaxation (Full), and economy Vanka relaxation (Econ) for varying grid
size. Numbers following the relaxation type indicate the multigrid residual tolerance. Bold
face numbers indicate improved time to solution compared with the LU decomposition
solver.

solver as early as the 128 × 128 grid. This occurs at the 512 × 512 grid for the

multigrid solver with economy Vanka-type relaxation and a 10−4 multigrid tolerance.

Moreover, though the applied Vanka-type relaxation methods yield approximate

linear solvers, the number of overall Newton steps does not increase for any of the

experiments compared to the direct solver. Therefore, the method is robust with

respect to adjustments in the multigrid tolerance.

The results of these studies suggest that the full and economy Vanka-type re-

laxation methods discussed above yield effective, efficient, and scalable multigrid

solvers applicable to the coupled saddle-point linear systems arising in the discretiza-

tion of the electric and flexoelectric models. Furthermore, the relaxation techniques

exhibit notable performance for a range of multigrid residual tolerances and relax-

ation parameters. Due to the superior performance of the full Vanka-type relaxation

approach, when using Vanka-type relaxation in the numerical simulations, only full

Vanka relaxation is applied in future studies with a relaxation parameter of 1.00

and a multigrid residual tolerance of 10−6 for assured accuracy.

6.2 Braess-Sarazin-type Relaxation

As with the Vanka-type relaxation schemes, Braess-Sarazin relaxation methods

have been well studied for fluid systems arising from discretization of the Stokes’

and Navier-Stokes’ equations [70, 71, 75]. Numerical studies of Braess-Sarazin-type
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schemes, generalized to the MHD equations, show convincing evidence that multi-

grid with Braess-Sarazin-type relaxation readily outperforms both direct solvers and

Vanka-type relaxation schemes [2]. This notion is reaffirmed in the numerical tests

conducted below.

As above, the general electric system under consideration is written
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. (6.3)

Furthermore, let û = [n φ]T and f̂û = [fn fφ]
T . With these block definitions, the

Braess-Sarazin update scheme, originally formulated in [15] for Stokes flows, is used

and takes the form
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, (6.4)

where R is an appropriate preconditioner for Â and γb is a weighting parameter.

Performing these Braess-Sarazin updates requires solving a system of the form
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⎥
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. (6.5)

Solutions of (6.5) satisfy

Sy = B̂TR−1d − γbe, (6.6)

x =
1

γb
R−1

(d − B̂y),
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where S = −B̂TR−1B̂. For the multigrid implementations used here, (6.6) is approx-

imately solved using one sweep of Symmetric (point) Gauss-Seidel.

Since we use Q2 elements for both n and φ, the degrees of freedom for the

components of n and φ are collocated. As suggested in [2], we construct two possible

preconditioners. The first preconditioner, Re, is simply

Re = diag(Â) =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

diag(A) 0

0 diag(−C)

⎤
⎥
⎥
⎥
⎥
⎥
⎦

.

Since Re is strictly diagonal, computing R−1
e and performing multiplication is quite

simple.

The second preconditioner, Rd, is formed by extracting 4 × 4-blocks of Â corre-

sponding to the nodally collocated degrees of freedom for n and φ. With careful per-

mutation of the degrees of freedom in Equation (6.4), Rd becomes a block-diagonal

matrix with a diagonal consisting of the 4×4 collocation blocks. This preconditioner

maintains some of the electric coupling of the original system, Â, while remaining

relatively easy to invert and compute with. In [2], it is observed that as the magnetic

forces begin to dominate the kinetics of the MHD equations, preserving the electric

coupling becomes increasingly important to solver performance.

The same multigrid framework used for the multigrid methods with Vanka-

type relaxation is applied for the multigrid techniques with Braess-Sarazin-type

relaxation. For this chapter, the Braess-Sarazin-type relaxation scheme using the

preconditioner Re is referred to as diagonal Braess-Sarazin relaxation, while the

scheme utilizing Rd is designated as block-diagonal Braess-Sarazin relaxation.

6.2.1 Parameter and Timing Studies

A flexoelectrically coupled problem is again used for the studies to follow. However,

the boundary conditions considered are a doubling of the nano-pattern described by

Equations (3.75) - (3.77), such that the pattern contains a second strip parallel to

the xy-plane; see Figure 6.6a. While there is no applied electric field, the curvature
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induced by the nano-patterning again generates an internal electric field due to the

flexoelectric properties of the liquid crystals. The computed equilibrium configura-

tion and induced field are displayed in Figure 6.6a and b, respectively. The relevant

Frank and electric constants for the timing and parameter testing are displayed in

Table 6.3.

(a) (b)

Figure 6.6: (a) The computed final solution for the double nano-patterned boundary
conditions with electric and flexoelectric augmentation on a 512 × 512 grid (restricted for
visualization). (b) The flexoelectrically induced electric potential.

Elastic Constants K1 = 1.0 K2 = 4.0 K3 = 1.0 κ = 4 −

Electric Constants ε∥ = 7.0 ε⊥ = 7.0 ε0 = 1.42809 es = 1.5 eb = −1.5

Table 6.3: Relevant liquid crystal constants for the Braess-Sarazin-type relaxation studies.

We first focus on determining the optimal γb value for both Braess-Sarazin re-

laxation methods. Here, the multigrid convergence tolerance remains fixed at 10−6

for each grid level and Newton step, while the nonlinear tolerance was 10−4. The pa-

rameter γb was varied from 1.10 to 2.00 for block-diagonal Braess-Sarazin relaxation

and 1.60 to 2.30 for diagonal Braess-Sarazin, each in increments of 0.05. Displayed

in Figures 6.7a and b are the multigrid iteration counts averaged over Newton iter-

ations on a 512 × 512 mesh with respect to varying values of γb for block-diagonal

and diagonal Braess-Sarazin relaxation, respectively.
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Figure 6.7: The average number of multigrid iterations for varying γb on a 512 × 512 grid
with (a) block-diagonal Braess-Sarazin relaxation and (b) diagonal Braess-Sarazin

The parameter studies suggest that γb values of 1.20 for block-diagonal Braess-

Sarazin relaxation and 1.65 for Braess-Sarazin relaxation are optimal for conver-

gence. Therefore, for the remainder of the multigrid applications, these values for

γb are applied. It is interesting to note that iteration counts are relatively insen-

sitive to increases in γb, for both schemes, above the optimum values of 1.20 and

1.65. While slightly more sensitive, the average iteration counts for diagonal Braess-

Sarazin relaxation only increase by about 5 if γb is increased to 2.30.

Figures 6.8a and b exhibit average setup and solve times across a hierarchy of

grids beginning at an 8 × 8 mesh ascending to a 512 × 512 mesh for the UMFPACK

direct solver and Braess-Sarazin-type multigrid schemes. Using Q2–Q2–P0 elements

for n, φ, and λ, respectively, our matrices are of dimension 4,464,644 × 4,464,644

with 286,969,900 nonzero entries on the finest mesh. It is clear in the figure that

the multigrid schemes with Braess-Sarazin-type relaxation are scaling optimally with

the grid size. Furthermore, there is a clear timing crossover around the 16×16 mesh,

at which point both multigrid methods with Braess-Sarazin-type relaxation become

the faster solver. In agreement with the numerical findings in [2], this timing inter-

section occurs considerably earlier than the Vanka-type relaxation scheme discussed

in Section 6.1.1.
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Figure 6.8: The average time to solution for the (a) block-diagonal Braess-Sarazin and
(b) diagonal Braess-Sarazin schemes with a multigrid tolerance of 10−6 compared to the
UMFPACK direct solver.

Solver\Grid 8 × 8 16 × 16 32 × 32 64 × 64 128 × 128 256 × 256 512 × 512
LU 0.02 0.11 0.56 2.64 11.87 55.14 273.38

Block 1e-8 0.04 0.12 0.46 1.78 7.06 30.04 125.59
Block 1e-6 0.03 0.10 0.40 1.50 6.07 25.56 106.76
Block 1e-4 0.03 0.09 0.36 1.31 5.13 21.88 91.45

Diag. 1e-8 0.04 0.14 0.56 2.04 8.26 34.44 143.87
Diag. 1e-6 0.04 0.12 0.46 1.67 6.80 28.15 119.89
Diag. 1e-4 0.03 0.10 0.36 1.35 5.39 24.03 97.86

Table 6.4: Comparison of average time to solution (in seconds) with LU decomposition
(LU), block-diagonal Braess-Sarazin (Block), and strictly diagonal Braess-Sarazin (Diag)
for varying grid size. Numbers following the relaxation type indicate the multigrid residual
tolerance. Bold face numbers indicate improved time to solution compared with the LU
decomposition solver.

Note that the block-diagonal Braess-Sarazin technique is performing slightly bet-

ter than the diagonal Braess-Sarazin scheme in comparison to the UMFPACK solver.

This difference in the solve times is reflected across grids and varying multgrid tol-

erances in Table 6.4. Even at a multigrid tolerance of 10−8, both the block-diagonal

and diagonal Braess-Sarazin based multigrid schemes outpace the UMFPACK exact

solve times by the 32×32 grid. This leads to the large time to solution improvements

seen in Table 6.5.

Table 6.5 details an itemized comparison of the UMFPACK direct solver’s per-

formance to that of the Braess-Sarazin-type multigrid scheme. The totals represent

the time each algorithm spent performing the listed task, summed across all grids.
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For the run statistics in the table, we also paired the multigrid solver with the

simple trust-region method for the Lagrange multiplier formulation discussed in

Chapter 4. With and without trust regions, the computed free energy between each

of the solvers is identical. On the other hand, Braess-Sarazin-type relaxation re-

duces overall runtime by approximately 32% and 28% for the block-diagonal and

diagonal approaches, respectively. This speed up is most notable when considering

the fact that overall runtime for the multigrid solver experiments includes porting

variables to types compatible with the Trilinos computational library [63] and com-

puting collocation information to match the Trilinos format. Focusing on the linear

setup and solve times alone, the block-diagonal and diagonal relaxation schemes

yield approximately 58% and 54% reductions, respectively. Overall, the multigrid

methods with Braess-Sarazin-type relaxation offer optimal scaling and exceptionally

efficient timing.

UMFPACK Solve Block Braess-Sarazin Diag. Braess-Sarazin
Trust-Region None Simple None Simple None Simple

Free Energy 16.413 16.413 16.413 16.413 16.413 16.413
Sys. Assem. 136.1s 131.3s 136.8s 131.8s 136.5s 130.4s
Data Conv. − − 136.9s 132.6s 136.3s 133.8s

Lin. Setup/Solve 1053.2s 1035.2s 436.8s 425.2s 488.9s 475.6s
Mem./Output 284.7s 283.2s 305.8s 302.6s 303.6s 300.3s

Total Time 1474.0s 1449.7s 1016.3s 992.2s 1065.3s 1040.1s

Table 6.5: A comparison of computation statistics for runs using the UMFPACK direct
solver or the Braess-Sarazin schemes. Each solver is run with and without trust regions.
For each algorithm, the computed free energy on the finest grid and the overall run time,
broken into constituent parts, are included.

Table 6.6 compares the performance of the Braess-Sarazin-type relaxation tech-

niques to that of the full Vanka-type scheme. We compare the methods using the

flexoelectric simulation outlined in Table 6.1 for the Vanka studies. Note that full

Vanka-type relaxation is the clear leader in terms of iteration counts. However,

repeated computation of the local residuals for the Vanka update scheme in (6.2) is

relatively expensive. Thus, while the iteration counts for the Vanka-type method are

much smaller, the overall time per iteration is much larger than the Braess-Sarazin-

type relaxation approaches, resulting in a significant time-to-solution advantage for

the Braess-Sarazin-type techniques. The table shows that both Braess-Sarazin-type
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methods reduce the total time spent in the linear solve phase by approximately

500 seconds when compared to the Vanka-type scheme and block-diagonal Braess-

Sarazin-type relaxation demonstrates the best performance.

Relaxation Scheme Avg Iters Sys. Assem. Lin. Setup/Solve Total Time

Block Braess-Sarazin 14.6 102.2s 328.6s 782.7s
Diagonal Braess-Sarazin 20.0 101.9s 366.8s 822.7s

Full Vanka 6.4 97.3s 847.4s 1326.0s

Table 6.6: A comparison of computation statistics for Vanka- and Braess-Sarazin-type
schemes. For each multigrid approach, the average number of iterations and total time
spent performing each task are reported. The multigrid tolerance for both methods was
fixed at 10−6, while the nonlinear tolerance was 10−4.

6.3 Numerical Results

In this section, we present numerical simulations incorporating applied electric and

internally induced electric fields. The algorithm to perform the minimizations dis-

cussed in Chapter 5 is similar to Algorithm 1, with the addition of the electric

potential, φ. This algorithm, outlined in Algorithm 7, performs nested iteration

and uses the first-order optimality condition stopping tolerance discussed above.

The linear system for each Newton step has the anticipated saddle-point block

structure, detailed in (5.5) and (5.16). Due to its exceptional performance, the

discretization matrices are inverted using the block-diagonal Braess-Sarazin based

multigrid approach with a multigrid tolerance of 1e−6, in order to approximately

solve for the discrete updates δnh, δφh, and δλh. Finally, damped Newton correc-

tions are performed. That is, the new iterates are given by

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

nk+1

φk+1

λk+1

⎤
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⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦
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⎡
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⎣

nk

φk

λk

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
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⎥
⎥
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⎥
⎥
⎥
⎥
⎦

, (6.7)

where ω ≤ 1. For this algorithm, ω is chosen to begin at 0.2 on the coarsest grid and

increases by 0.2, to a maximum of 1, after each grid refinement. As mentioned above,

Q2–Q2–P0 discretizations are used to approximate δnh, δφh, and δλh, respectively.
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For all of the problems undertaken below, the slab domain of Section 3.7.2,

Ω = {(x, y) ∣ 0 ≤ x, y ≤ 1}, is considered with mixed Dirichlet and periodic boundary

conditions.

Algorithm 7: Minimization algorithm with NI for the electric systems

0. Initialize (n0, φ0, λ0) on coarse grid.

while Refinement limit not reached do

while First-order optimality conformance threshold not satisfied do

1. Set up discrete linear system (5.11) on current grid, H.

2. Solve for δnH , δφH , and δλH .

3. Compute nk+1, φk+1, and λk+1 as in (6.7).

end

4. Uniformly refine the grid.

5. Interpolate nH → nh, φH → φh, and λH → λh.

end

6.3.1 Simple Electric Freedericksz Transition

The first liquid crystal numerical experiment considers simple director boundary

conditions, such that n, along both of the substrates, lies uniformly parallel to the x-

axis. The boundary conditions for the electric potential, φ, are such that φ = 0 on the

lower substrate at y = 0 and φ = 1 at y = 1. The relevant constants for the problem

are detailed in Table 6.7. Since the electric anisotropy constant, εa, is positive, the

expected behavior for the liquid crystal configuration is a Freedericksz transition

[51, 130] so long as the applied field is strong enough to overcome the inherent

elastic effects of the system. That is, for an applied voltage above a critical value,

known as a Freedericksz threshold [117], the liquid crystal configuration departs

from uniform alignment parallel to the x-axis and instead tilts in the direction of

the applied field.

Elastic Constants K1 = 1 K2 = 0.62903 K3 = 1.32258 κ = 0.475608
Electric Constants ε0 = 1.42809 ε∥ = 18.5 ε⊥ = 7 εa = 11.5

Table 6.7: Relevant liquid crystal constants for Freedericksz transition problem.
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The problem considered here has an analytical solution. Using the approach

outlined in [40,117], let n = (cos θ(y), sin θ(y),0), and denote the voltage applied at

the top of the substrate as V . Further, observe that due to the imposed Dirichlet

boundary conditions, θ(0) = θ(1) = 0. Hence, symmetry across the horizontal mid-

line between the substrates is expected. Therefore, the solution discussed below is

valid for 0 ≤ y ≤ 1
2 .

Given a fixed voltage V , the maximum angular displacement from elastic rest,

θm, is given implicitly by the equation

V = 2

√
K1

ε0εa
(1 + µ sin2 θm)

1/2
∫

π/2

0
(

1 + κ0 sin2 θm sin2 λ

(1 + µ sin2 θm sin2 λ)(1 − sin2 θm sin2 λ)
)

1/2
dλ, (6.8)

where µ = εa/ε⊥ and κ0 = (K3 −K1)/K1. This parameter is fixed by the physical

constants of the liquid crystal and the experimentally applied voltage. Using θm,

for a given value of y, the analytical solution for θ(y) is expressed implicitly as

2y∫
θm

0
(
(1 + κ0 sin2 θ̂)(1 + µ sin2 θ̂)

sin2 θm − sin2 θ̂
)

1/2
dθ̂ = ∫

θ

0
(
(1 + κ sin2 θ̂)(1 + µ sin2 θ̂)

sin2 θm − sin2 θ̂
)

1/2
dθ̂. (6.9)

In order to simplify the involved computations, these equations are non-dimensionalized.

Let Vc = π
√

K1

εaε0
. Then (6.8) is rewritten

V̄ =
V

Vc
=

2

π
(1 + µ sin2 θm)

1/2
∫

π/2

0
(

1 + κ0 sin2 θm sin2 λ

(1 + µ sin2 θm sin2 λ)(1 − sin2 θm sin2 λ)
)

1/2
dλ.

Applying the substitution

sin θ̂ = sin θm sinλ,

from [130], Equation (6.9) is rewritten for θm > 0 as

2y∫
π/2

0
(
(1 + κ0 sin2 θm sin2 λ)(1 + µ sin2 θm sin2 λ)

1 − sin2 θm sin2 λ
) dλ

= ∫

Θ

0
(
(1 + κ0 sin2 θm sin2 λ)(1 + µ sin2 θm sin2 λ)

1 − sin2 θm sin2 λ
) dλ,

where we solve for Θ = sin−1 ( sin θ
sin θm

). Utilizing the symmetry discussed above,

solutions for 1
2 ≤ y ≤ 1 are given by θ(y) = θ(1 − y). This specific rescaling of V is
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chosen with the implication that if V̄ > 1, then a Freedericksz transition is expected

to occur and a nonzero θm is involved in the free-energy minimizing configuration.

For the specific constants considered in Table 6.7, the critical voltage is Vc =

0.7752 and the angular deviation θm = 0.662. Thus, the anticipated solution should

demonstrate a true Freedericksz transition away from uniform free-elastic alignment.

Indeed, the final computed solution in Figure 6.9, displayed alongside the initial

guess for the algorithm, demonstrates the expected transition. The true free energy,

computed from the analytical solution, for this problem is −5.3295. This free energy

is accurately captured by the minimization approach.

(a) (b)

Figure 6.9: (a) Initial guess on 8 × 8 mesh with initial free energy of 26.767 and (b)
resolved solution on a 512 × 512 mesh (restricted for visualization) with final free energy of
-5.330 for a Freedericksz transition.

The problem is solved on an 8 × 8 coarse grid with six successive uniform re-

finements resulting in a 512 × 512 fine grid. The minimized functional energy is

F5 = −5.3295, compared to the initial guess energy of 26.767. Figure 6.10a details

the number of Newton iterations necessary to reduce the (nonlinear) residual below

the given tolerance, 10−4, on each grid. Note that a sizable majority of the Newton

iteration computations are isolated to the coarsest grids, with the finest grids re-

quiring only two Newton iteration to reach the tolerance limit. Without the use of

nested iteration, the algorithm requires 63 Newton steps on the finest grid, alone,

to reach a similar error measure. The nested-iteration-Newton-multigrid method

achieves an accurate solution in 11.35 minutes, compared to a total run time of over

3.53 hours for standard Newton-multigrid. This corresponds to a speed up factor of

18.6 or a work requirement for the nested iterations equivalent to 3.38 times that of
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assembling and solving a single linearization step on the finest grid.
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Figure 6.10: (a) Newton iterations and (b) L2-error per grid for the Freedericksz
transition.

Also detailed in Figure 6.10b is the reduction in overall L2-error comparing the

analytical solution to the resolved solution on each grid. Note that the error is

approximately reduced by a full order of magnitude on each successive grid, cor-

responding to approximately O(h3) reductions in overall error. Moreover, for the

finer grids, a single Newton step was sufficient to achieve such a reduction. Table

6.8 details run statistics on each grid for the Freedericksz transition problem. The

algorithm matches the analytical free energy by the 16×16 grid and results in quite

accurate unit-length conformance.

Grid Dim. L2-Error Min Dev. Max Dev. Final Energy
8 × 8 4.92e-04 -9.87e-04 9.98e-04 -5.3297

16 × 16 6.19e-05 -1.64e-04 1.50e-04 -5.3295
32 × 32 7.50e-06 -1.56e-05 1.54e-05 -5.3295
64 × 64 9.28e-07 -1.94e-06 1.92e-06 -5.3295

128 × 128 1.16e-07 -2.39e-07 2.37e-07 -5.3295
256 × 256 1.45e-08 -2.98e-08 2.96e-08 -5.3295
512 × 512 1.81e-09 -3.72e-09 3.71e-09 -5.3295

Table 6.8: Grid and solution progression for the simple Freedericksz transition problem
with L2-error, minimum and maximum director deviations from unit length at the
quadrature nodes, and final functional energy on each grid.
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6.3.2 Electric Field with Patterned Boundary Conditions

In the second run, the nano-patterned boundary conditions described by (3.75) -

(3.77) are applied. The same constants outlined in Table 6.7 are also used for this

problem. However, a stronger voltage such that φ = 2 on the substrate at y = 1 is

applied. Along the other substrate, φ remains equal to 0. The final solution, as

well as the initial guess, are displayed in Figure 6.11. For this problem, the grid

progression again begins on an 8 × 8 grid ascending uniformly to a 512 × 512 fine

grid. The minimized functional energy is F5 = −41.960, compared to the initial guess

energy of −31.141.

(a) (b)

Figure 6.11: (a) Initial guess on an 8 × 8 mesh with initial free energy of −31.141 and (b)
resolved solution on a 512 × 512 mesh (restricted for visualization) with final free energy of
-41.960 for a nano-patterned boundary.

Grid Dim. Newton Iter. Init. Res. Final Res. Deviation in ∣n∣2 Final Energy
8 × 8 54 12.27e-00 7.29e-05 -1.11e-01, 6.10e-02 -42.701

16 × 16 21 2.01e-00 4.47e-05 -7.64e-02, 4.24e-02 -42.170
32 × 32 12 9.91e-01 1.66e-05 -4.60e-02, 2.92e-02 -41.963
64 × 64 7 5.52e-01 7.05e-06 -1.80e-02, 1.31e-02 -41.950

128 × 128 3 2.36e-01 1.55e-12 -3.63e-03, 2.89e-03 -41.960
256 × 256 2 7.26e-02 1.64e-10 -4.92e-04, 3.62e-04 -41.960
512 × 512 2 1.87e-02 6.48e-12 -7.36e-05, 6.39e-05 -41.960

Table 6.9: Grid and solution progression for an electric problem and nano-patterned
boundary with initial and final residuals for the first-order optimality conditions, minimum
and maximum director deviations from unit length at the quadrature nodes, and final
functional energy on each grid.

In Table 6.9, the number of Newton iterations per grid is detailed as well as the

conformance of the solution to the first-order optimality conditions after the first and

final Newton steps, respectively, on each grid. As with the previous example, much
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of the computational work is relegated to the coarsest grids. Here, the total work

required is 3.54 times that of assembling and solving a single linearization step on the

finest grid. In contrast, without nested iteration, the algorithm requires 62 Newton

steps on the 512 × 512 fine grid, alone, to satisfy the tolerance limit. While the

nested-iteration-Newton-multigrid method achieves convergence in 11.91 minutes,

the standard Newton-multigrid total run time is over 3.47 hours. Also shown in

Table 6.9, the minimum and maximum director deviations from unit length at the

quadrature nodes are descending towards zero.

Due to the sizable applied electric field, and the elastic influence of the central

boundary condition pattern aligned with the electric field, the expected configura-

tion is a quick transition from the boundary conditions to uniform alignment with

the field. That is, the strength of the Freedericksz transition on the interior of Ω

is augmented by the presence of this type of patterned boundary condition. This

behavior is accurately resolved in the computed solution.

6.3.3 Flexoelectric Phenomena

In this section, we demonstrate the ability of the energy-minimization approach to

capture expected physical phenomenon and predict the presence of new physics.

As discussed above, internally generated electric fields due to flexoelectricity are an

important physical aspect of certain liquid crystal configurations. This polarization

due to curvature can significantly affect stable liquid crystal configurations in the

presence of certain boundary conditions, such as patterned surfaces, that cause

large distortions in the nematic. These may also cause physical phenomenon, such

as bistability [5, 6, 30], that are important for display applications.

The following numerical results utilize boundary conditions similar to those in

(3.75)-(3.77) with an extra parameter∗, ϕ, which has the effect of varying the im-

posed azimuthal director angle along the x-axis of the outer, vertically-aligned strips

∗Note that, here, ϕ is utilized for the azimuthal angle whereas in [5], φ was used.
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on the boundary,

n1 = sin(ϕ) sin (r(π + 2 tan−1
(Xm) − 2 tan−1

(Xp))),

n2 = cos (r(π + 2 tan−1
(Xm) − 2 tan−1

(Xp))),

n3 = cos(ϕ) sin (r(π + 2 tan−1
(Xm) − 2 tan−1

(Xp))).

The NI progression from 8 × 8 grids to 512 × 512 grids persists for each of the sim-

ulations. Due to the complexity of the flexoelectric systems, the nonlinear residual

stopping tolerance is decreased to 10−5.
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Figure 6.12: The computed final free energy of the perturbative solution with
K1 =K2 =K3 = 1, es = 5, and eb = −5 for varying ϕ values. A perturbation solution similar
to that given in [5] is overlaid

In the first experiment, we isolate the influence of flexoelectricity on the con-

figuration by removing elastic anisotropy, setting K1 = K2 = K3 = 1, and using a

small dielectric anisotropy ε∥ = 7 and ε⊥ = 6.9. For both experiments, as above,

ε0 = 1.42809. The computed free energy as a function of the azimuthal angle ϕ is

shown in Figure 6.12, revealing that ϕ = 0 and ϕ = π are the minima, corresponding

to alignment along the length of the stripes. Hence, flexoelectricity serves as an

aligning effect in the presence of the patterned surface. Also displayed in the figure

is the free energy of a perturbation solution similar to the one derived in [5] (note,

a different unit convention and sign error exists in [5]). There, the perturbation

solution is valid for a single semi-infinite planar-vertical junction. In the numerical
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computation, the director profile for the striped cell consists of four junctions per

unit cell. Thus, we approximate the perturbation by adding the mirror image and

doubling. If the junctions are well separated from each other, the cell thickness

is larger than the penetration depth of the nematic, and the length of the surface

planar-vertical transition is very small, this is a valid approximation. Even with this

limitation, the computed energies trace the characteristics of the perturbation solu-

tion quite closely, verifying the alignment influence of flexoelectricity. When consid-

ering internally induced electric fields in the presence of nano-patterned boundaries,

the algorithm’s computed free energies capture the qualitative prediction from the

perturbation solution, but do so with a quantitative accuracy that is not readily

matched by perturbation techniques.
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Figure 6.13: Final flexoelectric energies with nano-patterned boundary conditions for
varying flexoelectric constants es and eb. Each line corresponds to a different ϕ value.

For the second experiment, ε∥ = 7 and ε⊥ = 7. By including anisotropic elas-

tic constants, it is possible to promote alignment perpendicular to the stripes, if

K1,K3 < K2, or parallel to the length of the stripes, if K1,K3 > K2. We use

K1 = K3 = 1 and K2 = 4 to select perpendicular alignment and simulate the con-

figurations with ϕ ∈ {0, π8 ,
π
4 ,

3π
8 ,

π
2 } for varying values of the flexoelectric constants;

the results are displayed in Figure 6.13. As can be seen, for (es − eb)/K1 = 10, the

overall minimum of the free energy lies at an azimuthal angle ϕ = π/2 as expected.
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As the flexoelectric parameter is increased however, the configurations with differ-

ent azimuthal angle increase at different rates; for example at a critical value of

(es − eb)/K1 ≈ 17.5, the solutions for ϕ = 0 and ϕ = π/2 become degenerate. Hence,

as the strength of the flexoelectric effect is increased, the azimuthal angle corre-

sponding to the ground state gradually rotates because flexoelectricity and elastic

anisotropy favor opposing configurations. The phenomenon is important for appli-

cations because it may lead to multiple stable configurations in some regions of the

parameter space, or a significant renormalization of the anchoring behavior for ma-

terials with large flexoelectric response. These phenomena allow engineers to control

the ground states and, potentially, the switching response by adjusting the pattern.

The energy-minimization approach offers an efficient predictive tool for identifying

the parameters that lead to the desired effect.
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Chapter 7

Three-Dimensional Problems with

Patterned Surfaces

In addition to the development of the energy-minimization approach discussed in

previous chapters, we consider solving partial differential equations (PDEs) derived

through the Euler-Lagrange equations for thin liquid crystal films with geomet-

rically patterned substrates. While the energy-minimization approach considered

above can be used to efficiently model these configurations with high precision,

the nonlinear PDEs associated with the particular configurations considered in this

chapter are clean enough that they can be analyzed and numerically solved directly.

We specifically investigate a three-dimensional (3D) film where the substrates

in the z-direction represent a lattice of circularly patterned surfaces. Thin film cells

have been considered in the case of square patterning in [3,4]. There, the patterned

surfaces give rise to two energetically degenerate configurations, which suggests the

potential for bistability similar to that seen in the post-aligned bistable display [26].

Such bistablilities have important energy and design implications for devices which

utilize liquid crystal birefringence to control light propagation.

Throughout this chapter, the director is parameterized as a function of spherical

coordinates φ and θ such that the components of n are written

n1 = cos θ sinφ, n2 = cos θ cosφ, n3 = sin θ,

and θ represents the angular rise of the director off the xy-plane and φ is the clock-

wise rotation from the positive y-axis. This coordinate system is primarily chosen

for convenience in the calculations.

In the configurations to be studied, we consider anisotropic Frank constants

such that K1 = K3 ≠ K2. As noted in [3], the one-constant approximation does not
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accurately capture liquid crystal alignment behaviors in the presence of patterned

surfaces. On the other hand, the relationship of the Frank constants outlined above

has been used successfully to study liquid crystal configurations induced by geomet-

rically patterned substrates [3, 4, 6].

In this chapter, we introduce the micron length scale σ = 10−6m corresponding

to the width of the cell substrate in the x-direction. Thus, using the change of

variable, x = σx̃, where x̃ ∈ R3 is dimensionless, the Frank-Oseen elastic free energy,

ignoring the null-Lagrangian, is written

F̃B =
1

2
σ∫

Ω̃
K1(∇ ⋅ ñ)

2
+K2(ñ ⋅ ∇ × ñ)

2
+K3∣ñ ×∇ × ñ∣

2 dṼ .

Denote τ = K2/K1. Dividing the free energy by the value K1σ and dropping the

tilde notation, the bulk free-energy is characterized by

FB =
1

2
∫

Ω
(∇ ⋅ n)

2
+ τ(n ⋅ ∇ × n)

2
+ ∣n ×∇ × n∣

2 dV, (7.1)

on a domain Ω. In the numerical experiments, we consider the rectangular cuboid

domain, Ω = [0,1]×[0,1]×[−z0, z0]. In addition, we consider a twisting φ-profile via

the ansatz that φ(x, y, z) = φ0 + zφ1, for constants φ0 and φ1. With this assumption

and the energy expression in (7.1), we apply the relevant equilibrium equation in

[117, pg. 38] to produce a partial differential equation in terms of the unknown, θ.

This equation for θ is written

−∇ ⋅A∇θ −
1

2
φ2

1 sin(2θ) (τ − β cos(2θ)) = 0 on Ω, (7.2)

where

A =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1
2
(α − β cos(2φ(z))) 1

2β sin(2φ(z)) 0

1
2β sin(2φ(z)) 1

2
(α + β cos(2φ(z))) 0

0 0 1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, (7.3)
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such that α = 1 + τ and β = 1 − τ . Observe that since τ = K2/K1, τ > 0 by Erick-

sen’s inequalities. Thus, the relevant Euler-Lagrange equation in (7.2) represents a

nonlinear anisotropic reaction-diffusion equation with diffusion tensor, A, written in

(7.3). This tensor is an anisotropic scaling that depends on the director angle and

varies spatially with z. Note that in the special case of φ1 = 0, there is no twist in

the director with variation of z and (7.2) simplifies to a linear anisotropic diffusion

problem.

This approach to computing the equilibrium configuration differs from the energy-

minimization method discussed in previous chapters, in that we use the Euler-

Lagrange equations to produce a PDE from the Frank-Oseen elastic free energy

rather than minimizing the free energy directly. This is motivated by the simplicity

and clarity of the equation to be solved.

In the following sections, among other cases, we consider the outlined PDE with

periodic boundary conditions such that

θ(0, y, z) = θ(1, y, z), (7.4)

θ(x,0, z) = θ(x,1, z), (7.5)

on the cuboid domain. For the boundaries in the z-direction, Dirichlet and Robin

boundary conditions are considered separately. We use a finite-element method with

Newton linearizations to deal with the nonlinear reaction term and show that, under

certain assumptions, the intermediate discrete linearized systems are well-posed.

7.1 Variational Form and Linearization

To use finite elements, we multiply the equation by a test function, w, integrate over

the domain, and use integration by parts to obtain the variational form

−∫
∂Ω

((A∇θ) ⋅ ν)wdS + ∫
Ω
(A∇θ) ⋅ ∇wdV −

1

2
φ2

1∫
Ω

sin(2θ) (τ − β cos(2θ))wdV = 0.
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Here, ν is the outward facing normal for ∂Ω. Denoting the boundary integral as

⟨⋅, ⋅⟩∂Ω and the induced norm space L2(∂Ω), the above equation is written more

compactly as

−⟨w, (A∇θ) ⋅ ν⟩∂Ω + ⟨A∇θ,∇w⟩0 −
1

2
φ2

1⟨sin(2θ) (τ − β cos(2θ)) ,w⟩0 = 0. (7.6)

Since the third term in (7.6) is nonlinear in θ, we apply Newton’s method and

linearize the variational form around a current iterate, θk, with update, γ, such that

θk+1 = θk+γ. Then, denoting the variational form as a functional in θ, F(θ), we find

the Gâteaux derivative in the direction of γ. This is denoted F ′(θk)[γ]. Setting the

derivative equal to the nonlinear residual, −F(θk), we then solve for the update γ.

In computing the functional derivative, we use the fact that the Gâteaux deriva-

tive of sin(2θ) is 2γ cos(2θ) and the derivative of cos(2θ) is −2γ sin(2θ). Thus, the

full Gâteaux derivative is

F
′
(θk)[γ] = −⟨w, (A∇γ) ⋅ ν⟩∂Ω + ⟨A∇γ,∇w⟩0

−
1

2
φ2

1⟨(2γ cos(2θk) (τ − β cos(2θk)) + 2γβ sin2
(2θk)) ,w⟩0

= −⟨w, (A∇γ) ⋅ ν⟩∂Ω + ⟨A∇γ,∇w⟩0

−
1

2
φ2

1⟨2γβ (sin2
(2θk) − cos2

(2θk)) + 2γτ cos(2θk),w⟩0

= −⟨w, (A∇γ) ⋅ ν⟩∂Ω + ⟨A∇γ,∇w⟩0

+ φ2
1⟨(β cos(4θk) − τ cos(2θk))γ,w⟩0.

Forming the full linearization system, F ′(θk)[γ] = −F(θk), with no boundary con-

ditions applied yields

− ⟨w, (A∇γ) ⋅ ν⟩∂Ω + ⟨A∇γ,∇w⟩0 + φ
2
1⟨(β cos(4θk) − τ cos(2θk))γ,w⟩0 =

⟨w, (A∇θk) ⋅ ν⟩∂Ω − ⟨A∇θk,∇w⟩0 +
1

2
φ2

1⟨sin(2θk) (τ − β cos(2θk)) ,w⟩0. (7.7)
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7.1.1 Uniform Symmetric Positive Definiteness of A

Consider the coefficient matrix, A, described in (7.3) and define the constants η =

min(τ,1) and Λ = max(τ,1).

Lemma 7.1.1 The matrix, A, is USPD with upper and lower bounds Λ and η,

independent of Ω, respectively.

Proof: Clearly A is symmetric for all x ∈ Ω. Moreover, the eigenvalues of A are

computed to be λ1 = 1, λ2 =
α−β

2 = τ , and λ3 =
α+β

2 = 1. Note that λi > 0 for i = 1,2,3

and are bounded as 0 < η ≤ λi ≤ Λ, where η and Λ are constants, independent of Ω.

Using standard functional analysis arguments, it is straightforward to show that

0 < η ≤
ξTA(x)ξ

ξT ξ
≤ Λ, ∀x ∈ Ω, ξ ∈ R3.

Therefore, A is uniformly symmetric positive definite with lower and upper bounds

η and Λ, respectively. ◻

Note that the USPD bounds depend only on the value of τ .

7.2 Well-Posedness for Dirichlet Boundary Conditions

In this section, we consider the existence and uniqueness of solutions to the linearized

systems with full Dirichlet boundary conditions on a general domain or the mixed

periodic and Dirichlet boundary conditions on the cuboid domain, discussed above.

In the mixed boundary condition case this implies that we assume

θ(x, y,−z0) = g1(x, y), θ(x, y, z0) = g2(x, y),

for functions g1 and g2.

Considering the general linearized system in (7.7), note that in the case of full

Dirichlet boundary conditions the variations, γ, and test functions, w, have zero

Dirichlet boundary conditions. For the mixed conditions, w and γ have matching
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periodic boundaries in the x− and y-directions and zero Dirichlet boundary condi-

tions in the z-direction. Thus, on the Dirichlet boundaries, the surface integrals in

(7.7) are zero. For the periodic boundaries, the outward facing normals, ν, have

opposite sign, therefore the boundary integrals cancel. Thus, for these boundary

conditions, the linearization system simplifies to

⟨A∇γ,∇w⟩0 + φ
2
1⟨(β cos(4θk) − τ cos(2θk))γ,w⟩0

= −⟨A∇θk,∇w⟩0 +
1

2
φ2

1⟨sin(2θk) (τ − β cos(2θk)) ,w⟩0.

Let

a(γ,w) = ⟨A∇γ,∇w⟩0 + φ
2
1⟨(β cos(4θk) − τ cos(2θk))γ,w⟩0,

F (w) =
1

2
φ2

1⟨sin(2θk)(τ − β cos(2θk)),w⟩0 − ⟨A∇θk,∇w⟩0.

In the following, we assume full Dirichlet boundary conditions such that γ,w ∈

H1
0(Ω) and θk ∈ H

1(Ω) with proper boundary conditions. However, the proofs to

follow are equally applicable to the mixed boundary conditions. For brevity, we

drop the γ notation and simply address the bilinear form a(u,w) in the theory.

In the first instance, we are primarily concerned with establishing tight bounds

on the term β cos(4θk)−τ cos(2θk). Note that since β cos(4θk)−τ cos(2θk) is periodic

and bounded, it has a periodically reoccurring global minimum and maximum. The

following lemma characterizes these extrema in terms of β and τ .

Lemma 7.2.1 If 4
5 < τ < 4

3 , let µ1 = max (1, ∣1 − 2τ ∣) and µ2 = 1− 2τ . Otherwise, let

µ1 = max (∣
8β2+τ2

8β ∣ ,1, ∣1 − 2τ ∣) and µ2 = min (− (
8β2+τ2

8β ) ,1 − 2τ). Then

µ2 ≤ β cos(4θk) − τ cos(2θk), ∣β cos(4θk) − τ cos(2θk)∣ ≤ µ1.

Proof: Computing the derivative with respect to θk,

∂

∂θk
(β cos(4θk) − τ cos(2θk)) = 2τ sin(2θk) − 4β sin(4θk).
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Setting the derivative equal to zero implies that a set of critical points is character-

ized by

2β

τ
=

sin(2θk)

sin(4θk)
=

1

2
sec(2θk).

This implies that, at these critical points, cos(2θk) = τ
4β = τ

4(1−τ) . These critical

points are only feasible if ∣ τ
4(1−τ) ∣ ≤ 1, which occurs for 0 < τ ≤ 4

5 and τ ≥ 4
3 . Observe

that β cos(4θk) = 2β cos2(2θk) − β. Thus, if τ satisfies the feasibility bounds, at the

critical points

β cos(4θk) − τ cos(2θk) = 2β cos2
(2θk) − β − τ cos(2θk)

= 2β (
τ

4β
)

2

− β − τ (
τ

4β
)

= −(
8β2 + τ2

8β
) .

The remaining critical points are those θk such that

sin(2θk) = sin(4θk) = 0.

Note that sin(2θk) = 0 for θk = nπ
2 and n ∈ Z, while sin(4θk) = 0 for θk = nπ

4 and

n ∈ Z. Therefore, the additional critical points are θk = nπ
2 for n ∈ Z. At these

critical points,

β cos(4θk) − τ cos(2θk) = β cos(2nπ) − τ cos(nπ)

= β − (−1)nτ

=

⎧⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎩

1 n odd,

1 − 2τ n even.

Thus, the minimum and absolute maximum values, depending on constants β and

τ , are given by µ2 and µ1, respectively. ◻
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7.2.1 Continuity

For this section, we prove that a(u,w) and F (w) are continuous bilinear and linear

forms on H1
0(Ω), respectively.

Lemma 7.2.2 The bilinear form is bounded as

∣a(u,w)∣ ≤ (Λ + φ2
1µ1)∥u∥1∥w∥1,

for u,w ∈H1
0(Ω).

Proof: By the triangle inequality,

∣a(u,w)∣ ≤ ∣⟨A∇u,∇w⟩0∣ + φ
2
1∣⟨(β cos(4θk) − τ cos(2θk))u,w⟩0∣.

From Lemma 7.1.1 and the Cauchy-Schwarz inequality,

∣⟨A∇u,∇w⟩0∣ ≤ ∥A∇u∥0∥∇w∥0

≤ Λ∥∇u∥0∥∇w∥0 ≤ Λ∥u∥1∥w∥1. (7.8)

Using the bound from Lemma 7.2.1,

φ2
1∣⟨(β cos(4θk) − τ cos(2θk))u,w⟩0∣ ≤ φ

2
1∥(β cos(4θk) − τ cos(2θk))u∥0∥w∥0

= φ2
1 (∫

Ω
(β cos(4θk) − τ cos(2θk))

2
u2 dV )

1/2
∥w∥0

≤ φ2
1µ1∥u∥0∥w∥0

≤ φ2
1µ1∥u∥1∥w∥1. (7.9)

Using inequalities (7.8) and (7.9) this implies that ∣a(u,w)∣ ≤ (Λ+φ2
1µ1)∥u∥1∥w∥1.◻

Lemma 7.2.3 Assume that θk ∈H
1(Ω). Letting µ3 = ∣τ ∣ + ∣β∣ implies that

∣F (w)∣ ≤ (Λ∥∇θk∥0 +
1

2
φ2

1µ3∣Ω∣
1/2

)∥w∥1.
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Proof: Note that

∣ sin(2θk)(τ − β cos(2θk))∣ ≤ ∣ sin(2θk)∣∣τ − β cos(2θk)∣

≤ ∣τ − β cos(2θk)∣

≤ ∣τ ∣ + ∣β∣∣ cos(2θk)∣

≤ ∣τ ∣ + ∣β∣ = µ3.

Then via applications of the triangle and Cauchy-Schwarz inequalities

∣F (w)∣ ≤ ∣⟨A∇θk,∇w⟩0∣ +
1

2
φ2

1∣⟨sin(2θk)(τ − β cos(2θk),w⟩0∣

≤ ∥A∇θk∥0∥∇w∥0 +
1

2
φ2

1∥ sin(2θk)(τ − β cos(2θk)∥0∥w∥0

≤ Λ∥∇θk∥0∥∇w∥0 +
1

2
φ2

1µ3∣Ω∣
1/2

∥w∥0

≤ (Λ∥∇θk∥0 +
1

2
φ2

1µ3∣Ω∣
1/2

)∥w∥1. ◻

7.2.2 Coercivity

Here, we demonstrate that a(u,w) is a coercive bilinear form on H1
0(Ω). That is,

there exists a Cz > 0 such that

a(w,w) ≥ Cz∥w∥
2
1, ∀w ∈H1

0(Ω).

Lemma 7.2.4 Assume that Ω is bounded with a Lipschitz boundary and w ∈H1
0(Ω).

If η
Cf+1 + φ

2
1µ2 > 0, for the Poincaré-Friedrichs’ constant Cf > 0, then a(w,w) is a

coercive bilinear form.

Proof: Lemma 7.1.1 implies that A is USPD and, therefore,

⟨A∇w,∇w⟩0 ≥ η⟨∇w,∇w⟩0.
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By the classical Poincaré-Friedrichs’ inequality [56], there exists a Cf > 0 such that

⟨w,w⟩0 ≤ Cf ⟨∇w,∇w⟩0.

This implies that

∥w∥
2
1 = ⟨w,w⟩0 + ⟨∇w,∇w⟩0

≤ Cf ⟨∇w,∇w⟩0 + ⟨∇w,∇w⟩0

= (Cf + 1)⟨∇w,∇w⟩0.

Thus,

⟨A∇w,∇w⟩0 ≥ η⟨∇w,∇w⟩0 ≥
η

Cf + 1
∥w∥

2
1. (7.10)

Using Lemma 7.2.1 and the fact that φ2
1 ≥ 0,

φ2
1⟨(β cos(4θk) − τ cos(2θk))w,w⟩0 = φ

2
1∫

Ω
(β cos(4θk) − τ cos(2θk))w

2 dV

≥ µ2φ
2
1⟨w,w⟩0. (7.11)

Note that from Lemma 7.2.1, µ2 ≤ 0 for any choice of τ . If µ2 ≤ 0, then µ2φ
2
1⟨w,w⟩0 ≥

µ2φ
2
1∥w∥2

1 and the inequalities (7.10) and (7.11) imply that

a(w,w) ≥
η

Cf + 1
∥w∥

2
1 + φ

2
1µ2∥w∥

2
1 = (

η

Cf + 1
+ φ2

1µ2)∥w∥
2
1.

Thus, taking Cz = (
η

Cf+1 + φ
2
1µ2) > 0, we establish the coercivity of a(⋅, ⋅). ◻

With the continuity of F (w) and a(u,w) established in Lemmas 7.2.2 and 7.2.3,

as well as the coercivity of a(u,w) in Lemma 7.2.4, the Lax-Milgram theorem [16]

implies that the linearizations are well posed for all θk.
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7.3 Well-Posedness for Robin Boundary Conditions

In the presence of non-Dirichlet boundary conditions, a surface free energy captur-

ing the effects of substrate interaction with the nematic rods is introduced. The

equilibrium configuration of a liquid crystal sample occurs at the minimum total of

the volume and surface free energies. These boundary conditions are referred to in

physics literature as weak anchoring conditions [37, 117]. Since we mean to study

surfaces with patterns that encourage 2D geometric structures on the substrates,

we consider a harmonic anchoring potential, similar to that given in [3], such that

the surface free energy is computed as

FS =
1

2Lθ
∫
∂Ω1

(θ − θe)
2 dS,

where Lθ =
K1

Wθσ
> 0 is a parameter associated with the polar anchoring constant Wθ

and ∂Ω1 is the boundary component on which weak anchoring applies. Note that

the appearance of the constant σ corresponds to the length scaling performed above

for the bulk free energy. In this section, we exclusively consider the rectangular

cuboid domain Ω = [0,1]× [0,1]× [−z0, z0] with mixed periodic and weak-anchoring

boundary conditions.

Computing the equilibrium boundary conditions as in [3, 67, 117], we arrive at

the Robin boundary conditions

±Lθ
∂θ

∂z
+ θ = θe, for z = ±z0.

Note that as Lθ tends to 0, the conditions above approach the mixed periodic and

Dirichlet boundary conditions discussed in the previous sections.

With the change of boundary conditions, the surface integrals of the lineariza-

tion in Equation (7.7) are no longer negligible at the boundaries in the z-direction.

Consider the iterate θk+1 = θk +γ and let ν3 denote the z-component of the outward

normal vector for ∂Ω (for z = ±z0 this implies that ν3 = ±1). The Robin conditions
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dictate that at z = ±z0,

ν3Lθ
∂θk+1

∂z
+ θk+1 = ν3Lθ

∂(θk + γ)

∂z
+ θk + γ = θe.

This implies the equivalent requirement that

ν3
∂(θk + γ)

∂z
=

1

Lθ
(θe − θk − γ). (7.12)

Note that

⟨w, (A∇(θk + γ)) ⋅ ν⟩∂Ω = ⟨w, (A∇θk) ⋅ ν⟩∂Ω + ⟨w, (A∇γ) ⋅ ν⟩∂Ω. (7.13)

Denote the surfaces at z = ±z0 as ∂Ω1. Due to the periodic boundary conditions

imposed for γ and θk, the surface integral in (7.13) on ∂Ω/∂Ω1 is zero. Thus

⟨w, (A∇(θk + γ)) ⋅ ν⟩∂Ω = ∫
∂Ω1

w((A∇(θk + γ)) ⋅ ν)dS

= ∫
∂Ω1

w (
∂(θk + γ)

∂z
)ν3 dS. (7.14)

In order to weakly enforce the Robin boundary conditions for θk+1, we replace the

normal derivative in (7.14) with the boundary data on the right-hand-side of (7.12)

such that

∫
∂Ω1

w (
∂(θk + γ)

∂z
)ν3 dS =

1

Lθ
∫
∂Ω1

w(θe − θk − γ)dS.

Therefore, the variational system for the Newton iterations with Robin boundary

conditions is written

1

Lθ
∫
∂Ω1

wγ dS + ⟨A∇γ,∇w⟩0 + φ
2
1⟨(β cos(4θk) − τ cos(2θk))γ,w⟩0 =

1

Lθ
∫
∂Ω1

w(θe − θk)dS − ⟨A∇θk,∇w⟩0 +
1

2
φ2

1⟨sin(2θk) (τ − β cos(2θk)) ,w⟩0. (7.15)
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Again, we define bilinear forms

a(γ,w) =
1

Lθ
∫
∂Ω1

wγ dS + ⟨A∇γ,∇w⟩0 + φ
2
1⟨(β cos(4θk) − τ cos(2θk))γ,w⟩0,

F (w) =
1

Lθ
∫
∂Ω1

w(θe − θk)dS − ⟨A∇θk,∇w⟩0 +
1

2
φ2

1⟨sin(2θk) (τ − β cos(2θk)) ,w⟩0.

For these iterations, we solve for γ ∈ H1(Ω) satisfying a(γ,w) = F (w) for all w ∈

H1(Ω), where γ and w satisfy periodic boundary conditions on the appropriate

boundaries. As in the previous analysis, we drop the γ notation and simply address

the bilinear for a(u,w).

Lemma 7.3.1 Say that Ω is bounded, Lipschitz domain, then a(u,w) is a contin-

uous bilinear form.

Proof: Let

ã(u,w) = ⟨A∇γ,∇w⟩0 + φ
2
1⟨(β cos(4θk) − τ cos(2θk))γ,w⟩0.

Lemma 7.2.2 implies that ∣ã(u,w)∣ ≤ (Λ+φ2
1µ1)∥u∥1∥w∥1. By the triangle inequality,

∣a(u,w)∣ ≤ ∣
1

Lθ
∫
∂Ω1

uw dS∣ + ∣ã(u,w)∣.

Furthermore,

∣
1

Lθ
∫
∂Ω1

uw dS∣ ≤
1

Lθ
∥u∥L2(∂Ω1)∥w∥L2(∂Ω1) ≤

1

Lθ
∥u∥L2(∂Ω)∥w∥L2(∂Ω),

By the trace theorem, [16, Theorem 1.6.6], there exists a CT > 0 such that

∥u∥L2(∂Ω) ≤ CT ∥u∥
1/2
L2(Ω)∥u∥

1/2
1 ≤ CT ∥u∥1.

This implies that

∣
1

Lθ
∫
∂Ω1

uw dS∣ ≤
C2
T

Lθ
∥u∥1∥w∥1.

Hence, ∣a(u,w)∣ ≤ (
C2
T

Lθ
+Λ + φ2

1µ1)∥u∥1∥w∥1. ◻
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Lemma 7.3.2 Assume that Ω is a bounded, Lipschitz domain, θk ∈ H1(Ω), and

θe ∈ L
2(∂Ω). Then F (w) is a bounded linear functional.

Proof: Define the linear functional,

F̃ (w) = ⟨A∇θk,∇w⟩0 +
1

2
φ2

1⟨sin(2θk) (τ − β cos(2θk)) ,w⟩0.

From Lemma 7.2.3,

∣F̃ (w)∣ ≤ (Λ∥∇θk∥0 +
1

2
φ2

1µ3∣Ω∣
1/2

)∥w∥1.

By the triangle inequality,

∣F (w)∣ ≤
1

Lθ
∣∫
∂Ω1

wθe dS∣ +
1

Lθ
∣∫
∂Ω1

wθk dS∣ + ∣F̃ (w)∣

Applying the trace theorem [16, Theorem 1.6.6], as above, we arrive at the bounds

∣∫
∂Ω1

wθk dS∣ ≤ CT ∥θk∥L2(∂Ω1)∥w∥1,

∣∫
∂Ω1

wθe dS∣ ≤ CT ∥θe∥L2(∂Ω1)∥w∥1.

Thus,

∣F (w)∣ ≤ (CT (∥θk∥L2(∂Ω1) + ∥θe∥L2(∂Ω1)) +Λ∥∇θk∥0 +
1

2
φ2

1µ3∣Ω∣
1/2)∥w∥1. ◻

Finally, we consider the coercivity of a(u,w).

Lemma 7.3.3 Say that Ω is a bounded, Lipschitz domain and φ1 ≥ 0. If (α0 +

φ2
1µ2) > 0, for α0 > 0 defined in the proof below, then a(w,w) is a coercive bilinear

form for all w ∈H1(Ω) with appropriate boundary conditions.

Proof: By Lemmas 7.1.1 and 7.2.1,

a(w,w) ≥
1

Lθ
∫
∂Ω1

w2 dS + η⟨∇w,∇w⟩0 + φ
2
1µ2∥w∥

2
1 ∶= b(w,w) + φ2

1µ2∥w∥
2
1.
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Applying a standard compactness argument for coercivity of the variational formu-

lation for the Poisson equation with mixed periodic and Robin boundary conditions

to b(w,w) [1, 16, 87], there exists an α0 > 0 such that b(w,w) ≥ α0∥w∥2
1. Thus, if

α0 + φ
2
1µ2 > 0, then a(w,w) is a coercive bilinear form. ◻

7.4 Numerical Results

For the numerical computations, we consider the domain Ω = [0,1]×[0,1]×[−z0, z0].

In order to solve the variational systems outlined in the sections above, we use Q1

finite elements to discretize and solve for the update γ. In the computations to

follow, τ = 1/2, which fixes α = 3/2 and β = 1/2. Observe that τ = 1/2 implies that

the value of K2 is half that of K1. Define the function θe such that

θe(x, y) =

⎧⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎩

0 (x − 1
2
)

2
+ (y − 1

2
)

2
> r2,

π
2

(x − 1
2
)

2
+ (y − 1

2
)

2
≤ r2,

where r is a positive constant. Throughout this section, we apply the periodic

boundary conditions written in (7.4) and (7.5). For the numerical experiments

incorporating Dirichlet boundary conditions, we use the additional condition

θ (x, y,−z0) = θ (x, y, z0) = θe(x, y).

In the case of Robin boundary conditions, we have the equations

±Lθ
∂θ

∂z
+ θ = θe, for z = ±z0.

Note that, as defined, θe is discontinuous at the boundary of a circle with radius

r, centered at the point (1/2,1/2). However, since we use Lagrangian finite ele-

ments, the discontinuity is represented by a continuous function that more closely

approximates the jump as the mesh is refined. Moreover, this guarantees that for

the discrete variational system, θk ∈ H
1(Ω). Thus, the well-posedness properties of



143

the linearizations outlined above are applicable to the discrete variational systems

considered in this section.

These boundary conditions model the presence of a surface with periodic circular

patterning on substrates in the z-direction. We are interested in the energy behavior

of configurations resulting from such surfaces. In order to more accurately model the

circular transition, adaptive refinement is used to finely resolve the regions at the

circular boundary. Mesh cells are flagged and refined based on which cells contain

the highest free energy. As shown in Figure 7.1, this results in high refinement

around the circular region due to the abrupt behavioral transition of the liquid

crystal structure, which induces inherently elevated free energy.

Figure 7.1: A slice perpendicular to the z-axis at the patterned boundary substrate from
a 3-D computed solution.

7.4.1 Dirichlet Results

The numerical experiments in this section consider a fixed radius of r = 1/6 and a

domain such that z0 = 1/2. We consider the case that φ1 = π/2. Outside of the circle,

the boundary conditions hold θ = 0, indicating a director aligned with the xy-plane.

The ansatz states that φ(z) = φ0 + φ1z. Setting φ1 = π/2 indicates that a full π/2
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nematic twist is completed from the lower to upper substrates. The constant φ0 is

varied in separate experiments from 0 to π/2 in increments of π/16. On the lower

substrate, the variation of φ0 changes the alignment of the nematics from beginning

at a φ-angle of −π/4 through to π/4. Nested iteration is used, starting with an initial

16 × 16 × 16 grid iterating through 8 successive adaptive refinements in which the

top 30% of mesh cells, in terms of computed free energy, are refined.

Figure 7.2a displays a slice of the computed solution at z = 0.4 for φ0 = 0.

Departing from the substrate, we see an elliptic rotating profile for θ which tracks

the rotation of φ through the twist angle of π/2. This behavior is also readily

observable in Figure 7.2b. This figure displays an isovolume for θ ≥ 0.21. Note that

the vertically aligned rods on the boundary quickly relax under the influence of the

outer, planar aligned rods.

(a) A slice perpendicular to the z-axis at
z = 0.4 for φ0 = 0.

(b) An isosurface for θ ≥ 0.21 and slice at
x = 0.5 with φ0 = 0.

Figure 7.2: Plots of the solution for θ with φ0 = 0, φ1 =
π
2

and Dirichlet boundary
conditions.

Table 7.1 reports the computed energies with adaptive refinement broken into

the constituent distortion components. The energy computations indicate that with

the twisting φ-profile, the energetically preferred φ0 value is π/4. It is important

to note that as refinement around the discontinuity at the boundary increases so

does the computed free energy. In fact, for this Dirichlet case, the true solution

is not expected to have finite free energy in the continuous limit due to the forced

discontinuity at the boundary. This energy divergence is manifest in the behavior
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of the increasing computed energy after each refinement around the circular discon-

tinuity. The circular surface disclination considered here is of similar character to

those studied in [125] where certain surface disclinations are demonstrated to induce

infinite free energy. Moreover, analytical solutions to the linear equations arising

when φ1 = 0 have shown divergent free energy.

φ0 0 π
16

2π
16

3π
16

4π
16

5π
16

6π
16

7π
16

8π
16

K1 2.1120 2.1116 2.1108 2.1099 2.1096 2.1099 2.1108 2.1116 2.1120
K2 1.7053 1.7059 1.7073 1.7086 1.7091 1.7086 1.7073 1.7059 1.7053
K3 2.6545 2.6540 2.6529 2.6520 2.6516 2.6520 2.6529 2.6540 2.6545

Bulk 6.4718 6.4716 6.4711 6.4705 6.4703 6.4705 6.4711 6.4716 6.4718

Table 7.1: Free energies for variation of φ0 with φ1 =
π
2

, Dirichlet boundary conditions,
and adaptive refinement.

7.4.2 Robin Results

In contrast to the Dirichlet problem, the true free energy for the Robin boundary

conditions is expected to converge to a finite value since the nematic rods are free to

continuously transition across the circular boundary in order to minimize free energy.

For these types of patterned substrates, Robin boundary conditions represent a more

accurate physical model of the liquid crystal system. For the simulations considered

in the section, the anchoring parameter is Lθ = 0.01. The same adaptive refinement

strategy and nested iteration grid hierarchy discussed in the previous section are

employed here.

φ0 0 π
16

2π
16

3π
16

4π
16

5π
16

6π
16

7π
16

8π
16

K1 0.5869 0.5870 0.5874 0.5877 0.5878 0.5877 0.5874 0.5870 0.5869
K2 0.9416 0.9415 0.9412 0.9408 0.9406 0.9408 0.9412 0.9415 0.9416
K3 0.9130 0.9129 0.9129 0.9130 0.9131 0.9130 0.9129 0.9129 0.9130

Surface 0.7016 0.7016 0.7016 0.7017 0.7017 0.7017 0.7016 0.7016 0.7016

Bulk 2.4414 2.4414 2.4414 2.4415 2.4416 2.4415 2.4414 2.4414 2.4414

Total 3.1430 3.1430 3.1430 3.1432 3.1433 3.1432 3.1430 3.1430 3.1430

Table 7.2: Free energies for variation of φ0 with φ1 =
π
2

, r = 1
6
, Robin boundary

conditions, and adaptive refinement.
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For the first set of experiments, φ1 = π/2, z0 = 1/2, r = 1/6, and φ0 is again varied

from 0 to π/2 in increments of π/16. Table 7.2 reports the bulk and surface free

energy for the computed solutions. The computed free energies converge quickly for

each experiment.

Figure 7.3a shows a slice perpendicular to the z-axis at z = 0.5. This reveals the

behavior of θ at the top substrate. Note that the Robin boundary conditions allow

a continuous transition across the pattern boundary. The elliptic profile seen on

the interior of Ω for the Dirichlet boundary conditions persists for this simulation.

Figure 7.3b displays an isovolume, sliced by the plane x = 0.5, for θ ≥ 0.21.

(a) A slice perpendicular to the z-axis at
z = 0.5 for φ0 = 0.

(b) An isosurface for θ ≥ 0.21 and slice at
x = 0.5 with φ0 = 0.

Figure 7.3: Plots of the solution for θ with φ0 = 0, φ1 =
π
2

, r = 1/6, and Robin boundary
conditions.

φ0 0 π
16

2π
16

3π
16

4π
16

5π
16

6π
16

7π
16

8π
16

K1 1.5842 1.5852 1.5876 1.5902 1.5913 1.5902 1.5876 1.5852 1.5842
K2 1.1599 1.1601 1.1603 1.1600 1.1598 1.1600 1.1603 1.1601 1.1599
K3 2.0145 2.0128 2.0090 2.0056 2.0043 2.0056 2.0090 2.0128 2.0145

Surface 1.4070 1.4071 1.4074 1.4078 1.4079 1.4078 1.4074 1.4071 1.4070

Bulk 4.7586 4.7581 4.7569 4.7558 4.7554 4.7558 4.7569 4.7581 4.7586

Total 6.1656 6.1652 6.1643 6.1636 6.1633 6.1636 6.1643 6.1652 6.1656

Table 7.3: Free energies for variation of φ0 with φ1 =
π
2

, r = 1
3
, Robin boundary

conditions, and adaptive refinement.

Table 7.3 details the computed free energies for varying φ0 when the radius of the

circle at the boundary is increased to r = 1/3. With the larger radius, the influence
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of the patterning reaches deeper into the cell interior, resulting in more distortion

throughout the bulk. This increased ingress is reflected in larger computed free

energy and can be seen in Figures 7.4a and 7.4b. These figures show that the

patterning significantly alters the angular rise of the director throughout the full

interior of the cell.

(a) A slice perpendicular to the z-axis at
z = 0.4 for φ0 = 0.

(b) An isosurface for θ ≥ 0.21 with φ0 = 0.

Figure 7.4: Plots of the solution for θ with φ0 = 0, φ1 =
π
2

, r = 1/3, and Robin boundary
conditions.

The subject of our current work is an investigation of the free-energy behavior,

for fixed τ values, of these twist solutions compared to solutions with constant φ

profiles as the circular pattern radius and values of z0, corresponding to the thickness

of the cell, vary. The constant φ case is simply captured by taking φ1 = 0. As

noted above, this leads to a linear anisotropic diffusion PDE with Robin boundary

conditions.

In our numerical simulations, we have seen evidence that there may exist a

regime of radii and cell thicknesses over which the twisting and constant φ solutions

become energetically degenerate, suggesting the presence of bistable configurations.

This would imply that the interior configuration could be switched from a constant

φ structure to a twisting structure by simply manipulating the radius of the circular

pattern or the cell thickness. This would possibly be advantageous, for instance,

in the control of switching behaviors in display devices. The numerical simulations
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discussed above enable accelerated and precise exploration of the parameter space

over which such bistabilities might exist and open the possibility of simulations

considering alternative geometric patterns.
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Chapter 8

Conclusions and Future Work

This thesis focuses on the development of theoretically supported numerical ap-

proaches for the modeling of nematic liquid crystal equilibrium configurations. These

approaches consider configurations resulting from free-elastic effects as well as those

arising in the presence of applied electric fields and flexoelectricity. An energy-

minimization framework incorporating Lagrange multipliers is derived, producing

linearized variational systems which are discretized with finite-elements methods.

The computed linearization systems are shown to be well-posed when discretized

by appropriate combinations of finite elements. Nested iteration and trust regions

are shown to dramatically improve robustness and efficiency in the context of the

Newton iterations.

In considering the discrete linear systems associated with the electrically coupled

simulations, two multigrid relaxation techniques were investigated and implemented

as part of a monolithic multigrid approach tailored to the arising saddle-point ma-

trices. The relaxation approaches scale optimally with mesh size and offer clear

time-to-solution advantages.

Additionally, an important physical problem investigating the effects of geo-

metrically patterned substrates on three-dimensional liquid crystal configurations

is presented. The problem represents a search for bistable configurations induced

by circularly patterned substrates of varying radii. Modeling of the behavior of

the nematics produces a nonlinear reaction-diffusion PDE for which well-posedness

analysis is conducted and a numerical approach is presented.

8.1 Thesis Contributions

Numerical simulations are an indispensable part of the study of liquid crystal equilib-

rium configurations. Simulations are used to confirm theory, analyze experiments,
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and suggest the presence of new physical phenomenon. Many current technolo-

gies and experiments, including bistable devices [30, 90], require simulations with

anisotropic physical constants on two- and three-dimensional domains. As discussed

in Section 3.1, there are a number of approaches to liquid crystal static and dynamic

problems that make use of the one-constant approximation in both analysis and sim-

ulation. While this approach is useful, particularly in the instance that the Frank

constants are not known, there are many scenarios where the use of unequal elas-

tic constants is required to accurately capture liquid crystal behaviors [3–6, 30, 90].

The energy-minimization approach enforcing the pointwise unit-length constraint

with Lagrange multipliers developed in this thesis is applicable and effective for

anistropic Frank constants and is constructed for use on domains of general dimen-

sion. Numerical experiments demonstrate its accuracy in capturing configurations

resulting from unequal physical parameters in the presence of elastic, electric, and

flexoelectric effects. The algorithm is used to investigate a parameter regime over

which a nano-patterned boundary condition induces possible bistabilities due to

flexoelectricity.

As part of the energy-minimization framework, Newton linearizations were de-

rived for free-elastic effects, as well as electric responses. This thesis presents novel

theory establishing the existence and uniqueness of discrete solutions to the lin-

earizations when discretized by certain finite elements. The associated variational

system shares structural similarities to the Stokes equations but presents unique

difficulties for establishing weak coercivity of the bilinear form associated with the

unit-length constraint. While theory surrounding the incompressibility constraint of

the Stokes’ equations is well-establish, theory addressing the nonlinear unit-length

constraint considered herein is less well understood. Therefore, a novel approach to

proving weak coercivity for the bilinear form associated with the unit-length con-

straint was necessary and is presented here. Moreover, error analysis shows that the

linearization systems are convergent with mesh refinement.

The discrete form of the electrically coupled linearization systems have a block

saddle-point structure which presents unique challenges for the design of fast solvers.
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We have proposed and numerically vetted a collection of relaxation techniques as

part of an optimally-scaling monolithic multigrid method. These relaxation schemes

are based on unique extensions of the Vanka and Braess-Sarazin relaxation tech-

niques for fluid flow [15, 122]. In addition to their optimal-scaling, the multigrid

solvers outperform, often significantly, the application of direct solvers. Moreover,

the number of overall Newton steps and solution error remains the same regardless

of the solver used.

In order to improve speed and efficiency, we have investigated the performance

of nested iteration and trust-region methods. Trust-region approaches, designed in

the context of finite-element discretizations, improve both robustness and overall

time to solution. Nested iteration is productively used to greatly reduce overall

work by isolating a significant portion of the computational cost to the coarsest

grids. This results in marked improvements in algorithm efficiency for all simulations

considered. Pairing these techniques with the multigrid methods for the linear solve

stages yields a robust and efficient algorithm for the computational modeling of

static liquid crystal configurations

Finally, a three-dimensional liquid crystal configuration problem of interest in

ongoing physics research is presented. The experiments investigate the behavior of

equilibrium configurations in the presence of geometrically patterned substrates and

gives rise to a nonlinear anistropic reaction-diffusion equation. We have developed

theory establishing the well-posedness of the associated Newton linearizations in the

presence of both Dirichlet and Robin boundary conditions and presented numerical

results detailing the performance of the finite-element and Newton linearization

techniques applied to solve the PDE. The ongoing parameter studies represent a

search for new bistable configurations induced by variations in cell-thickness and

the radius of the circular nano-patterning at the substrates.
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8.2 Future Work

The work presented herein reveals a number of interesting questions and opportu-

nities for future work, both in the context of liquid crystal problems and beyond.

Below, we outline some of the opportunities we plan to consider in the context of

this work. In addition to the theoretical and algorithmic possibilities delineated in

this section, there are many interesting physical applications and specific cases that

may be investigated using the current and to be developed research.

8.2.1 Liquid Crystal Dynamics

The computational techniques and theory of this thesis focus on the resolution of

equilibrium configurations for liquid crystals. However, accurately modeling the

fluid flow properties of liquid crystals is also an important endeavor. For instance,

dynamic effects play an important role in the manipulation of pixels in an LCD

display. In changing the liquid crystal configuration via an electric field, for example,

the nematic rods can briefly over-rotate due to angular momentum in an effect

known as kickback [24, 82, 117]. Minimizing this effect is desirable in the design of

display technologies. Accurate computational modeling enables a more efficient and

adaptable search for such designs.

The flow of nematic liquid crystals is governed by an intricate system of PDEs

known as the Ericksen-Leslie equations, first proposed by J. L. Ericksen [45] and

later refined by F. M. Leslie [79, 80]. A thorough discussion of these equations can

be found in [117]. The equations couple the free-elastic effects of liquid crystal

microstructures with the constitutive laws governing fluid flow. We have begun

preliminary work on a first-order system least squares (FOSLS) formulation [20,21]

for the incompressible Ericksen-Leslie system, as well as an energy-minimization

framework. This work requires the derivation of first-principle free-energy laws for

the coupled elastic effects of the nematic rods and the fluid properties of the sample.

The theoretical work will incorporate finite-element methods from complicated fluid

problems and Navier-Stokes theory.
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The research aims to accurately solve the Ericksen-Leslie system with unequal

Frank constants and full viscosity parameters. Anisotropic constants are often ex-

tremely important for effective simulation of physical phenomena but have not been

fully studied due to the complexity that anisotropy brings to the Ericksen-Leslie

system. The targeted simulations will be used, for instance, to improve the under-

standing and analysis of optical distortion data produced by liquid crystal experi-

ments.

(a) (b)

(c)

Figure 8.1: (a) Liquid crystal configuration at t = 1 relaxing to uniform alignment. (b)
Liquid crystal configuration at t = 3 near fully relaxed equilibrium state. (c) Induced
backflow at t = 3 where vectors the indicate fluid velocity field.

Preliminary results using the FOSPACK computational package [110] have shown

promise in accurately capturing backflow problems and fluid effects due to Freed-

ericksz transitions in the presence of applied electric fields. Figure 8.1 displays
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the computed results of a simple backflow problem in which the nematics begin in

a state offset from equilibrium and are allowed to relax to a uniform equilibrium

state. This relaxation is expected to engender a mild shear flow in the fluid known

as backflow [117].

Figures 8.1a and 8.1b show the liquid crystal configuration at time steps t = 1

and t = 3, respectively, computed in FOSPACK. The relaxation of the liquid crystal

structure induces the computed flow field pictured in Figure 8.1c at t = 3, which

matches the expected shear flow.

8.2.2 Unit-length Constrained Problems

In the theory developed in this thesis for static liquid crystal configurations, novel

techniques to address the bilinear forms associated with the nonlinear, pointwise

unit-length constraint were needed. While the mixed-method variational system

shared certain similarities with the Stokes’ problem, methods aimed at theoreti-

cal developments surrounding unit-length constraints are not as comprehensively

studied.

Pointwise length constraints exist in many other applications including the mod-

eling of ferromagnetic materials [73]. The use of Lagrange multiplier techniques for

these problems results in discrete systems of similar structure to those discussed

above. Well-posedness theory for these systems remains a relatively open question

due to the challenges of the nonlinear constraint. We plan to investigate extending

the theoretical schema developed herein for liquid crystal equilibrium systems to

those arising in the context of ferromagnetic modeling and other problems involving

pointwise length constraints.

8.2.3 Multigrid

In future research, we plan to specifically consider improvements to the multigrid

relaxation techniques discussed above. The relaxation methods were implemented

as serial computations. However, significant portions of these relaxation approaches

lend themselves to parallel implementation. Therefore, we aim to investigate the
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extent to which these methods may be parallelized and evaluate the performance of

such parallelization.

In addition, we intend to implement full approximation scheme (FAS) multi-

grid methods [60, 107] for the nonlinear variational system in (7.6) in the context

of both Dirichlet and Robin boundary conditions. FAS multigrid methods have

been applied successfully in many contexts to treat nonlinear systems directly using

multigrid principles. Such schemes have the potential to accurately and efficiently

solve the nonlinear variational problem in (7.6) without the need for linearization

of the variational form.

8.2.4 Adaptive Refinement

Finally, the nested-iteration grid hierarchies built throughout this thesis, with the

exception of the final chapter, strictly use uniform grid refinements. While cur-

rent implementations are quite efficient, theoretically supported adaptive refinement

techniques could greatly increase efficiency and accuracy by targeting cells with high

relative error for refinement, thereby allowing greater refinement in specific regions

than that achievable with uniform refinement. In preliminary work, we have ex-

amined two strategies aimed at tagging cells for refinement. The first is based on

cells with the highest free energy, while the second focuses on cells with the largest

nonlinear residual values.

Figure 8.2 displays the distribution of free-elastic energy per cell on a 128 × 128

grid for the nano-patterned boundary conditions outline in (3.75)-(3.77). Note that

a majority of the energy is pooled around the pattern switching junctions where

the largest director distortions are forced. Figure 8.3 shows the adaptive refinement

pattern resulting from 4 successive refinements of the top 30% of cells in terms of free

energy, beginning on an 8 × 8 mesh. The adaptive refinement solution’s computed

free energy is 3.8904 using only 820 cells. This free energy value compares favorably

with that of the 64 × 64 grid from Table 3.3, which contains 4096 elements.

While the use of energy as a marker for refinement performs well in the case of

nano-patterned boundary conditions, areas of highest energy do not always coincide
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Figure 8.2: A representation of the free-elastic energy contained in each cell of a 128× 128
mesh for the free-elastic nano-patterned boundary condition problem.

-0.04

-0.02

0

0.02

0.04

-5.506e-02

5.506e-02
n1

Figure 8.3: The adaptively refined mesh for the free-elastic nano-patterned boundary
problem after 4 adaptive refinements based on cell contained free energy.

with the highest error. Consider the energy and error plots in Figures 8.4a and b,

respectively, after 6 Newton iterations on a 128×128 grid for the tilt-twist free-elastic

problem described in Chapter 4. From the free energy profile, cell refinement would

occur near the substrate boundaries, x = 0 and x = 1. However, the bulk of error lies

closer to the middle of the domain interior. Residual-based refinement behaves in a

similar way and depends heavily on the initial guess and shape of the true solution.
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(a) (b)

Figure 8.4: (a) Cell energy (b) Tilt-Twist error.

Another concern with energy-based adaptive mesh refinement is the fact that

certain regions of equilibrium configurations inherently contain larger free energy.

For instance, the four free-energy pools seen in Figure 8.2 persist on a highly refined

mesh. Though we expect these areas to contain features which are more challenging

to approximate, at a certain level of refinement it becomes advantageous to focus

on other, less refined, areas. Decisions of this type are difficult to make, in a non-

heuristic way, when exclusively considering free energy as a refinement strategy.

Therefore, free energy and residual-based adaptive refinement strategies do not fully

constitute sharp error-estimation methods.

Theoretically supported, accurate error and cost estimators exist for a number of

PDE methodologies. For example, the Accuracy-per-Computational cost approach,

called ACE, is used in the first-order system least squares (FOSLS) framework. It

is an efficiency-based refinement method, originally developed in [38, 101], which

estimates error reduction and costs resulting from computed refinement patterns.

Our current free-energy formulation does not yield a clear intrinsic, a posteriori

error estimator, as is seen in the FOSLS approach. Therefore, we aim to develop

new techniques to accurately and efficiently estimate error and, thereby, precisely

flag cells for refinement within the energy-minimization framework outlined herein.
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Appendix A

Linearized Variational Systems

In this appendix, we present the fully expanded forms of the linearized variational

systems derived in Chapters 3 and 5. These systems represent the intermediate

variational systems discretized and solved at each Newton step in the minimization

algorithms outlined in this thesis.

A.1 Free-Elastic Systems

For configurations considering only free-elastic effects, the linearized variational sys-

tem is written

(K1 −K2 −K4)⟨∇ ⋅ δn,∇ ⋅ v⟩0 +K3⟨Z(nk)∇× δn,∇× v⟩0

+ (K2 −K3)(⟨δn ⋅ ∇ × v,nk ⋅ ∇ × nk⟩0 + ⟨nk ⋅ ∇ × v, δn ⋅ ∇ × nk⟩0

+ ⟨nk ⋅ ∇ × nk,v ⋅ ∇ × δn⟩0 + ⟨nk ⋅ ∇ × δn,v ⋅ ∇ × nk⟩0

+ ⟨δn ⋅ ∇ × nk,v ⋅ ∇ × nk⟩0) + (K2 +K4)(⟨∇δn1,
∂v

∂x
⟩0 + ⟨∇δn2,

∂v

∂y
⟩0

+ ⟨∇δn3,
∂v

∂z
⟩0) + ∫

Ω
λk(δn,v)dV + ∫

Ω
δλ(nk,v)dV

= −((K1 −K2 −K4)⟨∇ ⋅ nk,∇ ⋅ v⟩0 +K3⟨Z(nk)∇× nk,∇× v⟩0

+ (K2 −K3)⟨nk ⋅ ∇ × nk,v ⋅ ∇ × nk⟩0 + (K2 +ZK4)(⟨∇nk1 ,
∂v

∂x
⟩0

+ ⟨∇nk2 ,
∂v

∂y
⟩0 + ⟨∇nk3 ,

∂v

∂z
⟩0) + ∫

Ω
λk(nk,v)dV ), (A.1)

∫
Ω
γ(nk, δn)dV = −

1

2
∫

Ω
γ((nk,nk) − 1)dV. (A.2)

We seek to compute δn and δλ satisfying the system in (A.1) and (A.2) for all

v ∈HDC0 (Ω) and γ ∈ L2(Ω) with the current approximations nk and λk.

If we are considering a system with Dirichlet or mixed periodic and Dirichlet
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boundary conditions, the linearized system simplifies to

K1⟨∇ ⋅ δn,∇ ⋅ v⟩0 +K3⟨Z(nk)∇× δn,∇× v⟩0

+ (K2 −K3)(⟨δn ⋅ ∇ × v,nk ⋅ ∇ × nk⟩0 + ⟨nk ⋅ ∇ × v, δn ⋅ ∇ × nk⟩0

+ ⟨nk ⋅ ∇ × nk,v ⋅ ∇ × δn⟩0 + ⟨nk ⋅ ∇ × δn,v ⋅ ∇ × nk⟩0

+ ⟨δn ⋅ ∇ × nk,v ⋅ ∇ × nk⟩0) + ∫
Ω
λk(δn,v)dV + ∫

Ω
δλ(nk,v)dV

= −(K1⟨∇ ⋅ nk,∇ ⋅ v⟩0 +K3⟨Z(nk)∇× nk,∇× v⟩0

+ (K2 −K3)⟨nk ⋅ ∇ × nk,v ⋅ ∇ × nk⟩0 + ∫
Ω
λk(nk,v)dV ),

∫
Ω
γ(nk, δn)dV = −

1

2
∫

Ω
γ((nk,nk) − 1)dV.

A.2 Applied Electric Fields

In the presence of applied electric fields, the linearized variational system is written

(K1 −K2 −K4)⟨∇ ⋅ δn,∇ ⋅ v⟩0 +K3⟨Z(nk)∇× δn,∇× v⟩0

+ (K2 −K3)(⟨δn ⋅ ∇ × v,nk ⋅ ∇ × nk⟩0 + ⟨nk ⋅ ∇ × v, δn ⋅ ∇ × nk⟩0

+ ⟨nk ⋅ ∇ × nk,v ⋅ ∇ × δn⟩0 + ⟨nk ⋅ ∇ × δn,v ⋅ ∇ × nk⟩0

+ ⟨δn ⋅ ∇ × nk,v ⋅ ∇ × nk⟩0) + (K2 +K4)(⟨∇δn1,
∂v

∂x
⟩0 + ⟨∇δn2,

∂v

∂y
⟩0

+ ⟨∇δn3,
∂v

∂z
⟩0) − ε0εa⟨δn ⋅ ∇φk,v ⋅ ∇φk⟩0 + ∫

Ω
λk(δn,v)dV

− ε0εa⟨nk ⋅ ∇φk,v ⋅ ∇δφ⟩0 − ε0εa⟨nk ⋅ ∇δφ,v ⋅ ∇φk⟩0 + ∫
Ω
δλ(nk,v)dV

= −((K1 −K2 −K4)⟨∇ ⋅ nk,∇ ⋅ v⟩0 +K3⟨Z(nk)∇× nk,∇× v⟩0

+ (K2 −K3)⟨nk ⋅ ∇ × nk,v ⋅ ∇ × nk⟩0 + (K2 +K4)(⟨∇nk1 ,
∂v

∂x
⟩0 + ⟨∇nk2 ,

∂v

∂y
⟩0

+ ⟨∇nk3 ,
∂v

∂z
⟩0) − ε0εa⟨nk ⋅ ∇φk,v ⋅ ∇φk⟩0 + ∫

Ω
λk(nk,v)dV ), (A.3)

− ε0εa⟨nk ⋅ ∇φk, δn ⋅ ∇ψ⟩0 − ε0εa⟨δn ⋅ ∇φk,nk ⋅ ∇ψ⟩0 − ε0ε⊥⟨∇δφ,∇ψ⟩0

− ε0εa⟨nk ⋅ ∇δφ,nk ⋅ ∇ψ⟩0

= ε0ε⊥⟨∇φk,∇ψ⟩0 + ε0εa⟨nk ⋅ ∇φk,nk ⋅ ∇ψ⟩0, (A.4)
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∫
Ω
γ(nk, δn)dV = −

1

2
∫

Ω
γ((nk,nk) − 1)dV. (A.5)

We compute δn, δφ, and δλ satisfying (A.3)-(A.5) for all v ∈HDC0 (Ω), ψ ∈H1,0(Ω),

and γ ∈ L2(Ω) with the current approximations nk, φk, and λk.

If the system considered has full or mixed Dirichlet boundary conditions, as

described throughout this thesis, the simplified linearization is

K1⟨∇ ⋅ δn,∇ ⋅ v⟩0 +K3⟨Z(nk)∇× δn,∇× v⟩0

+ (K2 −K3)(⟨δn ⋅ ∇ × v,nk ⋅ ∇ × nk⟩0 + ⟨nk ⋅ ∇ × v, δn ⋅ ∇ × nk⟩0

+ ⟨nk ⋅ ∇ × nk,v ⋅ ∇ × δn⟩0 + ⟨nk ⋅ ∇ × δn,v ⋅ ∇ × nk⟩0

+ ⟨δn ⋅ ∇ × nk,v ⋅ ∇ × nk⟩0) − ε0εa⟨δn ⋅ ∇φk,v ⋅ ∇φk⟩0 + ∫
Ω
λk(δn,v)dV

− ε0εa⟨nk ⋅ ∇φk,v ⋅ ∇δφ⟩0 − ε0εa⟨nk ⋅ ∇δφ,v ⋅ ∇φk⟩0 + ∫
Ω
δλ(nk,v)dV

= −(K1⟨∇ ⋅ nk,∇ ⋅ v⟩0 +K3⟨Z(nk)∇× nk,∇× v⟩0

+ (K2 −K3)⟨nk ⋅ ∇ × nk,v ⋅ ∇ × nk⟩0 − ε0εa⟨nk ⋅ ∇φk,v ⋅ ∇φk⟩0

+ ∫
Ω
λk(nk,v)dV ),

− ε0εa⟨nk ⋅ ∇φk, δn ⋅ ∇ψ⟩0 − ε0εa⟨δn ⋅ ∇φk,nk ⋅ ∇ψ⟩0 − ε0ε⊥⟨∇δφ,∇ψ⟩0

− ε0εa⟨nk ⋅ ∇δφ,nk ⋅ ∇ψ⟩0

= ε0ε⊥⟨∇φk,∇ψ⟩0 + ε0εa⟨nk ⋅ ∇φk,nk ⋅ ∇ψ⟩0,

∫
Ω
γ(nk, δn)dV = −

1

2
∫

Ω
γ((nk,nk) − 1)dV.

A.3 Flexoelectric Augmentation

With the addition of flexoelectric effects, additional terms are added to the applied

electric field system to produce the full linearized variational system

(K1 −K2 −K4)⟨∇ ⋅ δn,∇ ⋅ v⟩0 +K3⟨Z(nk)∇× δn,∇× v⟩0

+ (K2 −K3)(⟨δn ⋅ ∇ × v,nk ⋅ ∇ × nk⟩0 + ⟨nk ⋅ ∇ × v, δn ⋅ ∇ × nk⟩0
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+ ⟨nk ⋅ ∇ × nk,v ⋅ ∇ × δn⟩0 + ⟨nk ⋅ ∇ × δn,v ⋅ ∇ × nk⟩0

+ ⟨δn ⋅ ∇ × nk,v ⋅ ∇ × nk⟩0) + (K2 +K4)(⟨∇δn1,
∂v

∂x
⟩0 + ⟨∇δn2,

∂v

∂y
⟩0

+ ⟨∇δn3,
∂v

∂z
⟩0) − ε0εa⟨δn ⋅ ∇φk,v ⋅ ∇φk⟩0

+ es(⟨∇ ⋅ δn,v ⋅ ∇φk⟩0 + ⟨∇ ⋅ v, δn ⋅ ∇φk⟩0)

+ eb(⟨δn ×∇ × v,∇φk⟩0 + ⟨v ×∇ × δn,∇φk⟩0) + ∫
Ω
λk(δn,v)dV

− ε0εa⟨nk ⋅ ∇φk,v ⋅ ∇δφ⟩0 − ε0εa⟨nk ⋅ ∇δφ,v ⋅ ∇φk⟩0

+ es(⟨∇ ⋅ nk,v ⋅ ∇δφ⟩0 + ⟨∇ ⋅ v,nk ⋅ ∇δφ⟩0)

+ eb(⟨nk ×∇ × v,∇δφ⟩0 + ⟨v ×∇ × nk,∇δφ⟩0) + ∫
Ω
δλ(nk,v)dV

= −((K1 −K2 −K4)⟨∇ ⋅ nk,∇ ⋅ v⟩0 +K3⟨Z(nk)∇× nk,∇× v⟩0

+ (K2 −K3)⟨nk ⋅ ∇ × nk,v ⋅ ∇ × nk⟩0 + (K2 +K4)(⟨∇nk1 ,
∂v

∂x
⟩0 + ⟨∇nk2 ,

∂v

∂y
⟩0

+ ⟨∇nk3 ,
∂v

∂z
⟩0) − ε0εa⟨nk ⋅ ∇φk,v ⋅ ∇φk⟩0 + es(⟨∇ ⋅ nk,v ⋅ ∇φk⟩0

+ ⟨∇ ⋅ v,nk ⋅ ∇φk⟩0) + eb(⟨nk ×∇ × v,∇φk⟩0 + ⟨v ×∇ × nk,∇φk⟩0)

+ ∫
Ω
λk(nk,v)dV ), (A.6)

− ε0εa⟨nk ⋅ ∇φk, δn ⋅ ∇ψ⟩0 − ε0εa⟨δn ⋅ ∇φk,nk ⋅ ∇ψ⟩0

+ es(⟨∇ ⋅ δn,nk ⋅ ∇ψ⟩0 + ⟨∇ ⋅ nk, δn ⋅ ∇ψ⟩0)

+ eb(⟨nk ×∇ × δn,∇ψ⟩0 + ⟨δn ×∇ × nk,∇ψ⟩0) − ε0ε⊥⟨∇δφ,∇ψ⟩0

− ε0εa⟨nk ⋅ ∇δφ,nk ⋅ ∇ψ⟩0

= −( − ε0ε⊥⟨∇φk,∇ψ⟩0 − ε0εa⟨nk ⋅ ∇φk,nk ⋅ ∇ψ⟩0 + es⟨∇ ⋅ nk,nk ⋅ ∇ψ⟩0

+ eb⟨nk ×∇ × nk,∇ψ⟩0), (A.7)

∫
Ω
γ(nk, δn)dV = −

1

2
∫

Ω
γ((nk,nk) − 1)dV. (A.8)

At each iteration, we compute δn, δφ, and δλ satisfying (A.6)-(A.8) for all v ∈

HDC0 (Ω), ψ ∈ H1,0(Ω), and γ ∈ L2(Ω) with the current approximations nk, φk, and

λk.

If we are considering a system with full or mixed Dirichlet boundary conditions,
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as described above, the linearized system is simplified to

K1⟨∇ ⋅ δn,∇ ⋅ v⟩0 +K3⟨Z(nk)∇× δn,∇× v⟩0

+ (K2 −K3)(⟨δn ⋅ ∇ × v,nk ⋅ ∇ × nk⟩0 + ⟨nk ⋅ ∇ × v, δn ⋅ ∇ × nk⟩0

+ ⟨nk ⋅ ∇ × nk,v ⋅ ∇ × δn⟩0 + ⟨nk ⋅ ∇ × δn,v ⋅ ∇ × nk⟩0

+ ⟨δn ⋅ ∇ × nk,v ⋅ ∇ × nk⟩0) − ε0εa⟨δn ⋅ ∇φk,v ⋅ ∇φk⟩0

+ es(⟨∇ ⋅ δn,v ⋅ ∇φk⟩0 + ⟨∇ ⋅ v, δn ⋅ ∇φk⟩0)

+ eb(⟨δn ×∇ × v,∇φk⟩0 + ⟨v ×∇ × δn,∇φk⟩0) + ∫
Ω
λk(δn,v)dV

− ε0εa⟨nk ⋅ ∇φk,v ⋅ ∇δφ⟩0 − ε0εa⟨nk ⋅ ∇δφ,v ⋅ ∇φk⟩0

+ es(⟨∇ ⋅ nk,v ⋅ ∇δφ⟩0 + ⟨∇ ⋅ v,nk ⋅ ∇δφ⟩0)

+ eb(⟨nk ×∇ × v,∇δφ⟩0 + ⟨v ×∇ × nk,∇δφ⟩0) + ∫
Ω
δλ(nk,v)dV

= −(K1⟨∇ ⋅ nk,∇ ⋅ v⟩0 +K3⟨Z(nk)∇× nk,∇× v⟩0

+ (K2 −K3)⟨nk ⋅ ∇ × nk,v ⋅ ∇ × nk⟩0 − ε0εa⟨nk ⋅ ∇φk,v ⋅ ∇φk⟩0

+ es(⟨∇ ⋅ nk,v ⋅ ∇φk⟩0 + ⟨∇ ⋅ v,nk ⋅ ∇φk⟩0)

+ eb(⟨nk ×∇ × v,∇φk⟩0 + ⟨v ×∇ × nk,∇φk⟩0) + ∫
Ω
λk(nk,v)dV ),

− ε0εa⟨nk ⋅ ∇φk, δn ⋅ ∇ψ⟩0 − ε0εa⟨δn ⋅ ∇φk,nk ⋅ ∇ψ⟩0

+ es(⟨∇ ⋅ δn,nk ⋅ ∇ψ⟩0 + ⟨∇ ⋅ nk, δn ⋅ ∇ψ⟩0)

+ eb(⟨nk ×∇ × δn,∇ψ⟩0 + ⟨δn ×∇ × nk,∇ψ⟩0) − ε0ε⊥⟨∇δφ,∇ψ⟩0

− ε0εa⟨nk ⋅ ∇δφ,nk ⋅ ∇ψ⟩0

= −( − ε0ε⊥⟨∇φk,∇ψ⟩0 − ε0εa⟨nk ⋅ ∇φk,nk ⋅ ∇ψ⟩0 + es⟨∇ ⋅ nk,nk ⋅ ∇ψ⟩0

+ eb⟨nk ×∇ × nk,∇ψ⟩0),

∫
Ω
γ(nk, δn)dV = −

1

2
∫

Ω
γ((nk,nk) − 1)dV.
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Appendix B

An Inf-Sup Result

During the course of research into the well-posedness of the linearization systems

derived in Chapters 3 and 5, the following inf-sup condition was considered and

proven.

Lemma B.0.1 For Assumption 3.5.1, there exists a constant ζ > 0 such that

sup
v∈HDC0 (Ω)

b(v, γ)

∥v∥0
≥ ζ∥γ∥0, ∀γ ∈ L2

(Ω), (B.1)

where b(v, γ) = ∫Ω γ(v,nk)dV . It turned out that the context in which this condi-

tion was examined did not lead to the desired result. However, because the literature

concerning well-posedness for unit-length constrained variational problems is not as

well developed as the body of research surrounding divergence constraints, such as

those arising in the context of the Stokes’ problem, we include the proof here in the

hope that it informs further research.

Proof: Assume that γ ≠ 0, since that case is trivial. For a fixed, arbitrary, nonzero

γ ∈ L2(Ω)

sup
v∈HDC0 (Ω)

b(v, γ)

∥v∥0
≥
∫Ω γ(ϕ,nk)dV

∥ϕ∥0
,

for any ϕ ∈HDC0 (Ω). Let v1 = (
γ
∣nk ∣)nk. Clearly v1 is an element of L2(Ω)3, and

∥v1∥
2
0 = ∥(

γ

∣nk∣
)nk∥

2

0

= ∥γ∥2
0. (B.2)

Note then that

∫Ω γ(v1,nk)dV

∥v1∥0
=
∫Ω γ

2∣nk∣dV

∥γ∥0
.
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With the assumption of control over the director iterate length in (3.9),

∫Ω γ
2∣nk∣dV

∥γ∥0
≥

√
α ∫Ω γ

2 dV

∥γ∥0
=
√
α∥γ∥0.

Observe that v1 ∈ L2(Ω)3 but is not necessarily in HDC0 (Ω). However, C∞
c (Ω)

3
⊂

H0(div,Ω) ∩ H0(curl,Ω), where C∞
c (Ω) denotes the set of compactly supported

smooth functions on Ω. Moreover, C∞
c (Ω)

3 is dense in L2(Ω)3 [59]. Thus, for any

ε > 0, there exists a ϕ ∈ C∞
c (Ω)

3 such that

∥v1 − ϕ∥0 ≤ ε.

Next, the objective is to show that there exists a Ca > 0 and a ϕ ∈ C∞
c (Ω)

3 such

that

∫Ω γ(ϕ,nk)dV

∥ϕ∥0
≥ Ca

∫Ω γ(v1,nk)dV

∥v1∥0
. (B.3)

Consider

∣∫
Ω
γ(ϕ,nk)dV − ∫

Ω
γ(v1,nk)dV ∣ = ∣∫

Ω
γ(ϕ − v1,nk)dV ∣ ≤ ∥ϕ − v1∥0∥γnk∥0

≤ ε∥γnk∥0. (B.4)

Note first that

∫
Ω
γ(v1,nk)dV = ∫

Ω
γ2

∣nk∣dV > 0.

Since γ is fixed and nk is known, v1 is fixed as well. Combining this with (B.4)

implies that there exists a ϕ and an ε1 > 0 such that

0 < ∫
Ω
γ(v1,nk)dV − ε1 ≤ ∫

Ω
γ(ϕ,nk)dV ≤ ∫

Ω
γ(v1,nk)dV + ε1. (B.5)

Hence, it is assumed that ∫Ω γ(ϕ,nk)dV is positive. This implies that (B.3) is

equivalent to the inequality

∥v1∥0

∥ϕ∥0
≥ Ca

∫Ω γ(v1,nk)dV

∫Ω γ(ϕ,nk)dV
, (B.6)
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so long as ϕ is sufficiently close such that (B.5) holds. By the reverse triangle

inequality,

∣∥ϕ∥0 − ∥v1∥0∣ ≤ ∥ϕ − v1∥0 ≤ ε.

This implies that

∥ϕ∥0 ≤ ∥v1∥0 + ε. (B.7)

Observe that (B.2) implies that (B.7) becomes

∥ϕ∥0 ≤ ∥γ∥0 + ε. (B.8)

Note also that (B.4) implies that

∫
Ω
γ(v1,nk)dV ≤ ε∥γnk∥0 + ∫

Ω
γ(ϕ,nk)dV. (B.9)

It is possible to formulate a sufficient condition to (B.6) as finding a Ca > 0 and a

ϕ ∈ C∞
c (Ω)

3 such that

∥γ∥0

∥γ∥0 + ε
≥ Ca

∫Ω γ(ϕ,nk)dV + ε∥γnk∥0

∫Ω γ(ϕ,nk)dV
. (B.10)

Inequality (B.10) is sufficient since, combining results (B.8) and (B.9),

∥v1∥0

∥ϕ∥0
≥

∥γ∥0

∥γ∥0 + ε
≥ Ca

∫Ω γ(ϕ,nk)dV + ε∥γnk∥0

∫Ω γ(ϕ,nk)dV
≥ Ca

∫Ω γ(v1,nk)dV

∫Ω γ(ϕ,nk)dV
.

Thus, proving (B.10) will imply (B.6). Note that the left side of (B.10) is strictly

less than one and the right side, excluding Ca, is strictly greater than one. Further,

note that as ε goes to zero these quantities approach one from below and above

respectively. Because v1 may be approximated by ϕ with arbitrary accuracy, one

may freely choose ε > 0. Define

ε2 =
∫Ω γ(v1,nk)dV − ε1

∥γnk∥0
, ε3 = ∥γ∥0.
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Now take ϕ∗ ∈ C∞
c (Ω)

3 approximating v1 such that

∥ϕ∗ − v1∥0 ≤ ε = min(ε1, ε2, ε3).

Thus,

1

2
<

∥γ∥0

∥γ∥0 + ε
< 1.

Moreover,

1 <
∫Ω γ(ϕ∗,nk)dV + ε∥γnk∥0

∫Ω γ(ϕ∗,nk)dV
= 1 + ε

∥γnk∥0

∫Ω γ(ϕ∗,nk)dV
< 2,

by (B.5). Hence, letting Ca = 1/4, (B.10) is satisfied and, therefore, (B.6) is satisfied.

Thus,

sup
v∈HDC0 (Ω)

b(v, γ)

∥v∥0
≥
∫Ω γ(ϕ∗,nk)dV

∥ϕ∗∥0

≥
1

4
(
∫Ω γ(v1,nk)dV

∥v1∥0
)

≥

√
α

4
∥γ∥0. ◻
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